EP1547159A1 - Nano-porous metal oxide semiconductor spectrally sensitized with metal chalcogenide nano-particles - Google Patents

Nano-porous metal oxide semiconductor spectrally sensitized with metal chalcogenide nano-particles

Info

Publication number
EP1547159A1
EP1547159A1 EP03787807A EP03787807A EP1547159A1 EP 1547159 A1 EP1547159 A1 EP 1547159A1 EP 03787807 A EP03787807 A EP 03787807A EP 03787807 A EP03787807 A EP 03787807A EP 1547159 A1 EP1547159 A1 EP 1547159A1
Authority
EP
European Patent Office
Prior art keywords
nano
metal oxide
chalcogenide
solution
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03787807A
Other languages
German (de)
French (fr)
Inventor
Hieronymus AGFA-GEVAERT ANDRIESSEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agfa Gevaert NV
Agfa Gevaert AG
Original Assignee
Agfa Gevaert NV
Agfa Gevaert AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agfa Gevaert NV, Agfa Gevaert AG filed Critical Agfa Gevaert NV
Priority to EP03787807A priority Critical patent/EP1547159A1/en
Publication of EP1547159A1 publication Critical patent/EP1547159A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a nano-porous metal oxide semiconductor in-situ spectrally sensitized with a metal chalcogenide .
  • the first type is the regenerative cell which converts light to electrical power leaving no net chemical change behind. Photons of energy exceeding that of the band gap generate electron- hole pairs, which are separated by the electrical field present in the space-charge layer. The negative charge carriers move through the bulk of the semiconductor to the current collector and the external circuit. The positive holes (h + ) are driven to the surface where they are scavenged by the reduced form of the redox relay molecular (R) , oxidizing it: h + + R — 0, the oxidized form. 0 is reduced back to R by the electrons that re-enter the cell from the external circuit.
  • R redox relay molecular
  • photosynthetic cells operate on a similar principle except that there are two redox systems : one reacting with the holes at the surface of the semiconductor electrode and the second reacting with the electrons entering the counter-electrode.
  • water is typically oxidized to oxygen at the semiconductor photoanode and reduced to hydrogen at the cathode.
  • Titanium dioxide has been the favoured semiconductor for these studies.
  • Unfortunately because of its large band-gap (3 to 3.2 eV) , Ti0 2 absorbs only part of the solar emission and so has low conversion efficiencies.
  • Graetzel reported in 2001 in Nature, volume 414, page 338, that numerous attempts to shift the spectral response of Ti0 2 into the visible had so far failed.
  • Mesoscopic or nano-porous semiconductor materials minutely structured materials with an enormous internal surface area, have been developed for the first type of cell to improve the light capturing efficiency by increasing the area upon which the spectrally sensitizing species could adsorb.
  • Arrays of nano- crystals of oxides such as Ti0 2 , ZnO, Sn0 2 and Nb 2 O s or chalcogenides such as CdSe are the preferred semiconductor materials and are interconnected to allow electrical conduction to take place.
  • a wet type solar cell having a porous film of dye-sensitized titanium dioxide semiconductor particles as a work electrode was expected to surpass an amorphous silicon solar cell in conversion efficiency and cost.
  • Mater., volume 7, page 1349 reported an all-solid-state solar cell consisting of a highly structured heterojunction between a p- and n-type semiconductor with a absorber in between in which the p- semiconductor is CuSCN or Cul, the n-semiconductor is nano-porous titanium dioxide and the absorber is an organic dye.
  • EP-A 1 176 646 discloses a solid state p-n heterojunction comprising an electron conductor and a hole conductor, characterized in that if further comprises a sensitizing semiconductor, said sensitizing being located at an interface between said electron conductor and said hole conductor; and its application in a solid state sensitized photovolaic cell.
  • the sensitizing semiconductor is in the form of particles adsorbed at the surface of said electron conductor and in a further preferred embodiment the sensitizing semiconductor is in the form of quantum dots, which according to a particularly preferred embodiment are particles consisting of PbS, CdS, Bi 2 S 3 , Sb 2 S 3 , g 2 S, InAs, CdTe, CdSe or HgTe or solid solutions of HgTe/CdTe or HgSe/CdSe.
  • the electron conductor is a ceramic made of finely divided large band gap metal oxide, with nanocrystalline Ti ⁇ 2 being particularly preferred.
  • EP-A 1 176 646 further includes an example for making a layered heterojunction in which Sn ⁇ 2 _ coated glass was coated with a compact Ti ⁇ 2 layer by spray pyrolysis, PbS quantum dots were deposited upon the Ti ⁇ 2 layer, the hole conductor 2, 2', 7,7'- tetrakis (N, N-di-p-methoxyphenyl-amine) 9,9' -spirobifluorene (OMeTAD) was deposited on the quantum dots and a semitransparent gold back contact was evaporated on the OMeTAD layer.
  • OLED hole conductor 2', 7,7'- tetrakis
  • OMeTAD 9,9' -spirobifluorene
  • aspects of the present invention are realized by a nano-porous metal oxide semiconductor with a band-gap of greater than 2.9 eV in-situ spectrally sensitized on its internal and external surface with metal chalcogenide nano-particles with a band-gap of less than 2.9 eV containing at least one metal chalcogenide, characterized in that the nano-porous metal oxide semiconductor further contains a triazole or diazole compound.
  • aspects of the present invention are also realized by a process for in-situ spectral sensitization of nano-porous metal oxide semiconductor with a band-gap of greater than 2.9 eV on its internal and external surface with metal chalcogenide nano- particles with a band-gap of less than 2.9 eV, containing at least one metal chalcogenide, comprising a metal chalcogenide-forming cycle comprising the steps of: contacting the nano-porous metal oxide with a solution of metal ions; and contacting the nano-porous metal oxide with a solution of chalcogenide ions, wherein the solution of metal ions and/or the solution of chalcogenide ions contains a triazole or diazole compound.
  • aspects of the present invention are also realized by a photovoltaic device comprising the above-mentioned nano-porous metal oxide semiconductor.
  • aspects of the present invention are also realized by a second photovoltaic device comprising a nano-porous metal oxide semiconductor with a band-gap of greater than 2.9 eV on spectrally sensitized on its internal and external surface with metal chalcogenide nano-particles with a band-gap of less than 2.9 eV, containing at least one metal chalcogenide, prepared according to the above-mentioned process.
  • nano-porous metal oxide semiconductor means a metal oxide semiconductor having pores with a size of 100 nm or less and
  • chalcogenide means a binary compound containing a chalcogen and a more electropositive element or radical.
  • a chalcogen is an element from group IV of the periodic table including oxygen, sulphur, selenium, tellurium and polonium.
  • a mixture of two or more metal chalcogenides includes a simple mixture thereof, mixed crystals thereof and doping of a metal chalcogenide by metal or chalcogenide replacement .
  • aqueous for the purposes of the present invention means containing at least 60% by volume of water, preferably at least 80% by volume of water, and optionally containing water- miscible organic solvents such as alcohols e.g. methanol, ethanol,
  • support means a “self-supporting material” so as to distinguish it from a “layer” which may be coated on a support, but which is itself not self-supporting. It also includes any treatment necessary for, or layer applied to aid, adhesion to the support .
  • continuous layer refers to a layer in a single plane covering the whole area of the support and not necessarily in direct contact with the support .
  • non-continuous layer refers to a layer in a single plane not covering the whole area of the support and not necessarily in direct contact with the support.
  • coating is used as a generic term including all means of applying a layer including all techniques for producing continuous layers, such as curtain coating, doctor-blade coating etc., and all techniques for producing non-continuous layers such as screen printing, ink jet printing, flexographic printing, and techniques for producing continuous layers .
  • PEDOT poly (3, 4-ethylenedioxy- thiophene)
  • PSS poly(styrene sulphonic acid) or pol (styrenesulphonate) .
  • aspects of the present invention are realized by a nano-porous metal oxide semiconductor with a band-gap of greater than 2.9 eV in-situ spectrally sensitized on its internal and external surface with metal chalcogenide nano-particles with a band-gap of less than 2.9 eV containing at least one metal chalcogenide, characterized in that the nano-porous metal oxide further contains a triazole or diazole compound.
  • the metal oxide semiconductor is n-type .
  • the metal oxide is selected from the group consisting of titanium oxides, tin oxides, niobium oxides, tantalum oxides, tungsten oxides and zinc oxides.
  • the nano-porous metal oxide semiconductor is titanium dioxide.
  • aspects of the present invention are realized by a nano-porous metal oxide semiconductor with a band-gap of greater than 2.9 eV in-situ spectrally sensitized on its internal and external surface with metal chalcogenide nano-particles with a band-gap of less than 2.9 eV containing at least one metal chalcogenide, characterized in that the nano-porous metal oxide further contains a triazole or diazole compound.
  • the metal chalcogenide is a metal oxide, metal sulphide, metal selenide or a mixture of two or more thereof.
  • the metal chalcogenide is a metal sulphide or a mixture of two or more thereof.
  • the metal chalcogenide is selected from the group consisting of lead sulphide, bismuth sulphide, cadmium sulphide, silver sulphide, antimony sulphide, indium sulphide, copper sulphide, cadmium selenide, copper selenide, indium selenide, cadmium telluride or a mixture of two or more thereof.
  • aspects of the present invention are realized by a nano-porous metal oxide semiconductor with a band-gap of greater than 2.9 eV in-situ spectrally sensitized on its internal and external surface with metal chalcogenide nano-particles with a band-gap of less than 2.9 eV containing at least one metal chalcogenide.
  • the triazole compound is a tetraazaindene .
  • the triazole compound is selected from the group consisting of
  • Suitable triazole or diazole compounds include:
  • the nano-porous metal oxide further contains a phosphoric acid or a phosphate .
  • the phosphoric acid is selected from the group consisting of , orthophosphoric acid, phosphorous acid, hypophosphorous acid and polyphosphoric acids .
  • Polyphosphoric acids include diphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid, metaphosphoric acid and "polyphosphoric acid” .
  • the phosphate is selected from the group consisting of orthophosphates , phosphates , phosphites , hypophosphites and polyphosphates .
  • Polyphosphates are linear polyphosphates , cyclic polyphosphates or mixtures thereof .
  • Linear polyphosphates contain 2 to 15 phosphorus atoms and include pyrophosphates , dipolyphosphates , tripolyphosphates and tetrapolyphosphates .
  • Cyclic polyphosphates contain 3 to 8 phosphorus atoms and include trimetaphosphates and tetrametaphosphates and metaphosphates .
  • Polyphosphoric acid may be prepared by heating H 3 PO 4 with sufficient P4O10 (phosphoric anhydride) or by heating H 3 PO 4 to remove water . A P O 10 /H 2 O mixture containing 72 .
  • P 4 O 10 corresponds to pure H 3 PO 4 , but the usual commercial grades of the acid contain more water .
  • P 4 O 10 content H 4 P 2 O 7 pyrophosphoric acid, forms along with P 3 through Ps polyphosphoric acids .
  • Triphosphoric acid appears at 71 . 7% P 2 O 5 (H 5 P 3 O 10 ) and tetraphosphoric acid (H 6 P 4 O 13 ) at about 75 . 5% P 2 O 5 .
  • Such linear polyphosphoric acids have 2 to 15 phosphorus atoms, which each bear a strongly acidic OH group.
  • the two terminal P atoms are each bonded to a weakly acidic OH group.
  • High linear and cyclic polyphosphoric acids are present only at acid concentrations above 82% P 2 O 5 .
  • Commercial phosphoric acid has a 82 to 85% by weight P 2 O 5 content. It consists of about 55% tripolyphosphoric acid, the remainder being H 3 PO 4 and other polyphosphoric acids .
  • a polyphosphoric acid suitable for use according to the present invention is a 84% (as P 2 O 5 ) polyphosphoric acid supplied by ACROS (Cat. No. 19695-0025) .
  • aspects of the present invention are also realized by a process for in-situ spectral sensitization of nano-porous metal oxide semiconductor with a band-gap of greater than 2.9 eV on its internal and external surface with metal chalcogenide nano- particles with a band-gap of less than 2.9 eV, containing at least one metal chalcogenide, comprising a metal chalcogenide-forming cycle comprising the steps of: contacting nano-porous metal oxide with a solution of metal ions; and contacting nano-porous metal oxide with a solution of chalcogenide ions, wherein the solution of metal ions and/or the solution of chalcogenide ions contains a triazole or diazole compound.
  • the contact with a solution of metal ions occurs before the contact with a solution of chalcogenide ions .
  • the metal chalcogenide-forming cycle is repeated.
  • the triazole or diazole compound is tetraazaindene is 5-methyl-l, 2, -triazolo- (1, 5-a) -pyrimidine-7-ol .
  • the metal chalcogenide is rinsed with an aqueous solution containing a phosphoric acid or a phosphate.
  • Supports for use according to the present invention include polymeric films, silicon, ceramics, oxides, glass, polymeric film reinforced glass, glass/plastic laminates, metal/plastic laminates, paper and laminated paper, optionally treated, provided with a subbing layer or other adhesion promoting means to aid adhesion to adjacent layers.
  • Suitable polymeric films are poly (ethylene terephthalate) , poly (ethylene naphthalate) , polystyrene, polyethersulphone, polycarbonate, polyacrylate, polyamide, polyimides, cellulosetriacetate, polyolefins and poly (vinylchloride) , optionally treated by corona discharge or glow discharge or provided with a subbing layer.
  • the photovoltaic device comprises a layer configuration.
  • the photovoltaic device comprises a layer configuration.
  • Photovoltaic devices incorporating the spectrally sensitized nano-porous metal oxide can be of two types : the regenerative type which converts light into electrical power leaving no net chemical change behind in which current-carrying electrons are transported to the anode and the external circuit and the holes are transported to the cathode where they are oxidized by the electrons from the external circuit and the photosynthetic type in which there are two redox systems one reacting with the holes at the surface of the semiconductor electrode and one reacting with the electrons entering the counter- electrode, for example, water is oxidized to oxygen at the semiconductor photoanode and reduced to hydrogen at the cathode.
  • the hole transporting medium may be a liquid electrolyte supporting a redox reaction, a gel electrolyte supporting a redox reaction, an organic hole transporting material, which may be a low molecular weight material such as 2, 2' , 7, 7' -tetrakis (N,N-di-p-methoxyphenyl-amine) 9, 9' - spirobifluorene (OMeTAD) or triphenylamine compounds or a polymer such as PPV-derivatives, poly (N-vinylcarbazole) etc., or inorganic semiconductors such as Cul, CuSCN etc.
  • the charge transporting process can be ionic as in the case of a liquid electrolyte or gel electrolyte or electronic as in the case of organic or inorganic hole transporting materials .
  • Such regenerative photovoltaic devices can have a variety of internal structures in conformity with the end use. Conceivable forms are roughly divided into two types: structures which receive light from both sides and those which receive light from one side.
  • An example of the former is a structure made up of a transparently conductive layer e.g. an ITO-layer or a PEDOT/PSS-containing layer and a transparent counter electrode electrically conductive layer e.g. an ITO-layer or a PEDOT/PSS-containing layer having interposed therebetween a photosensitive layer and a charge transporting layer.
  • Such devices preferably have their sides sealed with a polymer, an adhesive or other means to prevent deterioration or volatilization of the inside substances.
  • the external circuit connected to the electrically-conductive substrate and the counter electrode via the respective leads is well-known.
  • the spectrally sensitized nano-porous metal oxide can be incorporated in hybrid photovoltaic compositions such as described in 1991 by Graetzel et al . in Nature, volume 353, pages 737-740, in 1998 by U. Bach et al . [see Nature, volume 395, pages 583-585 (1998)] and in 2002 by W. U. Huynh et al . [see Science, volume 295, pages 2425- 2427 (2002) ] .
  • at least one of the components is inorganic (e.g.
  • nano-Ti ⁇ 2 as electron transporter
  • CdSe as light absorber and electron transporter
  • at least one of the components is organic (e.g. triphenylamine as hole transporter or poly (3-hexylthiophene) as hole transporter).
  • Spectrally sensitized nano-porous metal oxide can be used in a both regenerative and photosynthetic photovoltaic devices.
  • Metal solution 1 a 0.6 M Bi -solution, was prepared by mixing 36 mL of deionized water, 6.2 mL of concentrated HNO 3 and 28.75 g of Bi (NO 3 ) 3 .5H 2 O, then adding a solution of 40 g triammonium citrate in
  • Metal solution 2 a 0.96 M Pb ⁇ -solution, was prepared by dissolving 37.65 g of Pb(N ⁇ 3 ) 2 in 100 L of deionized water.
  • Sulphide solution 1 a 0.1 M S 2 solution, was prepared by dissolving 0.78 g of Na 2 S in 100 mL of deionized water.
  • a glass substrate (FLACHGLAS AG) was ultrasonically cleaned in ethanol for 5 minutes and then dried.
  • a layer of a nano-Ti02 dispersion (Ti-nanoxide HT Solaronix SA) was applied to the glass substrate using a doctor blade coater. This titanium dioxide-coated glass was heated to 450 °C for 30 minutes. This results in a highly transparent nano-porous Ti ⁇ 2 layer.
  • a dry layer thickness of 1.4 ⁇ m was obtained as verified by laserprofilometry (DEKTRAKTM profilometer) , mechanically with a diamond-tipped probe (Perthometer) and interferometry .
  • the titanium dioxide-coated glass plates were cooled to 150°C by placing them on a hot plate at 150°C for 10 minutes and then immediately dipped into the metal solution for 1 minute, then rinsed for 10 seconds with deionized water immediately followed by dipping for 1 minute in the sulphide solution and finally rinsing once more with deionized water for 10 seconds.
  • nano-metal sulphides were deposited on the internal and external surface of the nano-porous titanium dioxide. The amount of adsorbed nano-metal sulphide particles could be increased by carrying out multiple dipping cycles.
  • Photovoltaic devices 1 to 5 were prepared by the following procedure: Preparation of the front electrode
  • the electrode was taped off at the borders and was doctor
  • the back electrode (consisting of Sn ⁇ 2 : F glass (Pilkington TEC15/3) evaporated with platinum to catalyse the reduction of the electrolyte) was sealed together with the front electrode with inbetween two pre-patterned layers of Surlyn® (DuPont) (2 x 7 cm
  • the thereby prepared photovoltaic cells were irradiated with a Xenon Arc Discharge lamp with a power of 100 mW/cm .
  • the current generated was recorded with a Keithley electrometer (Type 2420) .
  • the open circuit voltage (V oc ) , short circuit current density (I sc ) and Fill Factor (FF) of the photocell as calculated from the quality of generated current are given in Table 3.
  • the present invention may include any feature or combination of features disclosed herein either implicitly or explicitly or any generalisation thereof irrespective of whether it relates to the presently claimed invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

A nano-porous metal oxide semiconductor with a band-gap of greater than 2.9 eV in-situ spectrally sensitized on its internal and external surface with metal chalcogenide nano-particles with a band-gap of less than 2.9 eV containing at least one metal chalcogenide, characterized in that said nano-porous metal oxide further contains a triazole or diazole compound; and a process for in-situ spectral sensitization of nano-porous metal oxide in semiconductor with a band-gap of greater than 2.9 eV on its internal and external surface with metal chalcogenide nanoparticles with a band-gap of less than 2.9 eV, containing at least one metal chalcogenide, comprising a metal chalcogenide-forming cycle comprising the steps of: contacting the nano-porous metal oxide with a solution of metal ions; and contacting the nano-porous metal oxide with a solution of chalcogenide ions, wherein said solution of metal ions and/or said solution of chalcogenide ions contains a triazole or diazole compound.

Description

NANO-POROUS METAL OXIDE SEMICONDUCTOR SPECTRALLY SENSITIZED WITH METAL CHALCOGENIDE NANO-PARTICLES
Field of the invention
The present invention relates to a nano-porous metal oxide semiconductor in-situ spectrally sensitized with a metal chalcogenide .
Background of the invention.
There are two basic types of photoelectrochemical photovoltaic cells. The first type is the regenerative cell which converts light to electrical power leaving no net chemical change behind. Photons of energy exceeding that of the band gap generate electron- hole pairs, which are separated by the electrical field present in the space-charge layer. The negative charge carriers move through the bulk of the semiconductor to the current collector and the external circuit. The positive holes (h+) are driven to the surface where they are scavenged by the reduced form of the redox relay molecular (R) , oxidizing it: h+ + R — 0, the oxidized form. 0 is reduced back to R by the electrons that re-enter the cell from the external circuit. In the second type, photosynthetic cells, operate on a similar principle except that there are two redox systems : one reacting with the holes at the surface of the semiconductor electrode and the second reacting with the electrons entering the counter-electrode. In such cells water is typically oxidized to oxygen at the semiconductor photoanode and reduced to hydrogen at the cathode. Titanium dioxide has been the favoured semiconductor for these studies. Unfortunately because of its large band-gap (3 to 3.2 eV) , Ti02 absorbs only part of the solar emission and so has low conversion efficiencies. Graetzel reported in 2001 in Nature, volume 414, page 338, that numerous attempts to shift the spectral response of Ti02 into the visible had so far failed.
Mesoscopic or nano-porous semiconductor materials, minutely structured materials with an enormous internal surface area, have been developed for the first type of cell to improve the light capturing efficiency by increasing the area upon which the spectrally sensitizing species could adsorb. Arrays of nano- crystals of oxides such as Ti02, ZnO, Sn02 and Nb2Os or chalcogenides such as CdSe are the preferred semiconductor materials and are interconnected to allow electrical conduction to take place. A wet type solar cell having a porous film of dye-sensitized titanium dioxide semiconductor particles as a work electrode was expected to surpass an amorphous silicon solar cell in conversion efficiency and cost. These fundamental techniques were disclosed in 1991 by Graetzel et al . in Nature, volume 353, pages 737-740 and in US 4,927,721, US 5,350,644 and JP-A 05-504023. Graetzel et al . reported solid-state dye-sensitized mesoporous Tiθ2 solar cells with up to 33% photon to electron conversion efficiences . In 1995 Tennakone et al . in Semiconductor Sci . Technol . , volume 10, page 1689 and O' Regan et al . in Chem. Mater., volume 7, page 1349 reported an all-solid-state solar cell consisting of a highly structured heterojunction between a p- and n-type semiconductor with a absorber in between in which the p- semiconductor is CuSCN or Cul, the n-semiconductor is nano-porous titanium dioxide and the absorber is an organic dye.
Furthermore, in 1998 K. Tennakone et al . reported in Journal
Physics A: Applied Physics, volume 31, pages 2326-2330, a nanoporous n-Tiθ2/~23 nm selenium film/p-CuCNS photovoltaic cell
2 which generated a photocurrent of ~3.0 mA/cm , a photovoltage of
2
-600 mV at 800 W/m simulated sunlight and a maximum energy conversion efficiency of ~0.13%.
Vogel et al . in 1990 in Chemical Physics Letters, volume 174, page 241, reported the sensitization of highly porous Tiθ2 with in- situ prepared quantum size CdS particles (40-200A) , a photovoltage of 400 mV being achieved with visible light and high photon to current efficiencies of greater than 70% being achieved at 400 nm and an energy conversion efficiency of 6.0% under monochromatic illumination with λ = 460 nm. In 1994 Hoyer et al . reported in Applied Physics, volume 66, page 349, that the inner surface of a porous titanium dioxide film could be homogeneously covered with isolated quantum dots and Vogel et al . reported in Journal of Physical Chemistry, volume 98, pages 3183-3188, the sensitization of various nanoporous wide-bandgap semiconductors, specifically Tiθ2, Nb 05, Ta2θ5, Sn02 and ZnO, with quantum-sized PbS, CdS, Ag2S, Sb2S3 and Bi2S3 and the use of quantum dot-sensitized oxide semiconductors in liquid junction cells. The internal photocurrent quantum yield decreased with increasing particle diameter and decreased in the order Tiθ2 > ZnO > Nb2θ5 > Snθ2 > Ta2θs . EP-A 1 176 646 discloses a solid state p-n heterojunction comprising an electron conductor and a hole conductor, characterized in that if further comprises a sensitizing semiconductor, said sensitizing being located at an interface between said electron conductor and said hole conductor; and its application in a solid state sensitized photovolaic cell. In a preferred embodiment the sensitizing semiconductor is in the form of particles adsorbed at the surface of said electron conductor and in a further preferred embodiment the sensitizing semiconductor is in the form of quantum dots, which according to a particularly preferred embodiment are particles consisting of PbS, CdS, Bi2S3, Sb2S3, g2S, InAs, CdTe, CdSe or HgTe or solid solutions of HgTe/CdTe or HgSe/CdSe. In another preferred embodiment the electron conductor is a ceramic made of finely divided large band gap metal oxide, with nanocrystalline Tiθ2 being particularly preferred. EP-A 1 176 646 further includes an example for making a layered heterojunction in which Snθ2 _coated glass was coated with a compact Tiθ2 layer by spray pyrolysis, PbS quantum dots were deposited upon the Tiθ2 layer, the hole conductor 2, 2', 7,7'- tetrakis (N, N-di-p-methoxyphenyl-amine) 9,9' -spirobifluorene (OMeTAD) was deposited on the quantum dots and a semitransparent gold back contact was evaporated on the OMeTAD layer. There is a need for nano-particles with improved stability for spectrally sensitizing nano-porous metal oxide semiconductor layers .
Aspects of the invention.
It is therefore an aspect of the present invention to provide improved spectral sensitization of nano-porous metal oxide semiconductors .
It is a further aspect of the present invention to provide a process for realizing improved spectral sensitization of nanoporous metal oxide semiconductors.
Further aspects and advantages of the invention will become apparent from the description hereinafter.
Summary of the invention.
It has been surprisingly found that spectral sensitization of nano-porous metal oxides on their internal and external surfaces with metal chalcogenide nano-particles is enhanced by the presence of a triazole or diazole compound.
Aspects of the present invention are realized by a nano-porous metal oxide semiconductor with a band-gap of greater than 2.9 eV in-situ spectrally sensitized on its internal and external surface with metal chalcogenide nano-particles with a band-gap of less than 2.9 eV containing at least one metal chalcogenide, characterized in that the nano-porous metal oxide semiconductor further contains a triazole or diazole compound.
Aspects of the present invention are also realized by a process for in-situ spectral sensitization of nano-porous metal oxide semiconductor with a band-gap of greater than 2.9 eV on its internal and external surface with metal chalcogenide nano- particles with a band-gap of less than 2.9 eV, containing at least one metal chalcogenide, comprising a metal chalcogenide-forming cycle comprising the steps of: contacting the nano-porous metal oxide with a solution of metal ions; and contacting the nano-porous metal oxide with a solution of chalcogenide ions, wherein the solution of metal ions and/or the solution of chalcogenide ions contains a triazole or diazole compound.
Aspects of the present invention are also realized by a photovoltaic device comprising the above-mentioned nano-porous metal oxide semiconductor. Aspects of the present invention are also realized by a second photovoltaic device comprising a nano-porous metal oxide semiconductor with a band-gap of greater than 2.9 eV on spectrally sensitized on its internal and external surface with metal chalcogenide nano-particles with a band-gap of less than 2.9 eV, containing at least one metal chalcogenide, prepared according to the above-mentioned process.
Preferred embodiments are disclosed in the dependent claims .
Detailed description of the invention,
Figure 1 represents the dependence of absorbance [A] upon wavelength [λ] in nm for: a, unsensitized nano-porous Tiθ2 layer (. absorbance at 500 nm = 0.15); b, nano-porous Tiθ2 layer sensitized with PbS with one dipping cycle (absorbance at 500 nm = 0.26); c, nano-porous Tiθ2 layer sensitized with Bi2S3 with one dipping cycle (absorbance at 500 nm = 0.28); d, nano-porous Tiθ2 layer sensitized with PbS with three dipping cycles (absorbance at 500 nm = 0.65); and e, nano-porous Tiθ2 layer sensitized with Bi2S with three dipping cycles (absorbance at 500 nm = 2.50).
Definitions The term nano-porous metal oxide semiconductor means a metal oxide semiconductor having pores with a size of 100 nm or less and
2 having an internal surface area of at least 20 m /g and not more than 300 m2/g. The term chalcogenide means a binary compound containing a chalcogen and a more electropositive element or radical. A chalcogen is an element from group IV of the periodic table including oxygen, sulphur, selenium, tellurium and polonium. The term "a mixture of two or more metal chalcogenides" includes a simple mixture thereof, mixed crystals thereof and doping of a metal chalcogenide by metal or chalcogenide replacement .
The term internal surface means the surface of pores inside a porous material . The term in-situ spectrally sensitized means that the spectral sensitizer is formed where spectral sensitization is required. The term aqueous for the purposes of the present invention means containing at least 60% by volume of water, preferably at least 80% by volume of water, and optionally containing water- miscible organic solvents such as alcohols e.g. methanol, ethanol,
2-propanol, butanol, iso-amyl alcohol, octanol, cetyl alcohol etc.; glycols e.g. ethylene glycol; glycerine; N-methyl pyrrolidone; methoxypropanol; and ketones e.g. 2-propanone and 2-butanone etc.
The term "support" means a "self-supporting material" so as to distinguish it from a "layer" which may be coated on a support, but which is itself not self-supporting. It also includes any treatment necessary for, or layer applied to aid, adhesion to the support .
The term continuous layer refers to a layer in a single plane covering the whole area of the support and not necessarily in direct contact with the support .
The term non-continuous layer refers to a layer in a single plane not covering the whole area of the support and not necessarily in direct contact with the support. The term coating is used as a generic term including all means of applying a layer including all techniques for producing continuous layers, such as curtain coating, doctor-blade coating etc., and all techniques for producing non-continuous layers such as screen printing, ink jet printing, flexographic printing, and techniques for producing continuous layers .
The abbreviation PEDOT represents poly (3, 4-ethylenedioxy- thiophene) . The abbreviation PSS represents poly(styrene sulphonic acid) or pol (styrenesulphonate) .
Nano-porous metal oxide semiconductor
Aspects of the present invention are realized by a nano-porous metal oxide semiconductor with a band-gap of greater than 2.9 eV in-situ spectrally sensitized on its internal and external surface with metal chalcogenide nano-particles with a band-gap of less than 2.9 eV containing at least one metal chalcogenide, characterized in that the nano-porous metal oxide further contains a triazole or diazole compound.
According to a first embodiment of the nano-porous metal oxide semiconductor, according to the present invention, the metal oxide semiconductor is n-type .
According to a second embodiment of the nano-porous metal oxide, according to the present invention, the metal oxide is selected from the group consisting of titanium oxides, tin oxides, niobium oxides, tantalum oxides, tungsten oxides and zinc oxides. According to a third embodiment of the nano-porous metal oxide semiconductor, according to the present invention, the nano-porous metal oxide semiconductor is titanium dioxide.
Metal chalcogenide
Aspects of the present invention are realized by a nano-porous metal oxide semiconductor with a band-gap of greater than 2.9 eV in-situ spectrally sensitized on its internal and external surface with metal chalcogenide nano-particles with a band-gap of less than 2.9 eV containing at least one metal chalcogenide, characterized in that the nano-porous metal oxide further contains a triazole or diazole compound.
According to a fourth embodiment of the nano-porous metal oxide, according to the present invention, the metal chalcogenide is a metal oxide, metal sulphide, metal selenide or a mixture of two or more thereof.
According to a fifth embodiment of the nano-porous metal oxide, according to the present invention, the metal chalcogenide is a metal sulphide or a mixture of two or more thereof. According to a sixth embodiment of the nano-porous metal oxide, according to the present invention, the metal chalcogenide is selected from the group consisting of lead sulphide, bismuth sulphide, cadmium sulphide, silver sulphide, antimony sulphide, indium sulphide, copper sulphide, cadmium selenide, copper selenide, indium selenide, cadmium telluride or a mixture of two or more thereof.
Triazole or diazole compound
Aspects of the present invention are realized by a nano-porous metal oxide semiconductor with a band-gap of greater than 2.9 eV in-situ spectrally sensitized on its internal and external surface with metal chalcogenide nano-particles with a band-gap of less than 2.9 eV containing at least one metal chalcogenide.
According to a seventh embodiment of the nano-porous metal oxide, according to the present invention, the triazole compound is a tetraazaindene .
According to an eighth embodiment of the nano-porous metal oxide, according to the present invention, the triazole compound is selected from the group consisting of
Suitable triazole or diazole compounds, according to the present invention, include:
Phosphoric acid or phosphate
According to a ninth embodiment of the nano-porous metal oxide, according to the present invention, the nano-porous metal oxide further contains a phosphoric acid or a phosphate .
According to a tenth embodiment of the nano-porous metal oxide, according to the present invention, the phosphoric acid is selected from the group consisting of , orthophosphoric acid, phosphorous acid, hypophosphorous acid and polyphosphoric acids .
Polyphosphoric acids include diphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid, metaphosphoric acid and "polyphosphoric acid" .
According to an eleventh embodiment of the nano-porous metal oxide , according to the present invention , the phosphate is selected from the group consisting of orthophosphates , phosphates , phosphites , hypophosphites and polyphosphates .
Polyphosphates are linear polyphosphates , cyclic polyphosphates or mixtures thereof . Linear polyphosphates contain 2 to 15 phosphorus atoms and include pyrophosphates , dipolyphosphates , tripolyphosphates and tetrapolyphosphates . Cyclic polyphosphates contain 3 to 8 phosphorus atoms and include trimetaphosphates and tetrametaphosphates and metaphosphates . Polyphosphoric acid may be prepared by heating H3PO4 with sufficient P4O10 (phosphoric anhydride) or by heating H3PO4 to remove water . A P O10/H2O mixture containing 72 . 74% P4O10 corresponds to pure H3PO4, but the usual commercial grades of the acid contain more water . As the P4O10 content H4P2O7 , pyrophosphoric acid, forms along with P3 through Ps polyphosphoric acids . Triphosphoric acid appears at 71 . 7% P2O5 (H5P3O10 ) and tetraphosphoric acid (H6P4O13 ) at about 75 . 5% P2O5 . Such linear polyphosphoric acids have 2 to 15 phosphorus atoms, which each bear a strongly acidic OH group. In addition, the two terminal P atoms are each bonded to a weakly acidic OH group. Cyclic polyphosphoric acids or metaphosphoric acids, HnPnθ3n/. which are formed from low- molecular polyphosphoric acids by ring closure, have a comparatively small number of ring atoms (n=3-8) . Each atom in the ring is bound to one strongly acidic OH group. High linear and cyclic polyphosphoric acids are present only at acid concentrations above 82% P2O5. Commercial phosphoric acid has a 82 to 85% by weight P2O5 content. It consists of about 55% tripolyphosphoric acid, the remainder being H3PO4 and other polyphosphoric acids .
A polyphosphoric acid suitable for use according to the present invention is a 84% (as P2O5) polyphosphoric acid supplied by ACROS (Cat. No. 19695-0025) .
process for in-situ spectral sensitization of nano-porous metal oxide with metal chalcogenide nano-particles
Aspects of the present invention are also realized by a process for in-situ spectral sensitization of nano-porous metal oxide semiconductor with a band-gap of greater than 2.9 eV on its internal and external surface with metal chalcogenide nano- particles with a band-gap of less than 2.9 eV, containing at least one metal chalcogenide, comprising a metal chalcogenide-forming cycle comprising the steps of: contacting nano-porous metal oxide with a solution of metal ions; and contacting nano-porous metal oxide with a solution of chalcogenide ions, wherein the solution of metal ions and/or the solution of chalcogenide ions contains a triazole or diazole compound. According to a first embodiment of the process, according to the present invention, the contact with a solution of metal ions occurs before the contact with a solution of chalcogenide ions .
According to a second embodiment of the process, according to the present invention, the metal chalcogenide-forming cycle is repeated.
According to a third embodiment of the process, according to the present invention, the triazole or diazole compound is tetraazaindene is 5-methyl-l, 2, -triazolo- (1, 5-a) -pyrimidine-7-ol . According to a fourth embodiment of the process, according to the present invention, at the end of the metal chalcogenide-forming cycle the metal chalcogenide is rinsed with an aqueous solution containing a phosphoric acid or a phosphate. Support
Supports for use according to the present invention include polymeric films, silicon, ceramics, oxides, glass, polymeric film reinforced glass, glass/plastic laminates, metal/plastic laminates, paper and laminated paper, optionally treated, provided with a subbing layer or other adhesion promoting means to aid adhesion to adjacent layers. Suitable polymeric films are poly (ethylene terephthalate) , poly (ethylene naphthalate) , polystyrene, polyethersulphone, polycarbonate, polyacrylate, polyamide, polyimides, cellulosetriacetate, polyolefins and poly (vinylchloride) , optionally treated by corona discharge or glow discharge or provided with a subbing layer.
Photovoltaic devices
Aspects of the present invention are realized by a photovoltaic device comprising the porous metal oxide semiconductor, according to the present invention.
Aspects of the present invention are realized by a second photovoltaic device comprising a porous metal oxide semiconductor produced according to the process, according to the present invention . According to a first embodiment of the photovoltaic device, according to the present invention, the photovoltaic device comprises a layer configuration.
According to a first embodiment of the second photovoltaic device, according to the present invention, the photovoltaic device comprises a layer configuration.
Photovoltaic devices incorporating the spectrally sensitized nano-porous metal oxide, according to the present invention, can be of two types : the regenerative type which converts light into electrical power leaving no net chemical change behind in which current-carrying electrons are transported to the anode and the external circuit and the holes are transported to the cathode where they are oxidized by the electrons from the external circuit and the photosynthetic type in which there are two redox systems one reacting with the holes at the surface of the semiconductor electrode and one reacting with the electrons entering the counter- electrode, for example, water is oxidized to oxygen at the semiconductor photoanode and reduced to hydrogen at the cathode. In the case of the regenerative type of photovoltaic cell, as exemplified by the Graetzel cell, the hole transporting medium may be a liquid electrolyte supporting a redox reaction, a gel electrolyte supporting a redox reaction, an organic hole transporting material, which may be a low molecular weight material such as 2, 2' , 7, 7' -tetrakis (N,N-di-p-methoxyphenyl-amine) 9, 9' - spirobifluorene (OMeTAD) or triphenylamine compounds or a polymer such as PPV-derivatives, poly (N-vinylcarbazole) etc., or inorganic semiconductors such as Cul, CuSCN etc. The charge transporting process can be ionic as in the case of a liquid electrolyte or gel electrolyte or electronic as in the case of organic or inorganic hole transporting materials .
Such regenerative photovoltaic devices can have a variety of internal structures in conformity with the end use. Conceivable forms are roughly divided into two types: structures which receive light from both sides and those which receive light from one side. An example of the former is a structure made up of a transparently conductive layer e.g. an ITO-layer or a PEDOT/PSS-containing layer and a transparent counter electrode electrically conductive layer e.g. an ITO-layer or a PEDOT/PSS-containing layer having interposed therebetween a photosensitive layer and a charge transporting layer. Such devices preferably have their sides sealed with a polymer, an adhesive or other means to prevent deterioration or volatilization of the inside substances. The external circuit connected to the electrically-conductive substrate and the counter electrode via the respective leads is well-known.
Alternatively the spectrally sensitized nano-porous metal oxide, according to the present invention, can be incorporated in hybrid photovoltaic compositions such as described in 1991 by Graetzel et al . in Nature, volume 353, pages 737-740, in 1998 by U. Bach et al . [see Nature, volume 395, pages 583-585 (1998)] and in 2002 by W. U. Huynh et al . [see Science, volume 295, pages 2425- 2427 (2002) ] . In all these cases, at least one of the components (light absorber, electron transporter or hole transporter) is inorganic (e.g. nano-Tiθ2 as electron transporter, CdSe as light absorber and electron transporter) and at least one of the components is organic (e.g. triphenylamine as hole transporter or poly (3-hexylthiophene) as hole transporter). Industrial application
Spectrally sensitized nano-porous metal oxide, according to the present invention, can be used in a both regenerative and photosynthetic photovoltaic devices.
The invention is illustrated hereinafter by way of reference and invention photovoltaic devices . The percentages and ratios given in these examples are by weight unless otherwise indicated.
EXAMPLE 1
Preparation of solutions used in in-situ preparation of nano- sulphide particles
Metal solution 1 :
3+ Metal solution 1, a 0.6 M Bi -solution, was prepared by mixing 36 mL of deionized water, 6.2 mL of concentrated HNO3 and 28.75 g of Bi (NO3) 3.5H2O, then adding a solution of 40 g triammonium citrate in
36 mL of deionized water and finally slowly adding 16 mL of a 50%
NaOH-solution .
Metal solution 2 :
Metal solution 2, a 0.96 M Pb~ -solution, was prepared by dissolving 37.65 g of Pb(Nθ3)2 in 100 L of deionized water.
Sulphide solution 1:
Sulphide solution 1, a 0.1 M S2 solution, was prepared by dissolving 0.78 g of Na2S in 100 mL of deionized water.
Efficient adsorption of nano-sulphides on a nano-porous Tiθ2 layer,
A glass substrate (FLACHGLAS AG) was ultrasonically cleaned in ethanol for 5 minutes and then dried. A layer of a nano-Ti02 dispersion (Ti-nanoxide HT Solaronix SA) was applied to the glass substrate using a doctor blade coater. This titanium dioxide-coated glass was heated to 450 °C for 30 minutes. This results in a highly transparent nano-porous Tiθ2 layer. A dry layer thickness of 1.4 μm was obtained as verified by laserprofilometry (DEKTRAK™ profilometer) , mechanically with a diamond-tipped probe (Perthometer) and interferometry .
After the sintering step, the titanium dioxide-coated glass plates were cooled to 150°C by placing them on a hot plate at 150°C for 10 minutes and then immediately dipped into the metal solution for 1 minute, then rinsed for 10 seconds with deionized water immediately followed by dipping for 1 minute in the sulphide solution and finally rinsing once more with deionized water for 10 seconds. In this dipping cycle nano-metal sulphides were deposited on the internal and external surface of the nano-porous titanium dioxide. The amount of adsorbed nano-metal sulphide particles could be increased by carrying out multiple dipping cycles.
Absorption spectra between 200 and 800 nm were obtained using a Hewlett-Packard diode-array spectrophotometer HP 8452A. Figure 1 shows the absorption spectra for pure Tiθ2, Tiθ2 with one cycle of
3+ Metal solution 1 (Bi ) and Sulphide solution 1; and Tiθ2 with one cycle of Metal solution 2 (Pb 2+) and Sulphide solution 1. The absorption band is very broad and as a point of reference only the absorbance values at 500 nm will be given in the examples below. Dipping cycles were carried out with Metal solutions 1 and 2 and Sulphide solution 1; and with the triazole compounds Tl, T2 and T3 added to Metal solution 1, Metal solution 2 or to Sulphide solution 1 (7,5 ml of 10% solution of the triazole compound) in water was added to 50 ml of the metal or sulphide solution) as given in Table 1 and the absorbances at 500 nm of the resulting in- situ formed nano-metal sulphides determined, see Table 1.
Multiple dipping led to higher absorbances. The presence of a triazole in either the Metal solution or the Sulphide solution resulted in a more rapid increase in absorbance with the number of dippings. For Bi2S3 it appears that this effect is stronger if the triazole is contained in the Sulphide-solution, whereas for the PbS, it appears that this effect is stronger if the triazole is contained in the Metal solution. Furthermore, the triazole T2 appears to be more favourable for in-situ Bi2S3 nano-particle formation than Tl and T3 and the triazole T3 appears to be more favourable for in-situ PbS formation than Tl and T2. Table 1 :
* corrected for the absorbance of Tiθ2 at 500 nm (ca 0.15)
EXAMPLE 2
Evaluation in photovoltaic devices with liquid electrolyte
Photovoltaic devices 1 to 5 were prepared by the following procedure: Preparation of the front electrode
2 A glass plate (2 x 7 cm ) coated with conductive Snθ2:F
(Pilkington TEC15/3) with a surface conductivity of ca 15 Ohm/square was ultrasonically cleaned in isopropanol for 5 minutes and then dried.
For these experiments Degussa P25 Tiθ2 nano-colloid was used instead of the Solaronix colloid, 5 g of Degussa P25 being added to
15 mL of water with 1 L of Triton X-100 being subsequently added. The resulting titanium dioxide colloidal dispersion was cooled in ice and ultrasonically treated for 5 minutes .
The electrode was taped off at the borders and was doctor
2 blade-coated in the middle (0.7 x 4.5 cm ) with the above-described titanium dioxide colloidal dispersion to give layer thicknesses after sintering of 2.0 μm to ensure comparable optical absorbances of the cells. The sintering procedure and dipping procedure were as described for EXAMPLE 1. The front electrode was thereby produced, which was immediately used in assembling the cell.
Cell assembly
The back electrode (consisting of Snθ2 : F glass (Pilkington TEC15/3) evaporated with platinum to catalyse the reduction of the electrolyte) was sealed together with the front electrode with inbetween two pre-patterned layers of Surlyn® (DuPont) (2 x 7 cm
2 where in the middle 1 x 6 cm had been removed) . This was performed at a temperature just above 100 °C on a hotplate. As soon as the sealing was completed, the cell was cooled to 25°C and electrolyte was added through holes in the counter electrode. The electrolyte used was a solution of 0.5 M Lil, 0.05 M I2 and 0.4 M t- butylpyridine in acetonitrile and was injected into the cell during cell assembly. The holes were then sealed with Surlyn® and a thin piece of glass . Conductive tape was attached on both long sides of the cell to collect the electricity during measurement. Measurements were performed immediately after the cell assembly.
Device characterisa tion
The thereby prepared photovoltaic cells were irradiated with a Xenon Arc Discharge lamp with a power of 100 mW/cm . The current generated was recorded with a Keithley electrometer (Type 2420) . The open circuit voltage (Voc) , short circuit current density (Isc) and Fill Factor (FF) of the photocell as calculated from the quality of generated current are given in Table 3.
Table 3 :
The absorbance values for the adsorbed in-situ formed lead sulphide nano-particles were not determined. However, the values reported above for Experiments 5, 10, 11, 14 and 16 (see Table 1) for lead- sulphide nano-particles adsorbed on Solaronix titanium dioxide under the same conditions can be used as a guide.
From Table 3 it can be concluded that cells made with one dipping cycle with the triazole compound Tl show much better photoresponses than cells with one, two or even three dipping cycles in the absence of the triazole compound Tl .
The present invention may include any feature or combination of features disclosed herein either implicitly or explicitly or any generalisation thereof irrespective of whether it relates to the presently claimed invention. In view of the foregoing description it will be evident to a person skilled in the art that various modifications may be made within the scope of the invention.

Claims

A nano-porous metal oxide semiconductor with a band-gap of greater than 2.9 eV in-situ spectrally sensitized on its internal and external surface with metal chalcogenide nano- particles with a band-gap of less than 2.9 eV containing at least one metal chalcogenide, characterized in that said nanoporous metal oxide further contains a triazole or diazole compound .
Nano-porous metal oxide according to claim 1, wherein said metal oxide is selected from the group consisting of titanium oxides, tin oxides, niobium oxides, tantalum oxides and zinc oxides .
Nano-porous metal oxide in-situ spectrally sensitized with metal chalcogenide nano-particles according to claim 1 or 2, wherein said triazole compound is a tetraazaindene .
Nano-porous metal oxide in-situ spectrally sensitized with metal chalcogenide nano-particles according to claim 3, wherein said tetraazaindene is selected from the group consisting of
Nano-porous metal oxide according to any of the preceding claims, wherein said nano-porous metal oxide further contains a phosphoric acid or a phosphate.
A process for in-situ spectral sensitization of nano-porous metal oxide semiconductor with a band-gap of greater than 2.9 eV on its internal and external surface with metal chalcogenide nano-particles with a band-gap of less than 2.9 eV, containing at least one metal chalcogenide, comprising a metal chalcogenide-forming cycle comprising the steps of: contacting the nano-porous metal oxide with a solution of metal ions; and contacting the nano-porous metal oxide with a solution of chalcogenide ions, wherein said solution of metal ions and/or said solution of chalcogenide ions contains a triazole or diazole compound.
7. Process according to claim 6, wherein said contact with a solution of metal ions occurs before said contact with a solution of chalcogenide ions.
Process according to claim 6 or 7, wherein said metal chalcogenide-forming cycle is repeated.
Process according to any of claims 6 to 8, wherein said triazole or diazole compound is tetraazaindene is selected from the group consisting of
10. Process according to any of claims 6 to 9, wherein at the end of said metal chalcogenide-forming cycle said metal chalcogenide is rinsed with an aqueous solution containing a phosphoric acid or a phosphate .
11. A photovoltaic device comprising a nano-porous metal oxide semiconductor with a band-gap of greater than 2.9 eV in-situ spectrally sensitized on its internal and external surface with metal chalcogenide nano-particles with a band-gap of less than 2.9 eV containing at least one metal chalcogenide, characterized in that said nano-porous metal oxide further contains a triazole or diazole compound.
12. A second photovoltaic device comprising a nano-porous metal oxide semiconductor with a band-gap of greater than 2.9 eV spectrally sensitized on its internal and external surface with metal chalcogenide nano-particles with a band-gap of less than 2.9 eV, containing at least one metal chalcogenide, prepared according to a process for in-situ spectral sensitization comprising a metal chalcogenide-forming cycle comprising the steps of: contacting the nano-porous metal oxide with a solution of metal ions; and contacting the nanoporous metal oxide with a solution of chalcogenide ions, wherein said solution of metal ions and/or said solution of chalcogenide ions contains a triazole or diazole compound.
EP03787807A 2002-08-13 2003-07-16 Nano-porous metal oxide semiconductor spectrally sensitized with metal chalcogenide nano-particles Withdrawn EP1547159A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP03787807A EP1547159A1 (en) 2002-08-13 2003-07-16 Nano-porous metal oxide semiconductor spectrally sensitized with metal chalcogenide nano-particles

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP02102129 2002-08-13
EP02102129 2002-08-13
PCT/EP2003/050313 WO2004017426A1 (en) 2002-08-13 2003-07-16 Nano-porous metal oxide semiconductor spectrally sensitized with metal chalcogenide nano-particles
EP03787807A EP1547159A1 (en) 2002-08-13 2003-07-16 Nano-porous metal oxide semiconductor spectrally sensitized with metal chalcogenide nano-particles

Publications (1)

Publication Number Publication Date
EP1547159A1 true EP1547159A1 (en) 2005-06-29

Family

ID=31725482

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03787807A Withdrawn EP1547159A1 (en) 2002-08-13 2003-07-16 Nano-porous metal oxide semiconductor spectrally sensitized with metal chalcogenide nano-particles

Country Status (4)

Country Link
EP (1) EP1547159A1 (en)
JP (1) JP2005539349A (en)
AU (1) AU2003262523A1 (en)
WO (1) WO2004017426A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2881881B1 (en) * 2005-02-04 2007-06-08 Imra Europ Sa Sa SOLID PHOTOVOLTAIC DEVICE WITH INTERPENETRATED CONFIGURATION COMPRISING NEW ABSORBERS OR SEMICONDUCTOR MATERIALS
JP5194286B2 (en) * 2007-03-28 2013-05-08 国立大学法人岐阜大学 Method for producing photoelectrode for dye-sensitized solar cell
DE102009034056A1 (en) * 2009-03-03 2010-09-16 Karlsruher Institut Für Technologie (Kit) thin Film solar Cells
KR101462020B1 (en) * 2013-11-29 2014-11-19 한국화학연구원 Fabrication Method of Efficient Inorganic/Organic Hybrid Solar Cells Based on Metal Chalcogenide as a Light Harvesters
JP6706822B2 (en) * 2015-03-10 2020-06-10 国立大学法人大阪大学 Compound and organic semiconductor material containing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1176646A1 (en) * 2000-07-28 2002-01-30 Ecole Polytechnique Féderale de Lausanne (EPFL) Solid state heterojunction and solid state sensitized photovoltaic cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004017426A1 *

Also Published As

Publication number Publication date
AU2003262523A1 (en) 2004-03-03
JP2005539349A (en) 2005-12-22
WO2004017426A1 (en) 2004-02-26

Similar Documents

Publication Publication Date Title
US20050269616A1 (en) Nano-porous metal oxide semiconductor spectrally sensitized with metal oxide chalcogenide nano-particles
Ye et al. Recent advances in quantum dot-sensitized solar cells: insights into photoanodes, sensitizers, electrolytes and counter electrodes
US6929970B2 (en) Process for preparing nano-porous metal oxide semiconductor layers
Tennakone et al. Nanoporous n-/selenium/p-CuCNS photovoltaic cell
EP2897144B1 (en) Photosensitized solar cell module and production method thereof
Nattestad et al. Dye-sensitized nickel (II) oxide photocathodes for tandem solar cell applications
US20040103936A1 (en) Metal chalcogenide composite nano-particles and layers therewith
JP2007511866A (en) Series dye-sensitized solar cell and manufacturing method thereof
JP2005235725A (en) Dye-sensitized solar cell module
EP1547106A1 (en) Porous metal oxide semiconductor spectrally sensitized with metal oxide
KR101045849B1 (en) High Efficiency Flexible Dye-Sensitized Solar Cell and Manufacturing Method Thereof
KR20090065175A (en) Dye-sensitized solar cells and method of manufacturing the same
Luo et al. MnS passivation layer for highly efficient ZnO–based quantum dot-sensitized solar cells
US20040046168A1 (en) Porous metal oxide semiconductor spectrally sensitized with metal oxide
JP2001093590A (en) Photoelectric conversion device and manufacturing method
KR20090052696A (en) Dye-sensitized solar cells having substrate including p-n junction diode
JP4473541B2 (en) Photochargeable secondary battery and electrochemical capacitor
JP4892186B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
WO2004017426A1 (en) Nano-porous metal oxide semiconductor spectrally sensitized with metal chalcogenide nano-particles
JP4883559B2 (en) Photoelectric conversion electrode
KR100846156B1 (en) The preparation method of working electrode using carbon particles and dye-sensitive solar cell module using the same
Jin et al. Properties of dye-sensitized solar cells with TiO2 passivating layers prepared by electron-beam evaporation
EP1543570A1 (en) Photovoltaic device comprising a 1,3,5-tris-aminophenyl-benzene compound
WO2004017427A1 (en) Nano-porous metal oxide semiconductor spectrally sensitized with metal chalcogenide nano-particles
US20040183071A1 (en) Nano-porous metal oxide semiconductor spectrally sensitized with metal oxide chalcogenide nano-particles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050314

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070201