EP1539713B1 - Pyrimidine derivatives as modulators of chemokine receptor activity - Google Patents

Pyrimidine derivatives as modulators of chemokine receptor activity Download PDF

Info

Publication number
EP1539713B1
EP1539713B1 EP03792486A EP03792486A EP1539713B1 EP 1539713 B1 EP1539713 B1 EP 1539713B1 EP 03792486 A EP03792486 A EP 03792486A EP 03792486 A EP03792486 A EP 03792486A EP 1539713 B1 EP1539713 B1 EP 1539713B1
Authority
EP
European Patent Office
Prior art keywords
hydroxy
thio
amino
methylethyl
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03792486A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP1539713A1 (en
Inventor
Mark Richard AstraZeneca R & D Charnwood EBDEN
Premji AstraZeneca R & D Charnwood MEGHANI
Antony Ronald AstraZeneca R & D Charnwood COOK
John AstraZeneca R & D Charnwood STEELE
Lal L. S. AstraZeneca R & D Charnwood CHEEMA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AstraZeneca AB
Original Assignee
AstraZeneca AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB0219819A external-priority patent/GB0219819D0/en
Priority claimed from GB0223287A external-priority patent/GB0223287D0/en
Application filed by AstraZeneca AB filed Critical AstraZeneca AB
Publication of EP1539713A1 publication Critical patent/EP1539713A1/en
Application granted granted Critical
Publication of EP1539713B1 publication Critical patent/EP1539713B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/46Two or more oxygen, sulphur or nitrogen atoms
    • C07D239/56One oxygen atom and one sulfur atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/02Nasal agents, e.g. decongestants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/08Bronchodilators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/08Drugs for genital or sexual disorders; Contraceptives for gonadal disorders or for enhancing fertility, e.g. inducers of ovulation or of spermatogenesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/04Antipruritics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/14Drugs for dermatological disorders for baldness or alopecia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/04Drugs for skeletal disorders for non-specific disorders of the connective tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/04Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/06Antimigraine agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/14Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/46Two or more oxygen, sulphur or nitrogen atoms
    • C07D239/60Three or more oxygen or sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links

Definitions

  • the present invention relates to certain heterocyclic compounds, processes and intermediates used in their preparation, pharmaceutical compositions containing them and their use in therapy.
  • Chemokines play an important role in immune and inflammatory responses in various diseases and disorders, including asthma and allergic diseases, as well as autoimmune pathologies such as rheumatoid arthritis and atherosclerosis. These small secreted molecules are a growing superfamily of 8-14 kDa proteins characterised by a conserved cysteine motif. At the present time, the chemokine superfamily comprises three groups exhibiting characteristic structural motifs, the C-X-C, C-C and C-X 3 -C families. The C-X-C and C-C families have sequence similarity and are distinguished from one another on the basis of a single amino acid insertion between the NH-proximal pair of cysteine residues. The C-X 3 -C family is distinguished from the other two families on the basis of having a triple amino acid insertion between the NH-proximal pair of cysteine residues.
  • the C-X-C chemokines include several potent chemoattractants and activators of neutrophils such as interleukin-8 (IL-8) and neutrophil-activating peptide 2 (NAP-2).
  • IL-8 interleukin-8
  • NAP-2 neutrophil-activating peptide 2
  • the C-C chemokines include potent chemoattractants of monocytes and lymphocytes but not neutrophils.
  • Examples include human monocyte chemotactic proteins 1-3 (MCP-1, MCP-2 and MCP-3), RANTES (Regulated on Activation, Normal T Expressed and Secreted), eotaxin and the macrophage inflammatory proteins 1 ⁇ and 1 ⁇ (MIP-1 ⁇ , and MIP-1 ⁇ ).
  • the C-X 3 -C chemokine (also known as fractalkine) is a potent chemoattractant and activator of microglia in the central nervous system (CNS) as well as of monocytes, T cells, NK cells and mast cells.
  • chemokines are mediated by subfamilies of G protein-coupled receptors, among which are the receptors designated CCR1, CCR2, CCR2A, CCR2B, CCR3, CCR4, CCR5, CCR6, CCR7, CCR8, CCR9, CCR10 and CCR11 (for the C-C family); CXCR1, CXCR2, CXCR3, CXCR4 and CXCR5 (for the C-X-C family) and CX 3 CR1 for the C-X 3 -C family.
  • These receptors represent good targets for drug development since agents which modulate these receptors would be useful in the treatment of disorders and diseases such as those mentioned above.
  • the present invention provides compounds of formula (1), pharmaceutically acceptable salts or solvates thereof and in vivo hydrolysable esters thereof: wherein R 1 is a group selected from C 3-7 carbocyclyl, C 1-8 alkyl, C 2-6 alkenyl and C 2-6 alkynyl; wherein the group is substituted by 1, 2 or 3 substituents independently selected from fluoro, nitrile, -OR 4 , -NR 5 R 6 , -CONR 5 R 6 -COOR 7 -NR 8 COR 9 -SR 10 , -SO 2 R 10 , -SO 2 NR 5 R 6 , -NR 8 SO 2 R 9 , phenyl or heteroaryl; wherein phenyl and heteroaryl are optionally substituted by 1, 2 or 3 substituents independently selected from halo, cyano, nitro, -OR 4 , - NR 5 R 6 , -CONR 5 R 6 , -COOR 7 , -NR 8 COR 9
  • Certain compounds of formula (1) are capable of existing in stereoisomeric forms. It will be understood that the invention encompasses all geometric and optical isomers of the compounds of formula (1) and mixtures thereof including racemates.
  • optically active forms may be carried out by standard techniques of organic chemistry well known in the art, for example by synthesis from optically active starting materials or by resolution of a racemic form. Similarly, the above-mentioned activity may be evaluated using the standard laboratory techniques referred to hereinafter.
  • a compound of formula (1) or a salt, solvate or in vivo hydrolysable ester thereof may exhibit the phenomenon of tautomerism and that the formulae drawings within this specification can represent only one of the possible tautomeric forms. It is to be understood that the invention encompasses any tautomeric form and mixtures thereof and is not to be limited merely to any one tautomeric form utilised within the formulae drawings.
  • the formulae drawings within this specification can represent only one of the possible tautomeric forms and it is to be understood that the specification encompasses all possible tautomeric forms of the compounds drawn not just those forms which it has been possible to show graphically herein.
  • the present invention relates to the compounds of formula (1) as hereinbefore defined as well as to the salts thereof.
  • Salts for use in pharmaceutical compositions will be pharmaceutically acceptable salts, but other salts may be useful in the production of the compounds of formula (1) and their pharmaceutically acceptable salts.
  • Pharmaceutically acceptable salts of the invention may, for example, include acid addition salts of the compounds of formula (1) as hereinbefore defined which are sufficiently basic to form such salts.
  • Such acid addition salts include for example salts with inorganic or organic acids affording pharmaceutically acceptable anions such as with hydrogen halides (especially hydrochloric or hydrobromic acid of which hydrochloric acid is particularly preferred) or with sulphuric or phosphoric acid, or with trifluoroacetic, citric or maleic acid.
  • Suitable salts include hydrochlorides, hydrobromides, phosphates, sulphates, hydrogen sulphates, alkylsulphonates, arylsulphonates, acetates, benzoates, citrates, maleates, fumarates, succinates, lactates, tartrates, oxalates, methanesulphonates or p -toluenesulphonates.
  • Pharmaceutically acceptable salts of the invention may also include basic addition salts of the compounds of formula (1) as hereinbefore defined which are sufficiently acidic to form such salts. Such salts may be formed with an inorganic or organic base which affords a pharmaceutically acceptable cation.
  • Such salts with inorganic or organic bases include for example an alkali metal salt, such as a lithium, sodium or potassium salt, an alkaline earth metal salt such as a calcium or magnesium salt, an ammonium salt or an organic amine salt, for example a salt with methylamine, dimethylamine, trimethylamine, triethylamine, piperidine, morpholine or tris-(2-hydroxyethyl)amine.
  • alkali metal salt such as a lithium, sodium or potassium salt
  • an alkaline earth metal salt such as a calcium or magnesium salt
  • an ammonium salt or an organic amine salt for example a salt with methylamine, dimethylamine, trimethylamine, triethylamine, piperidine, morpholine or tris-(2-hydroxyethyl)amine.
  • Other basic addition salts include aluminium, zinc, benzathine, chloroprocaine, choline, diethanolamine, ethanolamine, ethyldiamine, meglumine, trometh
  • the present invention further relates to an in vivo hydrolysable ester of a compound of formula (1).
  • An in vivo hydrolysable ester of a compound of formula (1) which contains carboxy or hydroxy group is, for example a pharmaceutically acceptable ester which is cleaved in the human or animal body to produce the parent acid or alcohol.
  • esters can be identified by administering, for example, intravenously to a test animal, the compound under test and subsequently examining the test animal's body fluid.
  • esters for carboxy include C 1-6 alkoxymethyl esters for example methoxymethyl, C 1-6 alkanoyloxymethyl esters for example pivaloyloxymethyl, phthalidyl esters, C 3-8 cycloalkoxycarbonyloxyC 1-6 alkyl esters for example 1-cyclohexylcarbonyloxyethyl; 1,3-dioxolen-2-onylmethyl esters for example 5-methyl-1,3-dioxolen-2-onylmethyl; and C 1-6 alkoxycarbonyloxyethyl esters for example 1-methoxycarbonyloxyethyl and may be formed at any carboxy group in the compounds of this invention.
  • Suitable pharmaceutically-acceptable esters for hydroxy include inorganic esters such as phosphate esters (including phosphoramidic cyclic esters) and ⁇ -acyloxyalkyl ethers and related compounds which as a result of the in vivo hydrolysis of the ester breakdown to give the parent hydroxy group/s.
  • inorganic esters such as phosphate esters (including phosphoramidic cyclic esters) and ⁇ -acyloxyalkyl ethers and related compounds which as a result of the in vivo hydrolysis of the ester breakdown to give the parent hydroxy group/s.
  • examples of ( ⁇ -acyloxyalkyl ethers include acetoxymethoxy and 2,2-dimethylpropionyloxymethoxy.
  • a selection of in-vivo hydrolysable ester forming groups for hydroxy include C 1-10 alkanoyl, for example acetyl; benzoyl; phenylacetyl; substituted benzoyl and phenylacetyl, C 1-10 alkoxycarbonyl (to give alkyl carbonate esters), for example ethoxycarbonyl; di-(C 1-4 )alkylcarbamoyl and N -(di-(C 1-4 )alkylaminoethyl)- N- (C 1-4 )alkylcarbamoyl (to give carbamates); di-(C 1-4 )alkylaminoacetyl and carboxyacetyl.
  • C 1-10 alkanoyl for example acetyl; benzoyl; phenylacetyl; substituted benzoyl and phenylacetyl, C 1-10 alkoxycarbonyl (to give alkyl carbonate esters), for example
  • ring substituents on phenylacetyl and benzoyl include aminomethyl, (C 1 - 4 )alkylaminomethyl and di-((C 1-4 )alkyl)aminomethyl, and morpholino or piperazino linked from a ring nitrogen atom via a methylene linking group to the 3- or 4- position of the benzoyl ring.
  • Other interesting in-vivo hyrolysable esters include, for example, R A C(O)O(C 1-6 )alkyl-CO-, wherein R A is for example, benzyloxy-(C 1-4 )alkyl, or phenyl).
  • Suitable substituents on a phenyl group in such esters include, for example, 4-(C 1-4 )piperazino-(C 1-4 )alkyl, piperazino-(C 1-4 )alkyl and morpholino-(C 1-4 )alkyl.
  • alkyl includes both straight-chain and branched-chain alkyl groups.
  • references to individual alkyl groups such as “propyl” are specific for the straight chain version only and references to individual branched-chain alkyl groups such as t -butyl are specific for the branched chain version only.
  • C 1-3 alkyl includes methyl, ethyl, propyl and isopropyl and examples of “C 1-6 alkyl” include the examples of "C 1-3 alkyl”and additionally t-butyl, pentyl, 2,3-dimethylpropyl, 3-methylbutyl and hexyl.
  • C 1-8 alkyl examples include the examples of “C 1-6 alkyl” and additionally heptyl, 2,3-dimethylpentyl, 1-propylbutyl and octyl.
  • An analogous convention applies to other terms, for example "C 2-6 alkenyl” includes vinyl, allyl, 1-propenyl , 2-butenyl, 3-butenyl, 3-methylbut-1-enyl, 1-pentenyl and 4-hexenyl and examples of “C 2-6 alkynyl” includes ethynyl, 1-propynyl, 3-butynyl, 2-pentynyl and 1-methylpent-2-ynyl.
  • C 3-7 carbocyclyl is a saturated, partially saturated or unsaturated, monocyclic ring containing 3 to .7 carbon ring atoms wherein a -CH 2 - group can optionally be replaced by a -C(O)-.
  • Suitable examples of "carbocyclyl” are cyclopropyl, cyclopentyl, cyclobutyl, cyclohexyl, cyclohexenyl, 4-oxocyclohex-1-yl and 3-oxocyclohept-5-en-1-yl.
  • halo refers to fluoro, chloro, bromo and iodo.
  • C 1-6 alkoxy examples include methoxy, ethoxy, propoxy, isopropoxy, butyloxy, pentyloxy, 1-ethylpropoxy and hexyloxy.
  • Examples of"C 1-6 alkylamino include methylamino, ethylamino, propylamino, butylamino and 2-methylpropylmino.
  • Examples of "di(C 1-6 alkyl)amino” include dimethylamino, N -methyl- N -ethylamino, diethylamino, N- propyl- N -3-methylbutylamino.
  • N -(C 1-6 alkyl)- N -(phenyl)amino examples include N- methyl- N -phenylamino, N -propyl- N -phenylamino and N -(2-methylbutyl)- N -phenylamino.
  • N -(C 1-6 alkyl)carbamoyl examples are N -methylcarbamoyl, N -ethylcarbamoyl and N -(2-ethylbutylcarbamoyl.
  • N -(C 1-6 alkyl)- N -(phenyl)carbamoyl examples include N -methyl- N- phenylcarbamoyl, N -butyl- N -phenylcarbamoyl and N -(3-methylpentyl)- N -(phenyl)carbamoyl.
  • N,N -di(C 1-6 alkyl)carbamoyl include N,N -dimethylcarbamoyl, N -methyl- N- ethylcarbamoyl and N -propyl- N -(2-methylbutyl)carbamoyl.
  • thioC 1-6 alkyl examples include -thiomethyl, -thioethyl, -thiopropyl, -thiobutyl and -thio-2-methylbutyl.
  • Heteroaryl is monocyclic or bicyclic aryl ring containing 5 to 10 ring atoms of which 1, 2, 3 or 4 ring atoms are chosen from nitrogen, sulphur or oxygen.
  • heteroaryl include pyrrolyl, furanyl, thienyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, oxadiazolyl, thiadiazolyl, pyridyl, thiopyridone, pyrimidinyl, pyrazinyl, pyridazinyl, triazinyl, benzfuranyl, benzthieno, indolyl, benzimidazolyl, benzoxazolyl, benzthiazolyl, indazolyl, benzisoxazolyl, benzisothiazolyl, benztriazo
  • Examples of "a 3-8 membered ring optionally containing 1, 2 or 3 atoms selected from O, S and NR 8 " include azetidinyl, pyrrolidinyl, tetrahydrofuranyl, tetrahydrothiophenyl, tetrahydropyranyl, piperidinyl, piperazinyl and morpholinyl.
  • Examples of "a 4- to 7-membered saturated heterocyclic ring system” include azetidinlyl, pyrrolidinyl, piperidinyl, piperazinyl, homopiperazinyl and morpholinyl.
  • R 1 , R 2 , R 3 and X are as follows. Such values may be used where appropriate with any of the definitions, claims or embodiments defined hereinbefore or hereinafter.
  • R 1 is C 1-8 alkyl substituted by 1, 2 or 3 substituents independently selected from phenyl or heteroaryl, wherein phenyl and heteroaryl are optionally substituted by 1, 2 or 3 substituents independently selected from halo, cyano, -OR 4 , -SR 10 , C 1-6 alkyl and trifluoromethyl.
  • R 1 is benzyl optionally substituted by 1 or 2 substituents independently selected from fluoro, chloro, bromo, methoxy, methyl and trifluoromethyl.
  • R 2 is C 1-8 alkyl substituted by 1, 2 or 3 substituents independently selected from hydroxy, amino, C 1-6 alkoxy, C 1-6 alkylamino, di(C 1-6 alkyl)amino, N -(C 1-6 alkyl)- N -(phenyl)amino, N -C 1-6 alkylcarbamoyl, N,N -di(C 1-6 alkyl)carbamoyl, N-(C 1 - 6 alkyl)- N -(phenyl)carbamoyl, carboxy, phenoxycarbonyl, -NR 8 COR 9 , -SO 2 R 10 , -SO 2 NR 5 R 6 and -NR 8 SO 2 R 9 .
  • R 2 is C 1-8 alkyl, such as C 1-4 alkyl, substituted by 1, 2 or 3 substituents independently selected from hydroxy, amino, C 1-6 alkoxy, C 1-6 alkylamino, and di(C 1 - 6 alkyl)amino.
  • R 2 is C 1-4 alkyl substituted by hydroxy.
  • R 2 is 2-hydroxy-1-methylethyl.
  • R 3 is hydrogen
  • R 4 is hydrogen, C 1-4 alkyl or phenyl.
  • R 5 is hydrogen, C 1-4 alkyl or phenyl.
  • R 6 is hydrogen, C 1-4 alkyl or phenyl.
  • R 10 is hydrogen, C 1-4 alkyl or phenyl.
  • X is hydrogen, halo, cyano, nitro, hydroxy, -NR 5 R 6 , thio, thiocyano, -CONR 5 R 6 , thioC 1-6 alkyl (optionally substituted by 1 or 2 substituents selected from halo, -OR 17 , -CONR 5 R 6 , -COOR 7 , -NR 15 R 16 ), -NR 8 SO 2 R 10 , C 1-8 alkyl (optionally substituted by 1, 2 or 3 substituents independently selected from halo, -OR 4 , - NR 5 R 6 , -CONR 5 R 6 , -COOR 7 , -NR 8 COR 9 , -SR 10 , -SO 2 R 10 , -SO 2 NR 5 R 6 and -NR 8 SO 2 R 9 ) or a -phenyl, -heteroaryl, -thiophenyl, -thioheteroaryl, amino
  • X is hydrogen, halo, cyano, nitro, hydroxy, thio, thiocyano, - CONR 5 R 6 , thioC 1-6 alkyl (optionally substituted by 1 or 2 substituents selected from halo, - OR 17 , -NR 15 R 16 , -CONR 5 R 6 ), -NR 8 SO 2 R 10 , C 1-8 alkyl (optionally substituted by 1, 2 or 3 substituents independently selected from halo, -OR 4 , -NR 5 R 6 , -CONR 5 R 6 , -COOR 7 , - NR 8 COR 9 , -SR 10 , -SO 2 R 10 , -SO 2 NR 5 R 6 and -NR 8 SO 2 R 9 ), heteroaryl, thioheteroaryl or thioC 1 - 6 alkylheteroaryl all of which may be optionally substituted by 1, 2 or 3 substituents independently selected from halo,
  • X is hydrogen
  • X is -CONR 5 R 6
  • X is 1,2,4-oxadiazol-3-ylmethanethio
  • X is NR 8 SO 2 R 10 where R 8 is hydrogen and R 9 is methyl.
  • X is thiocyano
  • X is thiothiadazolyl, thioimidazolyl or thiotriazolyl.
  • X is fluoro, chloro or cyano
  • a particular class of compound is of formula (1) wherein; R 1 is C 1-8 alkyl optionally substituted by 1, 2 or 3 substituents independently selected from phenyl or heteroaryl, wherein phenyl and heteroaryl are optionally substituted by 1, 2 or 3 substituents independently selected from halo, cyano, -OR 4 , -SR 10 , C 1-6 alkyl and trifluoromethyl; R 2 is C 1-8 alkyl substituted by 1, 2 or 3 substituents independently selected from hydroxy, amino, C 1-6 alkoxy, C 1-6 alkylamino, di(C 1-6 alkyl)amino, N -(C 1-6 alkyl)- N -(phenyl)amino, N- C 1-6 alkylcarbamoyl, N,N- di(C 1-6 alkyl)carbamoyl, N -(C 1-6 alkyl)- N -(phenyl)carbamoyl, carboxy, phenoxycarbony
  • a preferred class of compound is of formula (1) wherein; R 1 is benzyl optionally substituted by 1 or 2 substituents independently selected from fluoro and chloro; R 2 is C 1-4 alkyl substituted by hydroxy; R 3 is hydrogen; X is fluoro, chloro, cyano or thioimidazolyl.
  • Compounds of the invention include:
  • Reaction of compounds of formula (2) wherein R 1 , R 2 and R 3 are as defined in formula (1), with suitable electrophiles include the following representative examples: fluorination (Selectfluor TM in methanol) or chlorination, bromination or iodination ( N -chlorosuccinimide, N -bromosuccinimide, N -iodosuccinimide, all in acetic acid), or chlorination (sulfuryl chloride) or bromination (bromine in N,N -dimethylformamide) or thiocyanation (by in situ reaction with bromine and potassium thiocyanate) or nitrosation (sodium nitrite in acetic acid) or nitration (nitronium tetrafluoroborate in sulfolane) or electrophilic substitution with sulfenyl halides (alkyl-, aryl- or heteroarylthiols, bromine and pyridine in N,N- di
  • Suitable bases include the alkali metal hydroxides such as Li, Na, or K, or metal carbonates such as Li, Na, K or Cs, or metal acetates such as Li, Na, K or Cs, or metal alkoxides such as Li, Na, K -tert -butoxide .
  • Suitable solvents include N,N- dimethylamides, 1-methyl-2-pyrolidinone, ethers such as tetrahydrofuran, 1,4-dioxane, glyme and diglyme and alcohols such as methanol, ethanol and tert -butanol .
  • potassium hydroxide in N,N- dimethylformamide at ambient temperature is employed.
  • Compounds of formula (3) wherein R 2 and R 3 are as defined in formula (1) may be prepared by reaction of 6-amino-2-mercapto-4-pyrimidinol with amines HNR 2 R 3 where R 2 and R 3 are as defined in formula (1) in the presence of acetic acid at a temperature of 150 - 200°C.
  • the present invention further provides a process for the preparation of a compound of formula (1) as defined above, where X is 1,3-oxazol-5-yl by;
  • Suitable bases include trialkylamines, such as triethylamine or N,N- diisopropylethylamine.
  • Suitable solvents include N,N -dimethylamides, 1-methyl-2-pyrolidone, and ethers such as tetrahydrofuran, 1,4-dioxane, glyme and diglyme.
  • the temperature of the reaction can be performed between 0°C and 100°C.
  • triethylamine in N,N -dimethylformamide at room temperature is used.
  • Compounds of formula (6) wherein R 1 is as defined in formula (1) may be prepared by reaction of 4,6-dihydroxy-2-mercaptopyrimidine with alkylhalides R 1 A where R 1 is as defined in formula (1) and A is halogen in the presence of a suitable base and solvent.
  • suitable bases include the alkali metal hydroxides such as Li, Na, or K, or metal carbonates such as Li, Na, K or Cs, or metal acetates such as Li, Na, K or Cs, or metal alkoxides such as Li, Na, K-tert-butoxide.
  • Suitable solvents include N,N -dimethylamides, 1-methyl-2-pyrolidinone, ethers such as tetrahydrofuran, 1,4-dioxane, glyme and diglyne and alcohols such as methanol, ethanol and tert -butanol.
  • ethers such as tetrahydrofuran, 1,4-dioxane, glyme and diglyne
  • alcohols such as methanol, ethanol and tert -butanol.
  • potassium hydroxide in N,N- dimethylformamide at ambient temperature is employed.
  • the present invention further provides a process for the preparation of a compound of formula (I) as defined above, where X is CN by;
  • Suitable bases include trialkylamines, such as triethylamine or N,N diisopropylethylamine.
  • Suitable solvents include N,N -dimethylamides, 1-methyl-2-pyrolidone, and ethers such as tetrahydrofuran, 1,4-dioxane, glyme and diglyme.
  • the temperature of the reaction can be performed between 0°C and 100°C.
  • triethylamine in N,N -dimethylformamide at room temperature is used.
  • the present invention further provides a process for the preparation of a compound of formula (1) as defined above, where X is -CONR 5 R 6 by;
  • Suitable bases include the alkali metal hydroxides such as Li, Na, or K, or metal carbonates such as Li, Na, K or Cs, or metal acetates such as Li, Na, K or Cs, or metal alkoxides such as Li, Na, K-tert-butoxide.
  • Suitable solvents include N,N -dimethylamides, 1-methyl-2-pyrolidinone, toluene, ethers such as tetrahydrofuran, 1,4-dioxane, glyme and diglyme and alcohols such as methanol, ethanol and tert -butanol.
  • potassium tert- butoxide in aqueous toluene at 110°C is used.
  • Suitable bases include the trialkylamines, such as triethylamine or N,N- diisopropylethylamine, alkali metal hydroxides such as Li, Na, or K, or metal carbonates such as Li, Na, K or Cs, or metal acetates such as Li, Na, K or Cs, or metal alkoxides such as Li, Na, K-tert-butoxide.
  • Suitable solvents include N,N -dimethylamides, 1-methyl-2-pyrolidinone, ethers such as tetrahydrofuran, 1,4-dioxane, glyme and diglyme and alcohols such as methanol, ethanol and tert -butanol.
  • triethylamine in methanol at ambient temperature is used.
  • Suitable bases include the trialkylamines, such as triethylamine or N,N- diisopropylethylamine, alkali metal hydroxides such as Li, Na, or K, or metal carbonates such as Li, Na, K or Cs, or metal acetates such as Li, Na, K or Cs, or metal alkoxides such as Li, Na, K-tert-butoxide.
  • Suitable solvents include N,N -dimethylamides, 1-methyl-2-pyrolidinone, ethers such as tetrahydrofuran, 1,4-dioxane, glyme and diglyme and alcohols such as methanol, ethanol and tert -butanol.
  • triethylamine in N,N- dimethylformamide at -5°C is used.
  • Suitable bases include the trialkylamines, such as triethylamine or N,N- diisopropylethylamine.
  • Suitable solvents include N , N -dimethylamides, 1-methyl-2-pyrolidinone, dichloromethane, ethers such as tetrahydrofuran, 1,4-dioxane, glyme and diglyme.
  • ethers such as tetrahydrofuran, 1,4-dioxane, glyme and diglyme.
  • sodium bicarbonate in dichloromethane at ambient temperature is used.
  • Compounds of formula (7) wherein X is -CHO and Y is halogen may be prepared by reaction of 2,4,6-trihydroxypyrimidine with a halogenating agent such as phosphorous oxychloride in the presence of N,N -dimethylformamide.
  • a compound of formula (1) may be prepared from another compound of formula (1) by chemical modification.
  • chemical modifications include standard alkylation, arylation, heteroarylation, acylation, sulphonylation, phosphorylation, aromatic halogenation and coupling reactions. These reactions may be used to add new substituents or to modify existing substituents.
  • existing substituents in compounds of formula 1 may be modified by, for example, oxidation, reduction, elimination, hydrolysis or other cleavage reactions to yield other compounds of formula (1).
  • the compounds of formula (1) above may be converted to a pharmaceutically acceptable salt, solvate or in vivo hydrolysable ester thereof, as discussed above.
  • the salt is preferably a basic addition salt.
  • the compounds of formula (1) have activity as pharmaceuticals, in particular as modulators of chemokine receptor (especially CXCR2) activity, and may be used in the treatment (therapeutic or prophylactic) of conditions/diseases in human and non-human animals which are exacerbated or caused by excessive or unregulated production of chemokines.
  • modulators of chemokine receptor especially CXCR2
  • CXCR2 chemokine receptor 2
  • Examples of such conditions/diseases include:
  • the present invention provides a compound of formula (1), or a pharmaceutically-acceptable salt, solvate or an in vivo hydrolysable ester thereof, as hereinbefore defined for use in therapy.
  • the compounds of the invention are used to treat diseases in which the chemokine receptor belongs to the CXC chemokine receptor subfamily, more preferably the target chemokine receptor is the CXCR2 receptor.
  • Particular conditions which can be treated with the compounds of the invention are cancer, diseases in which angiogenesis is associated with raised CXCR2 chemokine levels, and inflammatory diseases such as asthma, allergic rhinitis, COPD, rheumatoid arthritis, psoriasis, inflammatory bowel diseases, osteoarthritis or osteoporosis.
  • cancer diseases in which angiogenesis is associated with raised CXCR2 chemokine levels
  • inflammatory diseases such as asthma, allergic rhinitis, COPD, rheumatoid arthritis, psoriasis, inflammatory bowel diseases, osteoarthritis or osteoporosis.
  • certain compounds of formula (1) may have utility as antagonists of the CX3CR1 receptor.
  • Such compounds are expected to be particularly useful in the treatment of disorders within the central and peripheral nervous system and other conditions characterized by an activation of microglia and/or infiltration of leukocytes (e.g. stroke/ischemia and head trauma).
  • the present invention provides a compound of formula (1), or a pharmaceutically acceptable salt, solvate or in vivo hydrolysable ester thereof, as hereinbefore defined for use as a medicament.
  • a compound of formula (1) or a pharmaceutically acceptable salt, solvate or in vivo hydrolysable ester thereof, as hereinbefore defined for use as a medicament for the treatment of human diseases or conditions in which modulation of chemokine receptor activity is beneficial.
  • the present invention provides a compound of formula (1), or a pharmaceutically acceptable salt, solvate or in vivo hydrolysable ester thereof, as hereinbefore defined for use as a medicament for the treatment of asthma, allergic rhinitis, cancer, COPD, rheumatoid arthritis, psoriasis, inflammatory bowel diseases, osteoarthritis or osteoporosis.
  • the present invention provides the use of a compound of formula (1), or a pharmaceutically acceptable salt, solvate or in vivo hydrolysable ester thereof, as hereinbefore defined in the manufacture of a medicament for use in therapy.
  • the present invention provides the use of a compound of formula (1), or a pharmaceutically acceptable salt, solvate or in vivo hydrolysable ester thereof, as hereinbefore defined in the manufacture of a medicament for the treatment of asthma, allergic rhinitis, cancer, COPD, rheumatoid arthritis, psoriasis, inflammatory bowel diseases, osteoarthritis or osteoporosis.
  • the term “therapy” also includes “prophylaxis” unless there are specific indications to the contrary.
  • the terms “therapeutic” and “therapeutically” should be construed accordingly.
  • a method of treating a chemokine mediated disease wherein the chemokine binds to a chemokine (especially CXCR2) receptor which comprises administering to a patient a therapeutically effective amount of a compound of formula, or a pharmaceutically acceptable salt, solvate or in vivo hydrolysable ester, as hereinbefore defined.
  • the compounds of formula (I) can be used in a method of treating an inflammatory disease, especially asthma, allergic rhinitis, COPD, rheumatoid arthritis, psoriasis, inflammatory bowel diseases, osteoarthritis or osteoporosis, in a patient suffering from, or at risk of, said disease, which comprises administering to the patient a therapeutically effective amount of a compound of formula (1), or a pharmaceutically acceptable salt, solvate or in vivo hydrolysable ester thereof, as hereinbefore defined.
  • the dosage administered will, of course, vary with the compound employed, the mode of administration, the treatment desired and the disorder indicated.
  • the compounds of formula (1) and pharmaceutically acceptable salts, solvates or in vivo hydrolysable esters thereof may be used on their own but will generally be administered in the form of a pharmaceutical composition in which formula (1) compound/salt/solvate/ester (active ingredient) is in association with a pharmaceutically acceptable adjuvant, diluent or carrier.
  • the pharmaceutical composition will preferably comprise from 0.05 to 99 %w (per cent by weight), more preferably from 0.05 to 80 %w, still more preferably from 0.10 to 70 %w, and even more preferably from 0.10 to 50 %w, of active ingredient, all percentages by weight being based on total composition.
  • the present invention also provides a pharmaceutical composition
  • a pharmaceutical composition comprising a compound of formula (1), or a pharmaceutically acceptable salt, solvate or in vivo hydrolysable ester thereof, as hereinbefore defined, in association with a pharmaceutically acceptable adjuvant, diluent or carrier.
  • the invention further provides a process for the preparation of a pharmaceutical composition of the invention which comprises mixing a compound of formula (1), or a pharmaceutically acceptable salt, solvate or in vivo hydrolysable ester thereof, as hereinbefore defined, with a pharmaceutically acceptable adjuvant, diluent or carrier.
  • compositions may be administered topically (e.g. to the lung and/or airways or to the skin) in the form of solutions, suspensions, heptafluoroalkane aerosols and dry powder formulations; or systemically, e.g. by oral administration in the form of tablets, capsules, syrups, powders or granules, or by parenteral administration in the form of solutions or suspensions, or by subcutaneous administration or by rectal administration in the form of suppositories or transdermally.
  • the compounds of the invention are administered orally.
  • the compounds of formula (1) and their pharmaceutically acceptable salts, solvate or in vivo hydrolysable esters are also useful as pharmacological tools in the development and standardisation of in vitro and in vivo test systems for the evaluation of the effect of chemokine modulation activity in labatory animals such as cats, dogs, rabbits, monkeys, rats and mice, as part of the search for new therapeutic agents.
  • the invention further relates to combination therapies wherein a compound of formula (1) or a pharmaceutically acceptable salt, solvate or in vivo hydrolysable ester thereof, or a pharmaceutical composition or formulation comprising a compound of formula (1) is administered concurrently or sequentially with therapy and/or an agent for the treatment of any one of asthma, allergic rhinitis, cancer, COPD, rheumatoid arthritis, psoriasis, inflammatory bowel disease, irritable bowel syndrome, osteoarthritis or osteoporosis.
  • the compounds of the invention may be combined with agents such as TNF- ⁇ inhibitors such as anti-TNF monoclonal antibodies (such as Remicade, CDP-870 and D.sub2.E.sub7.) and TNF receptor immunoglobulin molecules (such as Enbrel.reg.), non-selective COX-1/ COX-2 inhibitors (such as piroxicam, diclofenac, propionic acids such as naproxen, flubiprofen, fenoprofen, ketoprofen and ibuprofen, fenamates such as mefenamic acid, indomethacin, sulindac, apazone, pyrazolones such as phenylbutazone, salicylates such as aspirin), COX-2 inhibitors (such as melaminophen, meloxicam, piroxicam, diclofenac, propionic acids such as naproxen, flubiprofen, fenoprofen, ketoprofen and
  • the present invention still further relates to the combination of a compound of the invention together with a leukotriene biosynthesis inhibitor, 5-lipoxygenase (5-LO) inhibitor or 5-lipoxygenase activating protein (FLAP) antagonist such as zileuton; ABT-761; fenleuton; tepoxalin; Abbott-79175; Abbott-85761; N-(5-substituted)-thiophene-2-alkylsulfonamides; 2,6-di-tert-butylphenol hydrazones; methoxytetrahydropyrans such as Zeneca ZD-2138; the compound SB-210661; pyridinyl-substituted 2-cyanonaphthalene compounds such as L-739,010; 2-cyanoquinoline compounds such as L-746,530; indole and quinoline compounds such as MK-591, MK-886, and BAY x 1005.
  • a leukotriene biosynthesis inhibitor
  • the present invention still further relates to the combination of a compound of the invention together with a receptor antagonist for leukotrienes LTB.sub4., LTC.sub4., LTD.sub4., and LTE.sub4. selected from the group consisting of the phenothiazin-3-ones such as L-651,392; amidino compounds such as CGS-25019c; benzoxalamines such as ontazolast; benzenecarboximidamides such as BIIL 284/260; and compounds such as zafirlukast, ablukast, montelukast, pranlukast, verlukast (MK-679), RG-12525, Ro-245913, iralukast (CGP 45715A), and BAY x 7195.
  • a receptor antagonist for leukotrienes LTB.sub4., LTC.sub4., LTD.sub4., and LTE.sub4. selected from the group consisting of the pheno
  • the present invention still further relates to the combination of a compound of the invention together with a PDE4 inhibitor including inhibitors of the isoform PDE4D.
  • the present invention still further relates to the combination of a compound of the invention together with a antihistaminic H.sub1.
  • receptor antagonists such as cetirizine, loratadine, desloratadine, fexofenadine, astemizole, azelastine, and chlorpheniramine.
  • the present invention still further relates to the combination of a compound of the invention together with a gastroprotective H.sub2. receptor antagonist.
  • the present invention still further relates to the combination of a compound of the invention together with an ⁇ .sub1.- and ⁇ .sub2.-adrenoceptor agonist vasoconstrictor sympathomimetic agent, such as propylhexedrine, phenylephrine, phenylpropanolamine, pseudoephedrine, naphazoline hydrochloride, oxymetazoline hydrochloride, tetrahydrozoline hydrochloride, xylometazoline hydrochloride, and ethylnorepinephrine hydrochloride.
  • an ⁇ .sub1.- and ⁇ .sub2.-adrenoceptor agonist vasoconstrictor sympathomimetic agent such as propylhexedrine, phenylephrine, phenylpropanolamine, pseudoephedrine, naphazoline hydrochloride, oxymetazoline hydrochloride, tetrahydrozoline hydrochloride,
  • the present invention still further relates to the combination of a compound of the invention together with anticholinergic agents such as ipratropium bromide; tiotropium bromide; oxitropium bromide; pirenzepine; and telenzepine.
  • anticholinergic agents such as ipratropium bromide; tiotropium bromide; oxitropium bromide; pirenzepine; and telenzepine.
  • the present invention still further relates to the combination of a compound of the invention together with a ⁇ .sub1- to ⁇ .sub4.-adrenoceptor agonists such as metaproterenol, isoproterenol, isoprenaline, albuterol, salbutamol, formoterol, salmeterol, terbutaline, orciprenaline, bitolterol mesylate, and pirbuterol; or methylxanthanines including theophylline and aminophylline; sodium cromoglycate; or muscarinic receptor (M1, M2, and M3) antagonist.
  • a ⁇ .sub1- to ⁇ .sub4.-adrenoceptor agonists such as metaproterenol, isoproterenol, isoprenaline, albuterol, salbutamol, formoterol, salmeterol, terbutaline, orciprenaline, bitolterol mesylate, and pir
  • the present invention still further relates to the combination of a compound of the invention together with an insulin-like growth factor type I (IGF-1) mimetic.
  • IGF-1 insulin-like growth factor type I
  • the present invention still further relates to the combination of a compound of the invention together with an inhaled glucocorticoid with reduced systemic side effects, such as prednisone, prednisolone, flunisolide, triamcinolone acetonide, beclomethasone dipropionate, budesonide, fluticasone propionate, and mometasone furoate.
  • glucocorticoid with reduced systemic side effects, such as prednisone, prednisolone, flunisolide, triamcinolone acetonide, beclomethasone dipropionate, budesonide, fluticasone propionate, and mometasone furoate.
  • the present invention still further relates to the combination of a compound of the invention together with an inhibitor of matrix metalloproteases (MMPs), i.e., the stromelysins, the collagenases, and the gelatinases, as well as aggrecanase; especially collagenase-1 (MMP-1), collagenase-2 (MMP-8), collagenase-3 (MMP-13), stromelysin-1 (MMP-3), stromelysin-2 (MMP-10), and stromelysin-3 (MMP-11) and MMP-12.
  • MMPs matrix metalloproteases
  • the present invention still further relates to the combination of a compound of the invention together with other modulators of chemokine receptor function such as CCR1, CCR2, CCR2A, CCR2B, CCR3, CCR4, CCR5, CCR6, CCR7, CCR8, CCR9, CCR10 and CCR11 (for the C-C family); CXCR1, CXCR3, CXCR4 and CXCR5 (for the C-X-C family) and CX 3 CR1 for the C-X 3 -C family.
  • modulators of chemokine receptor function such as CCR1, CCR2, CCR2A, CCR2B, CCR3, CCR4, CCR5, CCR6, CCR7, CCR8, CCR9, CCR10 and CCR11 (for the C-C family); CXCR1, CXCR3, CXCR4 and CXCR5 (for the C-X-C family) and CX 3 CR1 for the C-X 3 -C family.
  • the present invention still further relates to the combination of a compound of the invention together with antiviral agents such as Viracept, AZT, aciclovir and famciclovir, and antisepsis compounds such as Valant.
  • antiviral agents such as Viracept, AZT, aciclovir and famciclovir
  • antisepsis compounds such as Valant.
  • the present invention still further relates to the combination of a compound of the invention together with cardiovascular agents such as calcium channel blockers, lipid lowering agents such as statins, fibrates, beta-blockers, Ace inhibitors, Angiotensin-2 receptor antagonists and platelet aggregation inhibitors.
  • cardiovascular agents such as calcium channel blockers, lipid lowering agents such as statins, fibrates, beta-blockers, Ace inhibitors, Angiotensin-2 receptor antagonists and platelet aggregation inhibitors.
  • the present invention still further relates to the combination of a compound of the invention together with CNS agents such as antidepressants (such as sertraline), anti-Parkinsonian drugs (such as deprenyl, L-dopa, Requip, Mirapex, MAOB inhibitors such as selegine and rasagiline, comP inhibitors such as Tasmar, A-2 inhibitors, dopamine reuptake inhibitors, NMDA antagonists, Nicotine agonists, Dopamine agonists and inhibitors of neuronal nitric oxide synthase), and anti-Alzheimer's drugs such as donepezil, tacrine, COX-2 inhibitors, propentofylline or metryfonate.
  • CNS agents such as antidepressants (such as sertraline), anti-Parkinsonian drugs (such as deprenyl, L-dopa, Requip, Mirapex, MAOB inhibitors such as selegine and rasagiline, comP inhibitors such as Tasmar
  • the present invention still further relates to the combination of a compound of the invention together with (i) tryptase inhibitors; (ii) platelet activating factor (PAF) antagonists; (iii) interleukin converting enzyme (ICE) inhibitors; (iv) IMPDH inhibitors; (v) adhesion molecule inhibitors including VLA-4 antagonists; (vi) cathepsins; (vii) MAP kinase inhibitors; (viii) glucose-6 phosphate dehydrogenase inhibitors; (ix) kinin-B.sub1. - and B.sub2.
  • -receptor antagonists include anti-gout agents, e.g., colchicine; (xi) xanthine oxidase inhibitors, e.g., allopurinol; (xii) uricosuric agents, e.g., probenecid, sulfinpyrazone, and benzbromarone; (xiii) growth hormone secretagogues; (xiv) transforming growth factor (TGF ⁇ ); (xv) platelet-derived growth factor (PDGF); (xvi) fibroblast growth factor, e.g., basic fibroblast growth factor (bFGF); (xvii) granulocyte macrophage colony stimulating factor (GM-CSF); (xviii) capsaicin cream; (xix) Tachykinin NK.sub1.
  • anti-gout agents e.g., colchicine
  • xi xanthine oxidase inhibitors, e.g., allopurinol
  • NKP-608C selected from the group consisting of NKP-608C; SB-233412 (talnetant); and D-4418;
  • elastase inhibitors selected from the group consisting of UT-77 and ZD-0892;
  • TACE TNF ⁇ converting enzyme inhibitors
  • iNOS induced nitric oxide synthase inhibitors
  • the compounds of the present invention may also be used in combination with osteoporosis agents such as roloxifene, droloxifene, lasofoxifene or fosomax and immunosuppressant agents such as FK-506, rapamycin, cyclosporine, azathioprine, and methotrexate;
  • osteoporosis agents such as roloxifene, droloxifene, lasofoxifene or fosomax
  • immunosuppressant agents such as FK-506, rapamycin, cyclosporine, azathioprine, and methotrexate
  • Suitable agents to be used in combination include standard non-steroidal anti-inflammatory agents (hereinafter NSAID's) such as piroxicam, diclofenac, propionic acids such as naproxen, flubiprofen, fenoprofen, ketoprofen and ibuprofen, fenamates such as mefenamic acid, indomethacin, sulindac, apazone, pyrazolones such as phenylbutazone, salicylates such as aspirin, COX-2 inhibitors such as celecoxib, valdecoxib, rofecoxib and etoricoxib, analgesics and intraarticular therapies such as corticosteroids and hyaluronic acids such as hyalgan and synvisc and P2X7 receptor antagonists.
  • NSAID's standard non-steroidal anti-inflammatory agents
  • piroxicam such as piroxicam, diclofenac, propionic acids such as nap
  • the compounds of the invention can also be used in combination with existing therapeutic agents for the treatment of cancer.
  • Suitable agents to be used in combination include:
  • [ 125 I]IL-8 (human, recombinant) was purchased from Amersham, U.K. with a specific activity of 2,000Ci/mmol. All other chemicals were of analytical grade. High levels of hrCXCR2 were expressed in HEK 293 cells (human embryo kidney 293 cells ECACC No. 85120602) ( Lee et al. (1992) J. Biol. Chem. 267 pp16283-16291 ). hrCXCR2 cDNA was amplified and cloned from human neutrophil mRNA. The DNA was cloned into PCRScript (Stratagene) and clones were identified using DNA.
  • the coding sequence was sub-cloned into the eukaryotic expression vector RcCMV (Invitrogen). Plasmid DNA was prepared using Quiagen Megaprep 2500 and transfected into HEK 293 cells using Lipofectamine reagent (Gibco BRL). Cells of the highest expressing clone were harvested in phosphate-buffered saline containing 0.2%(w/v) ethylenediaminetetraacetic acid (EDTA) and centrifuged (200g, 5min.).
  • EDTA ethylenediaminetetraacetic acid
  • the cell pellet was resuspended in ice cold homogenisation buffer [10mM HEPES (pH 7.4), 1mM dithiothreitol, 1mM EDTA and a panel of protease inhibitors (1mM phenyl methyl sulphonyl fluoride, 2 ⁇ g/ml soybean trypsin inhibitor, 3mM benzamidine, 0.5 ⁇ g/ml leupeptin and 100 ⁇ g/ml bacitracin)] and the cells left to swell for 10 minutes.
  • the cell preparation was disrupted using a hand held glass mortar/PTFE pestle homogeniser and cell membranes harvested by centrifugation (45 minutes, 100,000g, 4°C).
  • the membrane preparation was stored at -70°C in homogenisation buffer supplemented with Tyrode's salt solution (137mM NaCl, 2.7mM KCl, 0.4mM NaH 2 PO 4 ), 0.1%(w/v) gelatin and 10%(v/v) glycerol.
  • the assay was initiated with the addition of membranes and after 1.5 hours at room temperature the membranes were harvested by filtration using a Millipore MultiScreen vacuum manifold and washed twice with assay buffer (without bacitracin). The backing plate was removed from the MultiScreen plate assembly, the filters dried at room temperature, punched out and then counted on a Cobra ⁇ -counter.
  • Examples 1- 34 were found to have pIC 50 values of greater than (>) 5.5.
  • Examples 3, 26 and 33 were found to have pIC 50 values of 6.10, 7.00 and 7.50 respectively.
  • Human neutrophils were prepared from EDTA-treated peripheral blood, as previously described ( Baly et al. (1997) Methods in Enzymology 287 pp70-72 ), in storage buffer [Tyrode's salt solution (137mM NaCl, 2.7mM KCl, 0.4mM NaH 2 PO 4 ) supplemented with 5.7mM glucose and 10mM HEPES (pH 7.4)].
  • the chemokine GRO ⁇ (human, recombinant) was purchased from R&D Systems (Abingdon, U.K.). All other chemicals were of analytical grade. Changes in intracellular free calcium were measured fluorometrically by loading neutrophils with the calcium sensitive fluorescent dye, fluo-3, as described previously ( Merritt et al. (1990) Biochem. J. 269, pp513-519 ).
  • 6-Amino-2-mercapto-4-pyrimidinol (16.1g), AcOH (14.3ml) and ( R )-Alaninol (39ml) were heated at 170°C for 5h. The mixture was cooled to approximately 50°C, diluted with water (500ml) and cooled at 0°C for 20h. The resulting solid was filtered, washed with water and dried in vacuo to yield a mixture of subtitle product and starting material (2:1) as a cream coloured solid. Yield 7.2g.
  • Example 2 The product of Example 1 (0.5g) was dissolved in AcOH (10ml), N -chlorosuccinamide (0.23g) added and stirred for 3h. The mixture was evaporated and purified by silica gel chromatography (5% methanol/DCM) to yield the title product as a white solid. Yield 0.42g. MS APCI (+ve) 326 [M+H] +
  • Example 1 step i) The product of Example 1 step i) (2.0g) was dissolved in ethanol (40ml), 1M aqueous sodium hydroxide (12ml) added followed by 3-chlorobenzyl bromide (1.6ml). The mixture was stirred for 2h, the volatiles removed under reduced pressure and the residue purified by silica gel chromatography (10% methanol/DCM) to yield the title product as a white solid. Yield 1.7g.
  • Example 3 The product of Example 3 (0.22g) was dissolved in AcOH (10ml), N -chlorosuccinamide (90mg) added and stirred for 3h. The volatiles were removed under reduced pressure and the residue purified by reverse phase HPLC with gradient elution in acetonitrile / 0.02M ammonium hydroxide (90% to 50% aqueous phase) to yield the title product as a white solid. Yield 0.1g.
  • Example 3 The product of Example 3 (0.5g), pyridine (0.21ml) and potassium thiocyanate (0.6g) were dissolved in DMF (10ml) and cooled to 0°C. Bromine (74 ⁇ l) was added before the cooling bath was removed and the reaction mixture allowed to warm to room temperature. After 1h water (50ml) was added and the mixture extracted with EtOAc (3 x 30ml). The combined extracts were dried (MgSO 4 ), filtered, evaporated and purified by silica gel chromatography (10% methanol/DCM) to yield the title product as a white solid. Yield 0.3g.
  • Example 6 step i) (0.15g) was dissolved in methanol (10ml), 1M aqueous sodium hydroxide (10ml) added and the mixture heated at 80°C for 1h. The mixture was cooled to room temperature, evaporated to approximately 10ml and acidified with 2M hydrochloric acid to yield a white precipitate. The solid was filtered off, washed with water and dried to yield the title product as a white solid. Yield 0.11g.
  • Example 3 The product of Example 3 (0.9g) was dissolved in AcOH (12ml) and a solution of sodium nitrite (0.25g) in water (2ml) added dropwise to give a dark blue solution. After 10min the mixture was evaporated, and azeotroped with ethanol (x2). The residue was dissolved in ethanol (50ml), AcOH (2ml) added and heated to reflux. Zinc dust (2.0g) was added portionwise and the mixture heated at reflux for a further 5min. The mixture was cooled to room temperature, filtered through celite and evaporated. The residue was dissolved in DMF (10ml), treated with imidazole (0.63g) and tert -butyldimethylsilyl chloride (1.35g) and stirred for 24h.
  • Example 3 The product of Example 3 (0.1 g) was dissolved in methanol (10ml), Selectfluor TM (0.12g) added and stirred for 20h. The mixture was evaporated and purified by silica gel chromatography (5% methanol/DCM) to yield the title product as a white solid. Yield 19mg. MS APCI (+ve) 344 [M+H] +
  • Imidazole (0.20g) was added to a solution of the product of Example 8 step v) (1.10g) and tert -butyldimethylsilyl chloride (0.45g) in DMF (10ml) at 0°C. This solution was allowed to warm to room temperature and stirred for 16h. To this mixture were added imidazole (20mg) and tert -butyldimethylsilyl chloride (44mg) and the mixture stirred for 2h before water (50ml) was added and extracted with EtOAc (2x100ml).
  • Example 1 step i) The subtitle product of Example 1 step i) (5.0g) was dissolved in ethanol (100ml), 1M aqueous sodium hydroxide (27.4ml) added followed by 2,3-difluorobenzyl bromide (5.7g). The mixture was stirred for 1h, the volatiles removed under reduced pressure and the residue purified by column chromatography (5% methanol/DCM) to yield the subtitle product as a white solid. Yield 4.3g.
  • Acetic anhydride (0.9ml) was added dropwise to a solution of the subtitle product of Example 9 step i) (2.8g), pyridine (1.6ml) and DMAP (0.1g) in AcOH (30ml). Two more portions of acetic anhydride (0.9ml) were added and the mixture stirred for 20h. The volatiles were removed under reduced pressure and the residue purified by column chromatography (5% methanol/DCM) to yield the subtitle product as a colourless oil. Yield 3.0g.
  • N -iodosuccinamide (0.34g) was added to a solution of the subtitle product from Example 9 step i) (0.5g) in AcOH (10ml) and stirred for 2h.
  • the AcOH was evaporated in vacuo and the residue purified by column chromatography (5% methanol/DCM) to yield the title product as a white solid. Yield 0.42g.
  • Example 3 The product of Example 3 (0.12g), pyridine (50 ⁇ l) and 1,3,4-thiadiazole-2-thiol (0.18g) were dissolved in DMF (3ml) and bromine (18 ⁇ l) added dropwise. The reaction mixture was stirred for 1h before being purified directly by reverse phase HPLC (95-75% 0.02M ammonium hydroxide / acetonitrile) to yield the title product as a white solid. Yield 0.15g.
  • Example 9 step i) The product of Example 9 step i) (0.1g pyridine (0.15ml) and 1 H -imidazole-2-thiol (0.15g) were dissolved in DMF (1ml) and bromine (15 ⁇ l) added dropwise. The reaction mixture was stirred for 1h before being purified directly by reverse phase HPLC (95-25% 0.02M ammonium hydroxide / acetonitrile) to yield the title product as a white solid.. Yield 90mg. MS APCI (+ve) 426 [M+H] +
  • Example 9 step i) The product of Example 9 step i) (50mg), pyridine (75 ⁇ l) and 2-(dimethylamino)ethanethiol (85mg) were dissolved in DMF (0.5ml) and bromine (7.5 ⁇ l) added. The reaction mixture was stirred for 1h before being purified directly by reverse phase HPLC (95-25% 0.02M ammonium hydroxide / acetonitrile) to yield the title product as a white solid. Yield 30mg. MS APCI (+ve) 431 [M+H] +
  • Example 9 step i) The product of Example 9 step i) (50mg), pyridine (75 ⁇ l) and 4-pyridinethiol (75mg) were dissolved in DMF (0.5ml) and bromine (7.5 ⁇ l) added. The reaction mixture was stirred for 1h before being purified directly by reverse phase HPLC (95-25% 0.02M ammonium hydroxide / acetonitrile) to yield the title product as a white solid. Yield 5mg.
  • Example 9 step i) The product of Example 9 step i) (50mg), pyridine (75 ⁇ l) and 4-pyridinethiol (75mg) were dissolved in DMF (0.5ml) and bromine (7.5 ⁇ l) added. The reaction mixture was stirred for 1h before being purified directly by reverse phase HPLC (95-25% 0.02M ammonium hydroxide / acetonitrile) to yield the title product as a white solid. Yield 31 mg.
  • Example 9 step i) The product of Example 9 step i) (50mg), pyridine (75 ⁇ l) and 1 H -1,2,4-triazole-3-thiol (61mg) were dissolved in DMF (0.5ml) and bromine (7.5 ⁇ l) added. The reaction mixture was stirred for 1h before being purified directly by reverse phase HPLC (95-25% 0.02M ammonium hydroxide / acetonitrile) to yield the title product as a white solid. Yield 32mg. MS APCI (+ve) 427 [M+H] +
  • Example 9 step i) The product of Example 9 step i) (50mg), pyridine (75 ⁇ l) and 4-methyl-4 H -1,2,4-triazole-3-thiol (69mg) were dissolved in DMF (0.5ml) and bromine (7.5 ⁇ l) added. The reaction mixture was stirred for 1h before being purified directly by reverse phase HPLC (95-25% 0.02M ammonium hydroxide / acetonitrile) to yield the title product as a white solid. Yield 42mg.
  • Example 9 step i) The product of Example 9 step i) (50mg), pyridine (75 ⁇ l) and 5-amino-4 H -1,2,4-triazole-3-thiol (70mg) were dissolved in DMF (0.5ml) and bromine (7.5 ⁇ l) added. The reaction mixture was stirred for 1h before being purified directly by reverse phase HPLC (95-25% 0.02M ammonium hydroxide / acetonitrile) to yield the title product as a white solid. Yield 23mg.
  • Example 9 step i) The product of Example 9 step i) (50mg), pyridine (75 ⁇ l) and 5-(4-pyridinyl)- 1,3,4-oxadiazole-2-thiol (50mg) were dissolved in DMF (0.5ml) and bromine (7.5 ⁇ l) added. The reaction mixture was stirred for 1h before being purified directly by reverse phase HPLC (95-25% 0.02M ammonium hydroxide / acetonitrile) to yield the title product as a white solid. Yield 10mg.
  • Example 21 The product of Example 21 (0.1g) was dissolved in ethanol (10ml), 40% aqueous methylamine (2ml) was added and the mixture stirred for 20h. The volatiles were removed by evaporation in vacuo and the residue purified by reverse phase HPLC (95-25% 0.02M ammonium hydroxide / acetonitrile) to yield the title product as a white solid. Yield 0.1g.
  • Example 21 The product of Example 21 (50mg) was dissolved in ethanol (10ml), N,N dimethyl-1,2-ethanediamine (0.5ml) was added and the mixture stirred for 48h. The volatiles were removed by evaporation in vacuo and the residue purified by reverse phase HPLC (95-25% 0.02M ammonium hydroxide / acetonitrile) to yield the title product as a white solid. Yield 30mg. MS APCI (+ve) 488 [M+H] +
  • Example 9 step i) The product of Example 9 step i) (50mg), pyridine (75 ⁇ l) and 4-methyl-2-oxazolethiol (69mg) were dissolved in DMF (0.5ml) and bromine (7.5 ⁇ l) added. The reaction mixture was stirred for 1h before being purified directly by reverse phase HPLC (95-25% 0.02M ammonium hydroxide / acetonitrile) to yield the title product as a white solid. Yield 21mg. MS APCI (+ve) 439 [M+H] +
  • Example 5 The product of Example 5 (0.2g) was dissolved in ethanol (10ml), sodium borohydride (20mg) added and the reaction stirred for 1h. 1M sodium hydroxide solution (2ml) was then added, followed by 3-(chloromethyl)-1,2,4-oxadiazole (62mg). The mixture was stirred for 2h, acidified with 10% hydrochloric acid, extracted with EtOAc (2x20ml), dried (MgSO 4 ), filtered and the filtrate evaporated in vacuo. The residue was purified by reverse phase HPLC with gradient elution in acetonitrile / 0.02M ammonium hydroxide (95% to 25% aqueous phase, Ex-Terra) to yield the title product as a white solid. Yield 20mg.
  • Example 8 To the title product of Example 8 (0.230g) was added ethanol (5ml), water (5ml) and potassium hydroxide (0.50g). The reaction mixture was then heated at reflux for 16h. To the reaction mixture was added more potassium hydroxide (1.0g) at intervals and reaction reflux was continued for another 24h. The reaction mixture was acidified with concentrated hydrochloric acid and extracted with EtOAc (2x50ml). The combined organic layer was washed with water (2x20ml), brine (10ml) and dried (MgSO 4 ). The solid was filtered and the filtrate evaporated to dryness. The material was chromatographed on silica gel eluting with EtOAc to yield the title product as a white solid. Yield 5mg.
  • Example 8 step vi) To the title product of Example 8 step vi) (0.25g) added ethanol (5ml), hydroxylamine hydrochloride (0.11g) and sodium ethoxide (0.1g). The reaction mixture was stirred at room temperature for 2h then heated at reflux for 16h. The solvent was evaporated and to the residue were added toluene (10ml), acetic anhydride (50mg) and triethylamine (0.10g). This mixture was heated at reflux for 2h. The solvent was evaporated and the residue taken in methanol (20ml) and aqueous 1M hydrochloric acid (10ml). This was stirred for 30min before the solvent was evaporated. The residue was extracted with EtOAc (2x50ml).
  • step iii) (0.48g) was added methanol (10ml), p- toluenesulfonylmethyl isocyanide (0.18g) and potassium carbonate (0.13g).
  • the reaction mixture was heated at reflux for 2h.
  • the solvent was evaporated and the residue treated with hydrochloric acid (1M, 10ml) and methanol (30ml).
  • the reaction was stirred at room temperature for 10min.
  • the solvent was evaporated and the residue extracted with EtOAc (2x50ml), washed with saturated sodium carbonate (10ml), brine (20ml) and dried (MgSO 4 ).
  • step i) To a solution of the subtitle product of step i) (5.60g) in DMF was added tert- butyldimethylsilyl chloride (2.40g) at -10°C in portions. To this mixture was then added imidazole in portions. The mixture was then stirred at 0°C for 2h before being quenched with excess water. The mixture was then extracted with EtOAc (2x250ml), the combined organics washed with water (3x300ml) and brine (2x30ml). The organic layer was dried (MgSO 4 ) and solid was filtered. The filtrate was evaporated to dryness. The residue was purified by column chromatography (10% EtOAc/isohexane) to yield the subtitle compound as a white solid. Yield 5.57g.
  • step ii) To the subtitle product of step ii) (1.0g) in toluene was added allyl alcohol (0.23g), sodium hydroxide (0.16g) and benzyltriethylammonium chloride (10mg). The mixture was stirred at room temperature for 2h before sodium hydroxide solution (10ml, 1M) was added the organics extracted with EtOAc (2x50ml). The combined organics were washed with brine (20ml) and dried (MgSO 4 ). The solid was filtered and the filtrate evaporated to dryness to yield the subtitle compound as a white solid. Yield 1.0g
  • Example 30 step vii) (0.20g) in toluene (2ml) was added water (13mg) and potassium tert -butoxide (84mg). The mixture was then heated at reflux for 3h before more water (20mg) and potassium tert -butoxide (84mg) were added and heating maintained for another 1h. The solvent was evaporated and the residue diluted in methanol (20ml) and aqueous hydrochloric acid (5ml). When the reaction was complete the volatiles were removed in vacuo and residue diluted in EtOAc (100ml) and aqueous hydrochloric acid (20ml). The organic layer was washed with water (20ml), brine (20ml) and dried (MgSO 4 ).
  • step i) To the subtitle product of step i) (5.0g) in dichloroethane (25ml) was added aza-bis-isobutyronitrile (25mg) and the mixture heated to 60°C. Sulfuryl chloride (3.67g) was then added and the reaction heated at 75°C for 4h. The same amount of aza- bis -isobutyronitrile (4x25mg) and sulfuryl chloride (4x3.36g) was added for 4 days on each day interval. The solvent was evaporated to give a yellow oil which was distilled under reduced pressure to yield the subtitle compound as a yellow oil. Yield 5.8g.
  • step v) To the subtitle product of step v) (0.9g) in methanol (10ml) was added the subtitle product of step vi) (0.35g) and triethylamine (0.22g) at 0°C. The mixture was allowed to come to room temperature and stirred there for 2 days. To the reaction mixture was added more 3,4-difluorobenzyl thiol (35mg) and triethylamine (22mg). and stirred for 24h. The solvent was evaporated and the residue purified by column chromatography (EtOAc / isohexane (1:1)) to give the subtitle compound as a solid. Yield 0.45g MS APCI (+ve) 532 [M+H] +
  • step i) To the subtitle product from Example 9 step i) (0.85g) in methanol (20ml) was added Selectfluor TM (1.01g). The mixture was stirred at room temperature for 5 days before the solids were filtered and the solvent removed under reduced pressure. The residue was diluted in EtOAc (10ml) and hydrochloric acid (1M, 20ml) added and stirred at room temperature for 1h.
  • step i) To the subtitle product of step i) (0.38g) in methanol (10ml) was added Selectfluor TM (0.45g). The mixture was stirred at room temperature for 2 days before the solvent was removed under reduced pressure and the residue stripped with methanol (3x100ml). The residue was diluted in EtOAc (100ml) and washed with aqueous hydrochloric acid (1M, 20ml), water (2x20ml), brine (20ml) and dried (MgSO 4 ). The solid was filtered and solvent evaporated to dryness to give a yellow solid which was chromatographed eluting with EtOAc to 2% methanol / EtOAc to yield the title compound as a white solid. Yield 25mg.
  • step i) To the subtitle product of step i) in methanol (20ml) was added Selectfluor TM (0.69g). The mixture was stirred at room temperature for 5 days. The solvent was filtered and the filtrate evaporated to dryness and the residue chromatographed eluting with EtOAc to 5% methanol / EtOAc to yield the title compound as a white solid. Yield 35mg.
  • step i) To the subtitle product of step i) (0.55g) in methanol (10ml) was added Selectfluor TM (0.25g). The mixture was stirred at room temperature for 3 days. The solvent was filtered and the filtrate evaporated to dryness. The resulting material was chromatographed eluting with 5% methanol / EtOAc to yield the title compound as a white solid. Yield 15mg.
  • the intermediate for this compound was prepared as follows.

Landscapes

  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Neurology (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Pulmonology (AREA)
  • Diabetes (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Dermatology (AREA)
  • Rheumatology (AREA)
  • Endocrinology (AREA)
  • Pain & Pain Management (AREA)
  • Hematology (AREA)
  • Reproductive Health (AREA)
  • Urology & Nephrology (AREA)
  • Communicable Diseases (AREA)
  • Psychology (AREA)
  • Obesity (AREA)
  • Ophthalmology & Optometry (AREA)
  • Emergency Medicine (AREA)
  • Oncology (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Otolaryngology (AREA)
EP03792486A 2002-08-24 2003-08-20 Pyrimidine derivatives as modulators of chemokine receptor activity Expired - Lifetime EP1539713B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GB0219819 2002-08-24
GB0219819A GB0219819D0 (en) 2002-08-24 2002-08-24 Novel compound
GB0223287 2002-10-08
GB0223287A GB0223287D0 (en) 2002-10-08 2002-10-08 Novel compound
PCT/GB2003/003632 WO2004018435A1 (en) 2002-08-24 2003-08-20 Pyrimidine derivatives as modulators of chemokine receptor activity

Publications (2)

Publication Number Publication Date
EP1539713A1 EP1539713A1 (en) 2005-06-15
EP1539713B1 true EP1539713B1 (en) 2007-12-19

Family

ID=31948041

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03792486A Expired - Lifetime EP1539713B1 (en) 2002-08-24 2003-08-20 Pyrimidine derivatives as modulators of chemokine receptor activity

Country Status (8)

Country Link
US (1) US7482355B2 (es)
EP (1) EP1539713B1 (es)
JP (2) JP4694963B2 (es)
AT (1) ATE381546T1 (es)
AU (1) AU2003255819A1 (es)
DE (1) DE60318219T2 (es)
ES (1) ES2295685T3 (es)
WO (1) WO2004018435A1 (es)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7037916B2 (en) 1999-07-15 2006-05-02 Pharmacopeia Drug Discovery, Inc. Pyrimidine derivatives as IL-8 receptor antagonists
GB0217431D0 (en) 2002-07-27 2002-09-04 Astrazeneca Ab Novel compounds
US8529625B2 (en) 2003-08-22 2013-09-10 Smith & Nephew, Inc. Tissue repair and replacement
KR101280095B1 (ko) * 2004-08-28 2013-09-09 아스트라제네카 아베 케모킨 수용체 조절제로서의 피리미딘 술폰아미드 유도체
RU2007122485A (ru) 2004-11-17 2008-12-27 Мийкана Терапьютикс Ингибиторы киназы
KR20140025610A (ko) * 2005-09-30 2014-03-04 미카나 테라퓨틱스, 인크. 치환된 피라졸 화합물
JP2010519178A (ja) * 2006-11-23 2010-06-03 ノバルティス アーゲー ピリミジン類およびcxcr2受容体アンタゴニストとしてのその使用
JP2010529193A (ja) * 2007-06-11 2010-08-26 ミイカナ セラピューティクス インコーポレイテッド 置換ピラゾール化合物
US9273077B2 (en) 2008-05-21 2016-03-01 Ariad Pharmaceuticals, Inc. Phosphorus derivatives as kinase inhibitors
EA029131B1 (ru) 2008-05-21 2018-02-28 Ариад Фармасьютикалз, Инк. Фосфорсодержащие производные в качестве ингибиторов киназы
WO2009151910A2 (en) * 2008-05-25 2009-12-17 Wyeth Combination product of receptor tyrosine kinase inhibitor and fatty acid synthase inhibitor for treating cancer
CN102159555A (zh) * 2008-07-16 2011-08-17 阿斯利康(瑞典)有限公司 嘧啶基氨磺酰衍生物及其治疗趋化因子介导的疾病的用途
US8748623B2 (en) 2009-02-17 2014-06-10 Syntrix Biosystems, Inc. Pyridinecarboxamides as CXCR2 modulators
AU2010333829A1 (en) 2009-12-23 2012-07-12 Ironwood Pharmaceuticals, Inc. CRTH2 modulators
WO2012009134A1 (en) 2010-07-12 2012-01-19 Ironwood Pharmaceuticals, Inc. Crth2 modulators
US20130216552A1 (en) 2010-07-12 2013-08-22 Ironwood Pharmaceuticals, Inc. Crth2 modulators
JP6486002B2 (ja) 2010-08-23 2019-03-20 シントリックス・バイオシステムズ・インコーポレイテッドSyntrix Biosystems, Inc. Cxcr2モジュレーターとしてのアミノピリジンカルボキサミドおよびアミノピリミジンカルボキサミド
US9834518B2 (en) 2011-05-04 2017-12-05 Ariad Pharmaceuticals, Inc. Compounds for inhibiting cell proliferation in EGFR-driven cancers
WO2013169401A1 (en) 2012-05-05 2013-11-14 Ariad Pharmaceuticals, Inc. Compounds for inhibiting cell proliferation in egfr-driven cancers
US9611283B1 (en) 2013-04-10 2017-04-04 Ariad Pharmaceuticals, Inc. Methods for inhibiting cell proliferation in ALK-driven cancers
US10046002B2 (en) 2013-08-02 2018-08-14 Syntrix Biosystems Inc. Method for treating cancer using chemokine antagonists
US8969365B2 (en) 2013-08-02 2015-03-03 Syntrix Biosystems, Inc. Thiopyrimidinecarboxamides as CXCR1/2 modulators
US10561676B2 (en) 2013-08-02 2020-02-18 Syntrix Biosystems Inc. Method for treating cancer using dual antagonists of CXCR1 and CXCR2
EP3046912A1 (de) * 2013-09-16 2016-07-27 Bayer Pharma Aktiengesellschaft Disubstituierte trifluormethylpyrimidinone und ihre verwendung als ccr2 antagonisten
AR097631A1 (es) * 2013-09-16 2016-04-06 Bayer Pharma AG Trifluorometilpirimidinonas sustituidas con heterociclos y sus usos
WO2016113205A1 (de) 2015-01-13 2016-07-21 Bayer Pharma Aktiengesellschaft Substituierte pentafluorethylpyrimidinone und ihre verwendung
CN106588784B (zh) * 2016-11-29 2019-07-05 同济大学 一种银辅助的双取代氨基嘧啶的对位单氟化反应方法及应用
CN113024372A (zh) * 2021-03-12 2021-06-25 内蒙古蓝科生物科技有限公司 一种2-氯-3-氟-4-三氟甲基苯甲酰氯的合成方法
CN114163383A (zh) * 2021-12-24 2022-03-11 江苏丰山集团股份有限公司 一种烟嘧磺隆中间体烟酰胺和磺酰胺的绿色生产工艺

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL302745A (es) 1962-12-29
US3673184A (en) * 1970-09-02 1972-06-27 Dainippon Pharmaceutical Co Certain 2-substituted-5,8-dihydro-5-oxopyrido{8 2,3-d{9 pyrimidine-6-carboxylic acid derivatives
JPS61118372A (ja) * 1984-11-12 1986-06-05 Nippon Mektron Ltd 新規ピリミジン誘導体およびその製造法
JPH03197467A (ja) * 1989-12-26 1991-08-28 Nippon Kayaku Co Ltd ピリミジノン誘導体その製法及びそれを有効成分とする殺虫・殺ダニ剤
EP0522038A4 (en) 1990-03-30 1993-05-26 Merck & Co. Inc. Substituted pyrimidines, pyrimidinones and pyridopyrimidines
US5516905A (en) * 1994-08-30 1996-05-14 University Of Massachusetts Medical Center Antibiotic compounds and methods to treat gram-positive bacterial and mycoplasmal infections
GB9624482D0 (en) 1995-12-18 1997-01-15 Zeneca Phaema S A Chemical compounds
ES2194181T3 (es) 1996-02-13 2003-11-16 Astrazeneca Ab Derivados de quinazolina como inhibidores de vegf.
DK0885198T3 (da) 1996-03-05 2002-03-25 Astrazeneca Ab 4-Anilinoquinazolinderivater
GB9718972D0 (en) 1996-09-25 1997-11-12 Zeneca Ltd Chemical compounds
GB9714249D0 (en) 1997-07-08 1997-09-10 Angiogene Pharm Ltd Vascular damaging agents
NZ506417A (en) 1998-02-17 2003-05-30 Tularik Inc Anti-viral pyrimidine derivatives
SE9802729D0 (sv) 1998-08-13 1998-08-13 Astra Pharma Prod Novel Compounds
GB9900334D0 (en) 1999-01-07 1999-02-24 Angiogene Pharm Ltd Tricylic vascular damaging agents
GB9900752D0 (en) 1999-01-15 1999-03-03 Angiogene Pharm Ltd Benzimidazole vascular damaging agents
AU5108000A (en) * 1999-06-10 2001-01-02 Yamanouchi Pharmaceutical Co., Ltd. Novel nitrogen-contaiing heterocyclic derivatives or salts thereof
SE9903544D0 (sv) 1999-10-01 1999-10-01 Astra Pharma Prod Novel compounds
GB2359078A (en) 2000-02-11 2001-08-15 Astrazeneca Uk Ltd Pharmaceutically active pyrimidine derivatives
EP1257555B1 (en) 2000-02-11 2003-12-03 AstraZeneca AB Pyrimidine compounds and their use as modulators of chemokine receptor activity
US7030123B2 (en) 2000-05-31 2006-04-18 Astrazeneca Ab Indole derivatives with vascular damaging activity
AU6623201A (en) 2000-07-07 2002-02-05 Angiogene Pharm Ltd Colchinol derivatives as angiogenesis inhibitors
JP2004502766A (ja) 2000-07-07 2004-01-29 アンギオジェン・ファーマシューティカルズ・リミテッド 血管損傷剤としてのコルヒノール誘導体
AU2002212171B2 (en) 2000-09-25 2006-12-14 Actelion Pharmaceuticals Ltd. Arylalkane-sulfonamides having endothelin-antagonist activity
WO2002064096A2 (en) 2001-02-16 2002-08-22 Tularik Inc. Methods of using pyrimidine-based antiviral agents
TWI328007B (en) 2002-01-16 2010-08-01 Astrazeneca Ab Novel compounds
GB0217431D0 (en) 2002-07-27 2002-09-04 Astrazeneca Ab Novel compounds

Also Published As

Publication number Publication date
WO2004018435A1 (en) 2004-03-04
ATE381546T1 (de) 2008-01-15
EP1539713A1 (en) 2005-06-15
JP2011052025A (ja) 2011-03-17
AU2003255819A1 (en) 2004-03-11
DE60318219D1 (de) 2008-01-31
ES2295685T3 (es) 2008-04-16
US20060004030A1 (en) 2006-01-05
JP4694963B2 (ja) 2011-06-08
US7482355B2 (en) 2009-01-27
JP2006503906A (ja) 2006-02-02
DE60318219T2 (de) 2009-01-15

Similar Documents

Publication Publication Date Title
EP1539713B1 (en) Pyrimidine derivatives as modulators of chemokine receptor activity
US8106063B2 (en) Pyrimidyl sulphone amide derivatives as chemokine receptor modulators
US8722883B2 (en) Pyrimidine sulphonamide derivatives as chemokine receptor modulators
ZA200502267B (en) Novel compound.
US20090239882A1 (en) Thiazolopyramidine Compounds for the Modulation of Chemokine Receptor Activity
AU2009272425B2 (en) Pyrimidyl sulfonaminde derivative and its use for the treatment of chemokine mediated diseases
US20090192134A1 (en) Compounds

Legal Events

Date Code Title Description
REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050324

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20060807

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 60318219

Country of ref document: DE

Date of ref document: 20080131

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2295685

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071219

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071219

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071219

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071219

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071219

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071219

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080519

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071219

26N No opposition filed

Effective date: 20080922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080820

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080820

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071219

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20110729

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120815

Year of fee payment: 10

Ref country code: SE

Payment date: 20120813

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120816

Year of fee payment: 10

Ref country code: ES

Payment date: 20120907

Year of fee payment: 10

Ref country code: FR

Payment date: 20120823

Year of fee payment: 10

Ref country code: IT

Payment date: 20120713

Year of fee payment: 10

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130821

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140301

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130820

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60318219

Country of ref document: DE

Effective date: 20140301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130902

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130821