EP1547159A1 - Nanoporöser metalloxidhalbleiter, der spektral mit kalkogenidnanopartikeln sensibilisiert wird - Google Patents
Nanoporöser metalloxidhalbleiter, der spektral mit kalkogenidnanopartikeln sensibilisiert wirdInfo
- Publication number
- EP1547159A1 EP1547159A1 EP03787807A EP03787807A EP1547159A1 EP 1547159 A1 EP1547159 A1 EP 1547159A1 EP 03787807 A EP03787807 A EP 03787807A EP 03787807 A EP03787807 A EP 03787807A EP 1547159 A1 EP1547159 A1 EP 1547159A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- nano
- metal oxide
- chalcogenide
- solution
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229910044991 metal oxide Inorganic materials 0.000 title claims abstract description 69
- 150000004706 metal oxides Chemical class 0.000 title claims abstract description 69
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 66
- 239000002184 metal Substances 0.000 title claims abstract description 66
- 239000004065 semiconductor Substances 0.000 title claims abstract description 49
- 150000004770 chalcogenides Chemical class 0.000 title claims abstract description 44
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 23
- -1 diazole compound Chemical class 0.000 claims abstract description 41
- 238000000034 method Methods 0.000 claims abstract description 25
- 238000011065 in-situ storage Methods 0.000 claims abstract description 23
- 150000003852 triazoles Chemical class 0.000 claims abstract description 21
- 230000008569 process Effects 0.000 claims abstract description 18
- 206010070834 Sensitisation Diseases 0.000 claims abstract description 12
- 229910021645 metal ion Inorganic materials 0.000 claims abstract description 12
- 230000008313 sensitization Effects 0.000 claims abstract description 12
- 230000003595 spectral effect Effects 0.000 claims abstract description 12
- 239000000243 solution Substances 0.000 claims description 50
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 20
- 229910019142 PO4 Inorganic materials 0.000 claims description 7
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 7
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 6
- 239000010452 phosphate Substances 0.000 claims description 6
- 235000014692 zinc oxide Nutrition 0.000 claims description 5
- 239000007864 aqueous solution Substances 0.000 claims description 2
- 229910000484 niobium oxide Inorganic materials 0.000 claims description 2
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical class [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 claims description 2
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical class [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims description 2
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 claims description 2
- 229910001936 tantalum oxide Inorganic materials 0.000 claims description 2
- 229910001887 tin oxide Inorganic materials 0.000 claims description 2
- QHGNHLZPVBIIPX-UHFFFAOYSA-N tin(ii) oxide Chemical class [Sn]=O QHGNHLZPVBIIPX-UHFFFAOYSA-N 0.000 claims description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 2
- RNWHGQJWIACOKP-UHFFFAOYSA-N zinc;oxygen(2-) Chemical class [O-2].[Zn+2] RNWHGQJWIACOKP-UHFFFAOYSA-N 0.000 claims description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 26
- 210000004027 cell Anatomy 0.000 description 25
- DLYUQMMRRRQYAE-UHFFFAOYSA-N tetraphosphorus decaoxide Chemical compound O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 238000002835 absorbance Methods 0.000 description 13
- 238000007598 dipping method Methods 0.000 description 13
- 229920000137 polyphosphoric acid Polymers 0.000 description 12
- 239000004408 titanium dioxide Substances 0.000 description 11
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 9
- 239000011521 glass Substances 0.000 description 9
- 229910001868 water Inorganic materials 0.000 description 9
- 239000000203 mixture Substances 0.000 description 8
- 239000004020 conductor Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 229920000388 Polyphosphate Polymers 0.000 description 6
- 239000008367 deionised water Substances 0.000 description 6
- 229910021641 deionized water Inorganic materials 0.000 description 6
- 235000011007 phosphoric acid Nutrition 0.000 description 6
- 239000001205 polyphosphate Substances 0.000 description 6
- 235000011176 polyphosphates Nutrition 0.000 description 6
- 230000001235 sensitizing effect Effects 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 5
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 229910052976 metal sulfide Inorganic materials 0.000 description 5
- 235000021317 phosphate Nutrition 0.000 description 5
- 230000001172 regenerating effect Effects 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000006096 absorbing agent Substances 0.000 description 4
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical compound OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 description 4
- XCAUINMIESBTBL-UHFFFAOYSA-N lead(ii) sulfide Chemical compound [Pb]=S XCAUINMIESBTBL-UHFFFAOYSA-N 0.000 description 4
- 125000004437 phosphorous atom Chemical group 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 230000001976 improved effect Effects 0.000 description 3
- 239000011244 liquid electrolyte Substances 0.000 description 3
- 239000010955 niobium Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000002096 quantum dot Substances 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- SNFCXVRWFNAHQX-UHFFFAOYSA-N 9,9'-spirobi[fluorene] Chemical compound C12=CC=CC=C2C2=CC=CC=C2C21C1=CC=CC=C1C1=CC=CC=C21 SNFCXVRWFNAHQX-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910004613 CdTe Inorganic materials 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 229910004262 HgTe Inorganic materials 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 2
- 229920003182 Surlyn® Polymers 0.000 description 2
- 239000005035 Surlyn® Substances 0.000 description 2
- YDHWWBZFRZWVHO-UHFFFAOYSA-N [hydroxy(phosphonooxy)phosphoryl] phosphono hydrogen phosphate Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(=O)OP(O)(O)=O YDHWWBZFRZWVHO-UHFFFAOYSA-N 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 229910052798 chalcogen Inorganic materials 0.000 description 2
- 150000001787 chalcogens Chemical class 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000001246 colloidal dispersion Methods 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- PDZKZMQQDCHTNF-UHFFFAOYSA-M copper(1+);thiocyanate Chemical group [Cu+].[S-]C#N PDZKZMQQDCHTNF-UHFFFAOYSA-M 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 235000011180 diphosphates Nutrition 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000011245 gel electrolyte Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- PHTQWCKDNZKARW-UHFFFAOYSA-N isoamylol Chemical compound CC(C)CCO PHTQWCKDNZKARW-UHFFFAOYSA-N 0.000 description 2
- 239000005340 laminated glass Substances 0.000 description 2
- 239000002650 laminated plastic Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 2
- 230000000243 photosynthetic effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229940005657 pyrophosphoric acid Drugs 0.000 description 2
- 238000006479 redox reaction Methods 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 239000011669 selenium Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910052959 stibnite Inorganic materials 0.000 description 2
- 230000008093 supporting effect Effects 0.000 description 2
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical class C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 2
- 229940048102 triphosphoric acid Drugs 0.000 description 2
- LHENQXAPVKABON-UHFFFAOYSA-N 1-methoxypropan-1-ol Chemical compound CCC(O)OC LHENQXAPVKABON-UHFFFAOYSA-N 0.000 description 1
- GKWLILHTTGWKLQ-UHFFFAOYSA-N 2,3-dihydrothieno[3,4-b][1,4]dioxine Chemical compound O1CCOC2=CSC=C21 GKWLILHTTGWKLQ-UHFFFAOYSA-N 0.000 description 1
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- UUIMDJFBHNDZOW-UHFFFAOYSA-N 2-tert-butylpyridine Chemical compound CC(C)(C)C1=CC=CC=N1 UUIMDJFBHNDZOW-UHFFFAOYSA-N 0.000 description 1
- MARUHZGHZWCEQU-UHFFFAOYSA-N 5-phenyl-2h-tetrazole Chemical compound C1=CC=CC=C1C1=NNN=N1 MARUHZGHZWCEQU-UHFFFAOYSA-N 0.000 description 1
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-N Metaphosphoric acid Chemical compound OP(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical class C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052946 acanthite Inorganic materials 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- CJOBVZJTOIVNNF-UHFFFAOYSA-N cadmium sulfide Chemical compound [Cd]=S CJOBVZJTOIVNNF-UHFFFAOYSA-N 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- PBAYDYUZOSNJGU-UHFFFAOYSA-N chelidonic acid Natural products OC(=O)C1=CC(=O)C=C(C(O)=O)O1 PBAYDYUZOSNJGU-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- BWFPGXWASODCHM-UHFFFAOYSA-N copper monosulfide Chemical compound [Cu]=S BWFPGXWASODCHM-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- VDQVEACBQKUUSU-UHFFFAOYSA-M disodium;sulfanide Chemical compound [Na+].[Na+].[SH-] VDQVEACBQKUUSU-UHFFFAOYSA-M 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- UHPJWJRERDJHOJ-UHFFFAOYSA-N ethene;naphthalene-1-carboxylic acid Chemical compound C=C.C1=CC=C2C(C(=O)O)=CC=CC2=C1 UHPJWJRERDJHOJ-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 229910052949 galena Inorganic materials 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- AKUCEXGLFUSJCD-UHFFFAOYSA-N indium(3+);selenium(2-) Chemical compound [Se-2].[Se-2].[Se-2].[In+3].[In+3] AKUCEXGLFUSJCD-UHFFFAOYSA-N 0.000 description 1
- SIXIBASSFIFHDK-UHFFFAOYSA-N indium(3+);trisulfide Chemical compound [S-2].[S-2].[S-2].[In+3].[In+3] SIXIBASSFIFHDK-UHFFFAOYSA-N 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 238000005305 interferometry Methods 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 125000005341 metaphosphate group Chemical group 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- VVRQVWSVLMGPRN-UHFFFAOYSA-N oxotungsten Chemical class [W]=O VVRQVWSVLMGPRN-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 210000001916 photosynthetic cell Anatomy 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052699 polonium Inorganic materials 0.000 description 1
- HZEBHPIOVYHPMT-UHFFFAOYSA-N polonium atom Chemical compound [Po] HZEBHPIOVYHPMT-UHFFFAOYSA-N 0.000 description 1
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 description 1
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000006862 quantum yield reaction Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000006798 ring closing metathesis reaction Methods 0.000 description 1
- 125000006413 ring segment Chemical group 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- IRPLSAGFWHCJIQ-UHFFFAOYSA-N selanylidenecopper Chemical compound [Se]=[Cu] IRPLSAGFWHCJIQ-UHFFFAOYSA-N 0.000 description 1
- 150000004771 selenides Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- FSJWWSXPIWGYKC-UHFFFAOYSA-M silver;silver;sulfanide Chemical compound [SH-].[Ag].[Ag+] FSJWWSXPIWGYKC-UHFFFAOYSA-M 0.000 description 1
- 229910052979 sodium sulfide Inorganic materials 0.000 description 1
- 235000019832 sodium triphosphate Nutrition 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000005118 spray pyrolysis Methods 0.000 description 1
- YPMOSINXXHVZIL-UHFFFAOYSA-N sulfanylideneantimony Chemical compound [Sb]=S YPMOSINXXHVZIL-UHFFFAOYSA-N 0.000 description 1
- RBWFXUOHBJGAMO-UHFFFAOYSA-N sulfanylidenebismuth Chemical compound [Bi]=S RBWFXUOHBJGAMO-UHFFFAOYSA-N 0.000 description 1
- PGWMQVQLSMAHHO-UHFFFAOYSA-N sulfanylidenesilver Chemical compound [Ag]=S PGWMQVQLSMAHHO-UHFFFAOYSA-N 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 1
- YWYZEGXAUVWDED-UHFFFAOYSA-N triammonium citrate Chemical compound [NH4+].[NH4+].[NH4+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O YWYZEGXAUVWDED-UHFFFAOYSA-N 0.000 description 1
- 239000001393 triammonium citrate Substances 0.000 description 1
- 235000011046 triammonium citrate Nutrition 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/072—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0352—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
- H01L31/035272—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
- H01L31/03529—Shape of the potential jump barrier or surface barrier
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the present invention relates to a nano-porous metal oxide semiconductor in-situ spectrally sensitized with a metal chalcogenide .
- the first type is the regenerative cell which converts light to electrical power leaving no net chemical change behind. Photons of energy exceeding that of the band gap generate electron- hole pairs, which are separated by the electrical field present in the space-charge layer. The negative charge carriers move through the bulk of the semiconductor to the current collector and the external circuit. The positive holes (h + ) are driven to the surface where they are scavenged by the reduced form of the redox relay molecular (R) , oxidizing it: h + + R — 0, the oxidized form. 0 is reduced back to R by the electrons that re-enter the cell from the external circuit.
- R redox relay molecular
- photosynthetic cells operate on a similar principle except that there are two redox systems : one reacting with the holes at the surface of the semiconductor electrode and the second reacting with the electrons entering the counter-electrode.
- water is typically oxidized to oxygen at the semiconductor photoanode and reduced to hydrogen at the cathode.
- Titanium dioxide has been the favoured semiconductor for these studies.
- Unfortunately because of its large band-gap (3 to 3.2 eV) , Ti0 2 absorbs only part of the solar emission and so has low conversion efficiencies.
- Graetzel reported in 2001 in Nature, volume 414, page 338, that numerous attempts to shift the spectral response of Ti0 2 into the visible had so far failed.
- Mesoscopic or nano-porous semiconductor materials minutely structured materials with an enormous internal surface area, have been developed for the first type of cell to improve the light capturing efficiency by increasing the area upon which the spectrally sensitizing species could adsorb.
- Arrays of nano- crystals of oxides such as Ti0 2 , ZnO, Sn0 2 and Nb 2 O s or chalcogenides such as CdSe are the preferred semiconductor materials and are interconnected to allow electrical conduction to take place.
- a wet type solar cell having a porous film of dye-sensitized titanium dioxide semiconductor particles as a work electrode was expected to surpass an amorphous silicon solar cell in conversion efficiency and cost.
- Mater., volume 7, page 1349 reported an all-solid-state solar cell consisting of a highly structured heterojunction between a p- and n-type semiconductor with a absorber in between in which the p- semiconductor is CuSCN or Cul, the n-semiconductor is nano-porous titanium dioxide and the absorber is an organic dye.
- EP-A 1 176 646 discloses a solid state p-n heterojunction comprising an electron conductor and a hole conductor, characterized in that if further comprises a sensitizing semiconductor, said sensitizing being located at an interface between said electron conductor and said hole conductor; and its application in a solid state sensitized photovolaic cell.
- the sensitizing semiconductor is in the form of particles adsorbed at the surface of said electron conductor and in a further preferred embodiment the sensitizing semiconductor is in the form of quantum dots, which according to a particularly preferred embodiment are particles consisting of PbS, CdS, Bi 2 S 3 , Sb 2 S 3 , g 2 S, InAs, CdTe, CdSe or HgTe or solid solutions of HgTe/CdTe or HgSe/CdSe.
- the electron conductor is a ceramic made of finely divided large band gap metal oxide, with nanocrystalline Ti ⁇ 2 being particularly preferred.
- EP-A 1 176 646 further includes an example for making a layered heterojunction in which Sn ⁇ 2 _ coated glass was coated with a compact Ti ⁇ 2 layer by spray pyrolysis, PbS quantum dots were deposited upon the Ti ⁇ 2 layer, the hole conductor 2, 2', 7,7'- tetrakis (N, N-di-p-methoxyphenyl-amine) 9,9' -spirobifluorene (OMeTAD) was deposited on the quantum dots and a semitransparent gold back contact was evaporated on the OMeTAD layer.
- OLED hole conductor 2', 7,7'- tetrakis
- OMeTAD 9,9' -spirobifluorene
- aspects of the present invention are realized by a nano-porous metal oxide semiconductor with a band-gap of greater than 2.9 eV in-situ spectrally sensitized on its internal and external surface with metal chalcogenide nano-particles with a band-gap of less than 2.9 eV containing at least one metal chalcogenide, characterized in that the nano-porous metal oxide semiconductor further contains a triazole or diazole compound.
- aspects of the present invention are also realized by a process for in-situ spectral sensitization of nano-porous metal oxide semiconductor with a band-gap of greater than 2.9 eV on its internal and external surface with metal chalcogenide nano- particles with a band-gap of less than 2.9 eV, containing at least one metal chalcogenide, comprising a metal chalcogenide-forming cycle comprising the steps of: contacting the nano-porous metal oxide with a solution of metal ions; and contacting the nano-porous metal oxide with a solution of chalcogenide ions, wherein the solution of metal ions and/or the solution of chalcogenide ions contains a triazole or diazole compound.
- aspects of the present invention are also realized by a photovoltaic device comprising the above-mentioned nano-porous metal oxide semiconductor.
- aspects of the present invention are also realized by a second photovoltaic device comprising a nano-porous metal oxide semiconductor with a band-gap of greater than 2.9 eV on spectrally sensitized on its internal and external surface with metal chalcogenide nano-particles with a band-gap of less than 2.9 eV, containing at least one metal chalcogenide, prepared according to the above-mentioned process.
- nano-porous metal oxide semiconductor means a metal oxide semiconductor having pores with a size of 100 nm or less and
- chalcogenide means a binary compound containing a chalcogen and a more electropositive element or radical.
- a chalcogen is an element from group IV of the periodic table including oxygen, sulphur, selenium, tellurium and polonium.
- a mixture of two or more metal chalcogenides includes a simple mixture thereof, mixed crystals thereof and doping of a metal chalcogenide by metal or chalcogenide replacement .
- aqueous for the purposes of the present invention means containing at least 60% by volume of water, preferably at least 80% by volume of water, and optionally containing water- miscible organic solvents such as alcohols e.g. methanol, ethanol,
- support means a “self-supporting material” so as to distinguish it from a “layer” which may be coated on a support, but which is itself not self-supporting. It also includes any treatment necessary for, or layer applied to aid, adhesion to the support .
- continuous layer refers to a layer in a single plane covering the whole area of the support and not necessarily in direct contact with the support .
- non-continuous layer refers to a layer in a single plane not covering the whole area of the support and not necessarily in direct contact with the support.
- coating is used as a generic term including all means of applying a layer including all techniques for producing continuous layers, such as curtain coating, doctor-blade coating etc., and all techniques for producing non-continuous layers such as screen printing, ink jet printing, flexographic printing, and techniques for producing continuous layers .
- PEDOT poly (3, 4-ethylenedioxy- thiophene)
- PSS poly(styrene sulphonic acid) or pol (styrenesulphonate) .
- aspects of the present invention are realized by a nano-porous metal oxide semiconductor with a band-gap of greater than 2.9 eV in-situ spectrally sensitized on its internal and external surface with metal chalcogenide nano-particles with a band-gap of less than 2.9 eV containing at least one metal chalcogenide, characterized in that the nano-porous metal oxide further contains a triazole or diazole compound.
- the metal oxide semiconductor is n-type .
- the metal oxide is selected from the group consisting of titanium oxides, tin oxides, niobium oxides, tantalum oxides, tungsten oxides and zinc oxides.
- the nano-porous metal oxide semiconductor is titanium dioxide.
- aspects of the present invention are realized by a nano-porous metal oxide semiconductor with a band-gap of greater than 2.9 eV in-situ spectrally sensitized on its internal and external surface with metal chalcogenide nano-particles with a band-gap of less than 2.9 eV containing at least one metal chalcogenide, characterized in that the nano-porous metal oxide further contains a triazole or diazole compound.
- the metal chalcogenide is a metal oxide, metal sulphide, metal selenide or a mixture of two or more thereof.
- the metal chalcogenide is a metal sulphide or a mixture of two or more thereof.
- the metal chalcogenide is selected from the group consisting of lead sulphide, bismuth sulphide, cadmium sulphide, silver sulphide, antimony sulphide, indium sulphide, copper sulphide, cadmium selenide, copper selenide, indium selenide, cadmium telluride or a mixture of two or more thereof.
- aspects of the present invention are realized by a nano-porous metal oxide semiconductor with a band-gap of greater than 2.9 eV in-situ spectrally sensitized on its internal and external surface with metal chalcogenide nano-particles with a band-gap of less than 2.9 eV containing at least one metal chalcogenide.
- the triazole compound is a tetraazaindene .
- the triazole compound is selected from the group consisting of
- Suitable triazole or diazole compounds include:
- the nano-porous metal oxide further contains a phosphoric acid or a phosphate .
- the phosphoric acid is selected from the group consisting of , orthophosphoric acid, phosphorous acid, hypophosphorous acid and polyphosphoric acids .
- Polyphosphoric acids include diphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid, metaphosphoric acid and "polyphosphoric acid” .
- the phosphate is selected from the group consisting of orthophosphates , phosphates , phosphites , hypophosphites and polyphosphates .
- Polyphosphates are linear polyphosphates , cyclic polyphosphates or mixtures thereof .
- Linear polyphosphates contain 2 to 15 phosphorus atoms and include pyrophosphates , dipolyphosphates , tripolyphosphates and tetrapolyphosphates .
- Cyclic polyphosphates contain 3 to 8 phosphorus atoms and include trimetaphosphates and tetrametaphosphates and metaphosphates .
- Polyphosphoric acid may be prepared by heating H 3 PO 4 with sufficient P4O10 (phosphoric anhydride) or by heating H 3 PO 4 to remove water . A P O 10 /H 2 O mixture containing 72 .
- P 4 O 10 corresponds to pure H 3 PO 4 , but the usual commercial grades of the acid contain more water .
- P 4 O 10 content H 4 P 2 O 7 pyrophosphoric acid, forms along with P 3 through Ps polyphosphoric acids .
- Triphosphoric acid appears at 71 . 7% P 2 O 5 (H 5 P 3 O 10 ) and tetraphosphoric acid (H 6 P 4 O 13 ) at about 75 . 5% P 2 O 5 .
- Such linear polyphosphoric acids have 2 to 15 phosphorus atoms, which each bear a strongly acidic OH group.
- the two terminal P atoms are each bonded to a weakly acidic OH group.
- High linear and cyclic polyphosphoric acids are present only at acid concentrations above 82% P 2 O 5 .
- Commercial phosphoric acid has a 82 to 85% by weight P 2 O 5 content. It consists of about 55% tripolyphosphoric acid, the remainder being H 3 PO 4 and other polyphosphoric acids .
- a polyphosphoric acid suitable for use according to the present invention is a 84% (as P 2 O 5 ) polyphosphoric acid supplied by ACROS (Cat. No. 19695-0025) .
- aspects of the present invention are also realized by a process for in-situ spectral sensitization of nano-porous metal oxide semiconductor with a band-gap of greater than 2.9 eV on its internal and external surface with metal chalcogenide nano- particles with a band-gap of less than 2.9 eV, containing at least one metal chalcogenide, comprising a metal chalcogenide-forming cycle comprising the steps of: contacting nano-porous metal oxide with a solution of metal ions; and contacting nano-porous metal oxide with a solution of chalcogenide ions, wherein the solution of metal ions and/or the solution of chalcogenide ions contains a triazole or diazole compound.
- the contact with a solution of metal ions occurs before the contact with a solution of chalcogenide ions .
- the metal chalcogenide-forming cycle is repeated.
- the triazole or diazole compound is tetraazaindene is 5-methyl-l, 2, -triazolo- (1, 5-a) -pyrimidine-7-ol .
- the metal chalcogenide is rinsed with an aqueous solution containing a phosphoric acid or a phosphate.
- Supports for use according to the present invention include polymeric films, silicon, ceramics, oxides, glass, polymeric film reinforced glass, glass/plastic laminates, metal/plastic laminates, paper and laminated paper, optionally treated, provided with a subbing layer or other adhesion promoting means to aid adhesion to adjacent layers.
- Suitable polymeric films are poly (ethylene terephthalate) , poly (ethylene naphthalate) , polystyrene, polyethersulphone, polycarbonate, polyacrylate, polyamide, polyimides, cellulosetriacetate, polyolefins and poly (vinylchloride) , optionally treated by corona discharge or glow discharge or provided with a subbing layer.
- the photovoltaic device comprises a layer configuration.
- the photovoltaic device comprises a layer configuration.
- Photovoltaic devices incorporating the spectrally sensitized nano-porous metal oxide can be of two types : the regenerative type which converts light into electrical power leaving no net chemical change behind in which current-carrying electrons are transported to the anode and the external circuit and the holes are transported to the cathode where they are oxidized by the electrons from the external circuit and the photosynthetic type in which there are two redox systems one reacting with the holes at the surface of the semiconductor electrode and one reacting with the electrons entering the counter- electrode, for example, water is oxidized to oxygen at the semiconductor photoanode and reduced to hydrogen at the cathode.
- the hole transporting medium may be a liquid electrolyte supporting a redox reaction, a gel electrolyte supporting a redox reaction, an organic hole transporting material, which may be a low molecular weight material such as 2, 2' , 7, 7' -tetrakis (N,N-di-p-methoxyphenyl-amine) 9, 9' - spirobifluorene (OMeTAD) or triphenylamine compounds or a polymer such as PPV-derivatives, poly (N-vinylcarbazole) etc., or inorganic semiconductors such as Cul, CuSCN etc.
- the charge transporting process can be ionic as in the case of a liquid electrolyte or gel electrolyte or electronic as in the case of organic or inorganic hole transporting materials .
- Such regenerative photovoltaic devices can have a variety of internal structures in conformity with the end use. Conceivable forms are roughly divided into two types: structures which receive light from both sides and those which receive light from one side.
- An example of the former is a structure made up of a transparently conductive layer e.g. an ITO-layer or a PEDOT/PSS-containing layer and a transparent counter electrode electrically conductive layer e.g. an ITO-layer or a PEDOT/PSS-containing layer having interposed therebetween a photosensitive layer and a charge transporting layer.
- Such devices preferably have their sides sealed with a polymer, an adhesive or other means to prevent deterioration or volatilization of the inside substances.
- the external circuit connected to the electrically-conductive substrate and the counter electrode via the respective leads is well-known.
- the spectrally sensitized nano-porous metal oxide can be incorporated in hybrid photovoltaic compositions such as described in 1991 by Graetzel et al . in Nature, volume 353, pages 737-740, in 1998 by U. Bach et al . [see Nature, volume 395, pages 583-585 (1998)] and in 2002 by W. U. Huynh et al . [see Science, volume 295, pages 2425- 2427 (2002) ] .
- at least one of the components is inorganic (e.g.
- nano-Ti ⁇ 2 as electron transporter
- CdSe as light absorber and electron transporter
- at least one of the components is organic (e.g. triphenylamine as hole transporter or poly (3-hexylthiophene) as hole transporter).
- Spectrally sensitized nano-porous metal oxide can be used in a both regenerative and photosynthetic photovoltaic devices.
- Metal solution 1 a 0.6 M Bi -solution, was prepared by mixing 36 mL of deionized water, 6.2 mL of concentrated HNO 3 and 28.75 g of Bi (NO 3 ) 3 .5H 2 O, then adding a solution of 40 g triammonium citrate in
- Metal solution 2 a 0.96 M Pb ⁇ -solution, was prepared by dissolving 37.65 g of Pb(N ⁇ 3 ) 2 in 100 L of deionized water.
- Sulphide solution 1 a 0.1 M S 2 solution, was prepared by dissolving 0.78 g of Na 2 S in 100 mL of deionized water.
- a glass substrate (FLACHGLAS AG) was ultrasonically cleaned in ethanol for 5 minutes and then dried.
- a layer of a nano-Ti02 dispersion (Ti-nanoxide HT Solaronix SA) was applied to the glass substrate using a doctor blade coater. This titanium dioxide-coated glass was heated to 450 °C for 30 minutes. This results in a highly transparent nano-porous Ti ⁇ 2 layer.
- a dry layer thickness of 1.4 ⁇ m was obtained as verified by laserprofilometry (DEKTRAKTM profilometer) , mechanically with a diamond-tipped probe (Perthometer) and interferometry .
- the titanium dioxide-coated glass plates were cooled to 150°C by placing them on a hot plate at 150°C for 10 minutes and then immediately dipped into the metal solution for 1 minute, then rinsed for 10 seconds with deionized water immediately followed by dipping for 1 minute in the sulphide solution and finally rinsing once more with deionized water for 10 seconds.
- nano-metal sulphides were deposited on the internal and external surface of the nano-porous titanium dioxide. The amount of adsorbed nano-metal sulphide particles could be increased by carrying out multiple dipping cycles.
- Photovoltaic devices 1 to 5 were prepared by the following procedure: Preparation of the front electrode
- the electrode was taped off at the borders and was doctor
- the back electrode (consisting of Sn ⁇ 2 : F glass (Pilkington TEC15/3) evaporated with platinum to catalyse the reduction of the electrolyte) was sealed together with the front electrode with inbetween two pre-patterned layers of Surlyn® (DuPont) (2 x 7 cm
- the thereby prepared photovoltaic cells were irradiated with a Xenon Arc Discharge lamp with a power of 100 mW/cm .
- the current generated was recorded with a Keithley electrometer (Type 2420) .
- the open circuit voltage (V oc ) , short circuit current density (I sc ) and Fill Factor (FF) of the photocell as calculated from the quality of generated current are given in Table 3.
- the present invention may include any feature or combination of features disclosed herein either implicitly or explicitly or any generalisation thereof irrespective of whether it relates to the presently claimed invention.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Hybrid Cells (AREA)
- Photovoltaic Devices (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP03787807A EP1547159A1 (de) | 2002-08-13 | 2003-07-16 | Nanoporöser metalloxidhalbleiter, der spektral mit kalkogenidnanopartikeln sensibilisiert wird |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP02102129 | 2002-08-13 | ||
EP02102129 | 2002-08-13 | ||
PCT/EP2003/050313 WO2004017426A1 (en) | 2002-08-13 | 2003-07-16 | Nano-porous metal oxide semiconductor spectrally sensitized with metal chalcogenide nano-particles |
EP03787807A EP1547159A1 (de) | 2002-08-13 | 2003-07-16 | Nanoporöser metalloxidhalbleiter, der spektral mit kalkogenidnanopartikeln sensibilisiert wird |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1547159A1 true EP1547159A1 (de) | 2005-06-29 |
Family
ID=31725482
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03787807A Withdrawn EP1547159A1 (de) | 2002-08-13 | 2003-07-16 | Nanoporöser metalloxidhalbleiter, der spektral mit kalkogenidnanopartikeln sensibilisiert wird |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1547159A1 (de) |
JP (1) | JP2005539349A (de) |
AU (1) | AU2003262523A1 (de) |
WO (1) | WO2004017426A1 (de) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2881881B1 (fr) * | 2005-02-04 | 2007-06-08 | Imra Europ Sa Sa | Dispositif photovoltaique solide a configuration interpenetree comprenant de nouveaux absorbeurs ou materiaux semi-conducteurs |
JP5194286B2 (ja) * | 2007-03-28 | 2013-05-08 | 国立大学法人岐阜大学 | 色素増感型太陽電池用光電極の製造方法 |
DE102009034056A1 (de) * | 2009-03-03 | 2010-09-16 | Karlsruher Institut Für Technologie (Kit) | Dünnschichtsolarzellen |
KR101462020B1 (ko) * | 2013-11-29 | 2014-11-19 | 한국화학연구원 | 칼코젠화합물 광흡수체 기반 고효율 무/유기 하이브리드 태양전지 제조 방법 |
WO2016143823A1 (ja) * | 2015-03-10 | 2016-09-15 | 国立大学法人大阪大学 | 化合物、及びこれを含む有機半導体材料 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1176646A1 (de) * | 2000-07-28 | 2002-01-30 | Ecole Polytechnique Féderale de Lausanne (EPFL) | Festkörper-Heteroübergang und sensibilisierte Festkörper photovoltaische Zelle |
-
2003
- 2003-07-16 WO PCT/EP2003/050313 patent/WO2004017426A1/en not_active Application Discontinuation
- 2003-07-16 AU AU2003262523A patent/AU2003262523A1/en not_active Abandoned
- 2003-07-16 JP JP2004528512A patent/JP2005539349A/ja active Pending
- 2003-07-16 EP EP03787807A patent/EP1547159A1/de not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO2004017426A1 * |
Also Published As
Publication number | Publication date |
---|---|
AU2003262523A1 (en) | 2004-03-03 |
JP2005539349A (ja) | 2005-12-22 |
WO2004017426A1 (en) | 2004-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20050269616A1 (en) | Nano-porous metal oxide semiconductor spectrally sensitized with metal oxide chalcogenide nano-particles | |
US6929970B2 (en) | Process for preparing nano-porous metal oxide semiconductor layers | |
Tennakone et al. | Nanoporous n-/selenium/p-CuCNS photovoltaic cell | |
EP2897144B1 (de) | Lichtsensibilisiertes Solarzellemodul und Herstellungsverfahren dafür | |
Nattestad et al. | Dye-sensitized nickel (II) oxide photocathodes for tandem solar cell applications | |
US20040103936A1 (en) | Metal chalcogenide composite nano-particles and layers therewith | |
JP2007511866A (ja) | 直列色素増感太陽電池及びその製造方法 | |
JP2005235725A (ja) | 色素増感型太陽電池モジュール | |
EP1547106A1 (de) | Spektral mit metalloxid sensibilisierter por ser metalloxidhalbleiter | |
KR101045849B1 (ko) | 고효율의 플렉시블 염료감응형 태양전지 및 이의 제조방법 | |
KR20090065175A (ko) | 염료감응 태양전지 및 그의 제조 방법 | |
Luo et al. | MnS passivation layer for highly efficient ZnO–based quantum dot-sensitized solar cells | |
US20040046168A1 (en) | Porous metal oxide semiconductor spectrally sensitized with metal oxide | |
JP2001093590A (ja) | 光電変換装置及びその製造方法 | |
KR20090052696A (ko) | p-n 접합 다이오드를 포함하는 기판을 구비한 염료감응태양전지 | |
JP4473541B2 (ja) | 光充電可能な二次電池及び電気化学キャパシタ | |
JP4892186B2 (ja) | 色素増感太陽電池および色素増感太陽電池モジュール | |
EP1547159A1 (de) | Nanoporöser metalloxidhalbleiter, der spektral mit kalkogenidnanopartikeln sensibilisiert wird | |
JP4883559B2 (ja) | 光電変換電極 | |
KR100846156B1 (ko) | 탄소입자를 이용한 작업전극의 제조방법 및 이를 이용한염료감응 태양전지 모듈 | |
Jin et al. | Properties of dye-sensitized solar cells with TiO2 passivating layers prepared by electron-beam evaporation | |
EP1543570A1 (de) | Fotovoltaische einrichtung mit einer 1,3,5-trisaminophenylbenzolverbindung | |
WO2004017427A1 (en) | Nano-porous metal oxide semiconductor spectrally sensitized with metal chalcogenide nano-particles | |
US20040183071A1 (en) | Nano-porous metal oxide semiconductor spectrally sensitized with metal oxide chalcogenide nano-particles | |
CN108231422B (zh) | 光电转换元件和具有该光电转换元件的电子部件 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050314 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
DAX | Request for extension of the european patent (deleted) | ||
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20070201 |