EP1536026A1 - Pièce résistante à des températures élevées - Google Patents

Pièce résistante à des températures élevées Download PDF

Info

Publication number
EP1536026A1
EP1536026A1 EP03027388A EP03027388A EP1536026A1 EP 1536026 A1 EP1536026 A1 EP 1536026A1 EP 03027388 A EP03027388 A EP 03027388A EP 03027388 A EP03027388 A EP 03027388A EP 1536026 A1 EP1536026 A1 EP 1536026A1
Authority
EP
European Patent Office
Prior art keywords
component according
ppm
alloy
strength promoter
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03027388A
Other languages
German (de)
English (en)
Inventor
Winfried Dr. Esser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP03027388A priority Critical patent/EP1536026A1/fr
Priority to CNB2004800347308A priority patent/CN100549197C/zh
Priority to PCT/EP2004/011923 priority patent/WO2005061742A1/fr
Priority to EP04790725A priority patent/EP1685264A1/fr
Priority to US10/580,696 priority patent/US20070071607A1/en
Priority to EP07019290A priority patent/EP1914326A3/fr
Publication of EP1536026A1 publication Critical patent/EP1536026A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%

Definitions

  • the invention relates to a high temperature resistant component from an alloy, in particular from a nickel, cobalt or Iron-based superalloy with excreta.
  • the nickel alloy consists of up to 0.3% carbon, 11-15% chromium, 8-12% cobalt, 1-2.5% molybdenum, 3-10% tungsten, 3.5-10% tantalum, 3.5- 4.5% titanium, 3-4% aluminum, 0.005-0.025% boron, 0.05-0.4% zirconium, balance nickel. Furthermore, 0.01-3% hafnium is additionally included in the alloy.
  • US-PS-5,611,670 discloses a blade for a Gas turbine.
  • the blade has a monocrystalline Platform area and a single-crystal blade on.
  • An attachment region of the blade is directed with a solidified structure executed.
  • the shovel is out of one Casting superalloy following in weight percent Composition: up to 0.2% carbon, 5-14% Chromium, 4-7% aluminum, 2-15% tungsten, 0.5-5% titanium, up to 3% niobium, up to 6% molybdenum, up to 12% tantalum, up to 10.5% cobalt, up to 2% hafnium, up to 4% rhenium, up to 0.035% boron, up to 0.035% zirconium and the balance nickel.
  • Alloy compositions in principle for the proposed gas turbine blade are suitable, but show none with regard to a particular oxidation and Corrosion resistance or strength suitable Composition area on.
  • EP 0 297 785 B1 discloses a nickel-base superalloy disclosed for single crystals.
  • the superalloy points in Percent by weight of the following composition: 6-15% chromium, 5-12% tungsten, 0.01-4% rhenium, 3-9% tantalum, 0.5-2% Titanium, 4-7% aluminum and optionally 0.5-3% molybdenum.
  • This superalloy will be both a High temperature crack resistance as well as a Corrosion resistance achieved. To the Corrosion resistance may not affect the Titanium content does not exceed two percent by weight.
  • U.S. Patent No. 5,122,206 discloses a nickel-base superalloy given a particularly narrow coexistence zone for the has solid and liquid phase and thus especially for a single crystal casting process is suitable.
  • the alloy has the following composition in weight percent: 10-30 % Chromium, 0.1-5% niobium, 0.1-8% titanium, 0.1-8% aluminum, 0.05-0.5% copper or instead of copper 0.1-3% tantalum, where in first case also hafnium or rhenium with a content of 0.05-3% may be present and in the second Fall also instead of rhenium or hafnium 0.05-0.5% copper.
  • optionally 0.05-3% molybdenum or tungsten be provided.
  • WO 01/09403 A1 shows a nickel-based alloy with 11-13 % Chromium, 3-5% tungsten, 0.5-2.5% molybdenum, 3-5% aluminum 3 - 5% titanium, 3 - 7% tantalum, 0 - 12% cobalt, 0 - 1% niobium 0 - 2% hafnium, 0 - 1% zirconium, 0 - 0.05% boron, 0 - 0.2% Carbon, 1 - 5% rhenium, 0 - 5% ruthenium, balance nickel.
  • the education promoted by rhenium embrittles intermetallic phases (Cr- and / or rhenium-containing Precipitates) leads to a reduction of the service life by cracking.
  • U.S. Patent 3,907,555 shows an alloy that can be up to 6.5% Tin contains.
  • the values of tin are at least 1.0 wt%.
  • tin is included as part of a Ni-based alloy listed in which the allowable share of Tin must be less than 25 ppm. This means that the Proportion of tin represents an undesirable impurity.
  • the US-PS 6,308,767 shows a production method of directed structures of a superalloy, in which a Melt cooled in another liquid metal. It However, ensure that tin is the superalloy not contaminated. Tin is therefore an undesirable Component of the alloy.
  • the invention is based on the object of a component an alloy, in particular of a nickel, cobalt or To specify iron-base superalloy, the most favorable Properties in terms of high-temperature strength, Oxidation and corrosion resistance and stability against ductility-reducing formation of intermetallic phases has a long life.
  • the object directed to a component solved by specifying a high temperature resistant component from an alloy containing at least one strength promoter with a maximum content of 2000 ppm, in particular 1100 ppm having.
  • the firmness can be due to a refined and high proportion of precipitates ( ⁇ '-phase) in the alloy is improved become.
  • the superalloy of the specified component is specified in its composition for the first time so that for the component particularly favorable properties in terms its high-temperature strength, its oxidation and Corrosion resistance and stability against the formation of ductile reducing intermetallic Phases exists.
  • a refined and high proportion of precipitates is achieved by the addition of the strength promoter, for example, that it represents a disturbance in the system and serves as a nucleating agent or a Keiminitiator, so that small amount is already sufficient. There are many, especially refined excretions.
  • the superalloy contains at most one Weight percent niobium.
  • the cobalt content of the superalloy is preferred less than 12 weight percent, while the niobium content is at at most one percent by weight.
  • a proportion of cobalt is between 6 and 10% and a content of zirconium between 0 and 0.1% of advantage.
  • the component has a directionally solidified Grain structure on.
  • a directionally frozen Structure are the grain boundaries substantially along one Axis aligned. This results in a particularly high Strength along this axis.
  • the component has a monocrystalline Structure on. Due to the monocrystalline structure strength-reducing grain boundaries avoided in the component and it results in a particularly high strength.
  • the component is as a Gasurbinenleit- or trained bucket.
  • a gas turbine blade is particularly high requirements in terms of a High temperature strength and oxidation / corrosion resistance exposed.
  • the component can also be a part (blade) of a steam turbine or aircraft turbine.
  • FIG. 1 shows a perspective view of a blade 120, 130, which extends along a longitudinal axis 121.
  • the blade 120 may be a blade 120 or a vane 130 be a turbomachine.
  • the turbomachine can a gas turbine of an aircraft or power plant for Electricity generation, a steam turbine or a compressor be.
  • the blade 120, 130 has along the longitudinal axis 121 consecutively a fastening region 400, a blade platform 403 adjoining thereto and an airfoil 406.
  • the blade at its blade tip 415 may have another platform (not shown).
  • a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown).
  • the blade root 183 is designed, for example, as a hammer head. Other designs as Christmas tree or Schwalbenschwanzfuß are possible.
  • the blade 120, 130 has a leading edge 409 and a trailing edge 412 for a medium flowing past the airfoil 406.
  • the blade 120, 130 can be made by a casting process, also by directional solidification, by a forging process, by a milling process or combinations thereof.
  • Workpieces with a monocrystalline structure or structures are used as components for machines which are exposed to high mechanical, thermal and / or chemical stresses during operation.
  • the production of such monocrystalline workpieces for example, by directed solidification from the melt.
  • dendritic crystals are aligned along the heat flow and form either a columnar grain structure (columnar, ie grains that run the entire length of the workpiece and here, in common parlance, referred to as directionally solidified) or a monocrystalline structure, ie the whole Workpiece consists of a single crystal.
  • directionally solidified columnar grain structure
  • monocrystalline structure ie the whole Workpiece consists of a single crystal.
  • directionally rigid structures so This means both single crystals that do not have grain boundaries or at most small angle grain boundaries, as well Stem crystal structures, probably in the longitudinal direction grain boundaries running, but no transverse grain boundaries exhibit.
  • second-mentioned crystalline Structures are also known as directionally rigidified structures (directionally solidified structures).
  • the blade 120, 130 may be hollow or solid.
  • the blade 120, 130 is to be cooled, it is hollow and possibly still has film cooling holes (not shown). As protection against corrosion, the blade 120, 130 bspw. corresponding mostly metallic coatings on and as Protection against heat mostly still a ceramic Coating.
  • Further strength promoters are, for example, lead (Pb), gallium (Ga), calcium (Ca), selenium (Se), arsenic (As); Bismuth (Bi), neodymium (Nd), praseodymium (Pr), copper (Cu), alumina (Al 2 O 3 ), magnesia (MgO), hafnia (HfO 2 ), zirconia (ZrO 2 ), spinels (MgAl 2 O 4 ), carbides or nitrides or iron (Fe) in nickel- or cobalt-based superalloys. It can also be used several strength promoters.
  • the strength promoters may be metallic and / or ceramic. Various strength promoters made of metal and / or ceramic can be used. The added amount in ppm always refers to the total amount of precipitation conveyor.
  • FIG. 2 shows by way of example a gas turbine 100 in a partial longitudinal section.
  • the gas turbine 100 has inside a rotatably mounted about a rotation axis 102 rotor 103, which is also referred to as a turbine runner.
  • a suction housing 104 a compressor 105, for example, a toroidal combustion chamber 110, in particular annular combustion chamber 106, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
  • the annular combustion chamber 106 communicates with an annular annular hot gas channel 111, for example.
  • Each turbine stage 112 is formed of two blade rings.
  • a series 125 formed of rotor blades 120 follows.
  • the guide vanes 130 are in this case on an inner housing 138 a stator 143 attached, whereas the blades 120 a series 125, for example by means of a turbine disk 133 are mounted on the rotor 103.
  • air 105 is sucked in and compressed by the compressor 105 through the intake housing 104.
  • the compressed air provided at the turbine-side end of the compressor 105 is supplied to the burners 107 where it is mixed with a fuel.
  • the mixture is then burned to form the working fluid 113 in the combustion chamber 110.
  • the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the rotor blades 120.
  • the working medium 113 expands in a pulse-transmitting manner so that the rotor blades 120 drive the rotor 103 and drive the machine coupled to it.
  • the components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100.
  • the guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the direction of flow of the working medium 113, are subjected to the greatest thermal stress in addition to the heat shield bricks lining the annular combustion chamber 106. In order to withstand the temperatures prevailing there, they are cooled by means of a coolant.
  • the substrates may have a directional structure, ie they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
  • the material used is iron, nickel or cobalt-based superalloys of the alloy according to the invention.
  • the blades 120, 130 may be anti-corrosion coatings (MCrAlX; M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is yttrium (Y) and / or at least one element of the rare Erden) and have heat through a thermal barrier coating.
  • the thermal barrier coating consists for example of ZrO 2 , Y 2 O 4 -ZrO 2 , ie it is not, partially or completely stabilized by yttrium oxide and / or calcium oxide and / or magnesium oxide.
  • Electron beam evaporation becomes stalk-shaped Grains produced in the thermal barrier coating.
  • the vane 130 has an inner housing 138 of the Turbine 108 facing Leitschaufelfuß (not here shown) and a Leitschaufelfuß opposite Guide vane head on.
  • the vane head is the rotor 103 facing and on a mounting ring 140 of the stator 143rd established.
  • FIG. 3 shows a combustion chamber 110 of a gas turbine.
  • the combustion chamber 110 is configured, for example, as a so-called annular combustion chamber, in which a plurality of burners 102 arranged around the turbine shaft 103 in the circumferential direction open into a common combustion chamber space.
  • the combustion chamber 110 is configured in its entirety as an annular structure, which is positioned around the turbine shaft 103 around.
  • the working medium M of about 1000 ° C to 1600 ° C designed.
  • the combustion chamber wall 153 on its the working medium M facing side with one of heat shield elements 155 formed inner lining provided.
  • Each heat shield element 155 is working medium side with a particularly heat-resistant Protective layer equipped or made of high temperature resistant Material made. Because of the high Temperatures inside the combustion chamber 110 is also for the Heat shield elements 155 or for their holding elements Cooling system provided.
  • the materials of the combustion chamber wall 153 and their Coatings are similar to the turbine blades 120, 130.
  • the combustion chamber 110 is in particular for a detection of Losses of the heat shield elements 155 designed. These are between the combustion chamber wall 153 and the heat shield elements 155, a number of temperature sensors 158 are positioned.
  • FIG. 4 shows the results of a low-cycle fatigue test (LCF).
  • a specific relative elongation ⁇ is predetermined, ie the sample is loaded alternately with predetermined relative elongation under tension or pressure.
  • the elongation is specified and the experiment is carried out at various temperatures, such as 850 ° C or 950 ° C.
  • the number of cycles N is measured.
  • the maximum number of cycles performed until the sample is fractured is plotted on the graph.
  • the samples are better, which has the greater number of cycles at a certain strain ⁇ .
  • the experiments were carried out with a sample of a PWA 1483 alloy with a minimum tin content ⁇ 1 ppm and a tin content of 1110 ppm.
  • the curves containing 1110 ppm tin show higher number of cycles N than those of the samples without tin ( ⁇ 1 ppm).
  • FIG. 5 shows the test results of high-cycle fatigue tests at 500 ° C.
  • different AC voltages are applied at a certain temperature and a predetermined average voltage and a predetermined number of cycles in order to achieve a desired number of cycles of 10 8 cycles (fatigue strength).
  • the value of the mean voltage for the sample without tin is here standardized to 100%.
  • the value of the AC voltage reached for the sample without tin is also normalized to 100%.
  • the samples with tin (100 ppm) could be exposed to a higher AC voltage even at a higher medium voltage in order to achieve the desired number of cycles of 10 8 cycles (fatigue strength).
  • FIG. 6 shows, like FIG. 5, the test results at a higher temperature of 800 ° C. at a mean stress of 0 MPa.
  • the value of the AC voltage reached for the sample without tin is normalized to 100%. Again, the samples with 100 ppm tin are superior to the samples without tin.
  • FIG. 7 shows, like FIG. 6, the test results at the temperature of 800 ° C. at an average voltage normalized to the mean stress of the sample without tin.
  • the value of the AC voltage reached for the sample without tin is also normalized to 100%.
  • the samples with tin (100 ppm) could be exposed to a higher AC voltage even at a higher medium voltage in order to achieve the desired number of cycles of 10 8 cycles (fatigue strength).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
EP03027388A 2003-11-27 2003-11-27 Pièce résistante à des températures élevées Withdrawn EP1536026A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP03027388A EP1536026A1 (fr) 2003-11-27 2003-11-27 Pièce résistante à des températures élevées
CNB2004800347308A CN100549197C (zh) 2003-11-27 2004-10-21 耐高温部件
PCT/EP2004/011923 WO2005061742A1 (fr) 2003-11-27 2004-10-21 Piece resistant a des temperatures elevees
EP04790725A EP1685264A1 (fr) 2003-11-27 2004-10-21 Piece resistant a des temperatures elevees
US10/580,696 US20070071607A1 (en) 2003-11-27 2004-10-21 High-temperature-resistant component
EP07019290A EP1914326A3 (fr) 2003-11-27 2004-10-21 Composant résistant aux températures élevées

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP03027388A EP1536026A1 (fr) 2003-11-27 2003-11-27 Pièce résistante à des températures élevées

Publications (1)

Publication Number Publication Date
EP1536026A1 true EP1536026A1 (fr) 2005-06-01

Family

ID=34442900

Family Applications (3)

Application Number Title Priority Date Filing Date
EP03027388A Withdrawn EP1536026A1 (fr) 2003-11-27 2003-11-27 Pièce résistante à des températures élevées
EP04790725A Withdrawn EP1685264A1 (fr) 2003-11-27 2004-10-21 Piece resistant a des temperatures elevees
EP07019290A Withdrawn EP1914326A3 (fr) 2003-11-27 2004-10-21 Composant résistant aux températures élevées

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP04790725A Withdrawn EP1685264A1 (fr) 2003-11-27 2004-10-21 Piece resistant a des temperatures elevees
EP07019290A Withdrawn EP1914326A3 (fr) 2003-11-27 2004-10-21 Composant résistant aux températures élevées

Country Status (4)

Country Link
US (1) US20070071607A1 (fr)
EP (3) EP1536026A1 (fr)
CN (1) CN100549197C (fr)
WO (1) WO2005061742A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2876176A1 (fr) * 2013-11-25 2015-05-27 Mitsubishi Hitachi Power Systems, Ltd. Superalliage de coulée à base de Ni et article moulé à partir de celui-ci

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009544895A (ja) * 2006-07-25 2009-12-17 アンサルド・エネルジャ・ソシエタ・ペル・アチオニ 蒸気タービン用とくに地熱衝動タービン用の高耐腐食性の可動羽根組立体
WO2008081485A1 (fr) * 2007-01-04 2008-07-10 Ansaldo Energia S.P.A. Ensemble d'aube fixe très résistante à la corrosion pour une turbine à vapeur, en particulier une turbine géothermique à impulsion
US8797179B2 (en) * 2007-11-08 2014-08-05 Siemens Aktiengesellschaft Instrumented component for wireless telemetry
US8519866B2 (en) * 2007-11-08 2013-08-27 Siemens Energy, Inc. Wireless telemetry for instrumented component
GB0807008D0 (en) * 2008-04-17 2008-05-21 Advanced Interactive Materials Helicoidal motors for use in down-hole drilling
US9068251B2 (en) 2009-10-20 2015-06-30 Siemens Aktiengesellschaft Alloy for directional solidification and component made of stem-shaped crystals
CN102443721B (zh) * 2010-10-13 2013-10-09 中国科学院金属研究所 一种组织稳定性好、易加工的镍钴基高温合金
US8789377B1 (en) * 2012-10-18 2014-07-29 Florida Turbine Technologies, Inc. Gas turbine engine with liquid metal cooling
US9353687B1 (en) * 2012-10-18 2016-05-31 Florida Turbine Technologies, Inc. Gas turbine engine with liquid metal cooling
US20150337687A1 (en) * 2012-12-29 2015-11-26 United Technologies Corporation Split cast vane fairing
CN103789576B (zh) * 2014-01-15 2016-03-02 常州大学 一种高晶界强度镍基合金及其制备方法
DE102014220179A1 (de) * 2014-10-06 2016-04-07 Siemens Aktiengesellschaft Nickelbasierter Werkstoff mit Platin, Verwendung als Schweißzusatzwerkstoff und Bauteil
CN105506382A (zh) * 2015-12-21 2016-04-20 常熟市梅李合金材料有限公司 高电阻电热合金丝
CN106756250A (zh) * 2016-12-14 2017-05-31 张家港市广大机械锻造有限公司 一种用于航空器发射平台的高强耐火合金
CN106676366B (zh) * 2017-01-16 2018-12-28 宁国市华成金研科技有限公司 耐高温合金的制备方法
CN107699806A (zh) * 2017-11-20 2018-02-16 广西双宸贸易有限责任公司 一种铁基高温材料
CN112593122B (zh) * 2020-12-09 2023-02-03 中国科学院金属研究所 一种长寿命高强抗热腐蚀单晶高温合金
CN112853154B (zh) * 2021-01-04 2022-02-22 广东省科学院中乌焊接研究所 镍基中间层合金材料及其制备方法、焊件及焊接方法以及应用
CN113265563B (zh) * 2021-05-06 2022-04-29 中国联合重型燃气轮机技术有限公司 一种抗热腐蚀性好的Ni高温合金及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2333775A1 (de) * 1973-06-27 1975-01-16 Avco Corp Hafnium enthaltende nickel-legierung
US3907555A (en) * 1972-12-22 1975-09-23 Howmedica Nickel alloys
US4708848A (en) * 1986-02-18 1987-11-24 Glass Incorporated International Nickel/chrome base superalloys
US5122206A (en) * 1989-05-16 1992-06-16 Mitsubishi Metal Corporation Precipitation hardening nickel base single crystal cast alloy
US5611670A (en) * 1993-08-06 1997-03-18 Hitachi, Ltd. Blade for gas turbine
WO2001009403A1 (fr) * 1999-07-29 2001-02-08 Siemens Aktiengesellschaft Piece resistant a des temperatures elevees et son procede de production
EP1319729A1 (fr) * 2001-12-13 2003-06-18 Siemens Aktiengesellschaft Pièce résistante à des températures élevées réalisé en superalliage polycristallin ou monocristallin à base de nickel

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3139337A (en) * 1962-05-31 1964-06-30 Gen Electric Alloys
US3631674A (en) * 1970-01-19 1972-01-04 Gen Electric Folded flow combustion chamber for a gas turbine engine
JPS5032056B2 (fr) * 1972-01-20 1975-10-17
SU433232A1 (ru) * 1972-09-28 1974-06-25 СШ1АВ НА ОСНОВЕ НИКЕЛЯi.j i ! i tsf-«nis« г>&г;-.'г: •'•:T7'rirt 4-'Ju.H «.^,vSSi»s' l;.b!
JPS5423330B2 (fr) * 1973-01-29 1979-08-13
US4023919A (en) * 1974-12-19 1977-05-17 General Electric Company Thermal actuated valve for clearance control
US4140555A (en) * 1975-12-29 1979-02-20 Howmet Corporation Nickel-base casting superalloys
JPS6249341B2 (fr) * 1978-03-16 1987-10-19 Fukuda Metal Foil Powder
JPS57143462A (en) * 1981-03-02 1982-09-04 Mitsubishi Heavy Ind Ltd Heat resistant ni alloy
JPS57181355A (en) * 1981-04-30 1982-11-08 Akio Tsuchiya Dental alloy
JPS61174349A (ja) * 1985-01-30 1986-08-06 Res Inst Electric Magnetic Alloys 耐摩耗性高透磁率合金およびその製造法ならびに磁気記録再生ヘツド
JPS63274731A (ja) * 1987-04-30 1988-11-11 Nippon Steel Corp 耐サワ−性の優れた合金
JPS63274743A (ja) * 1987-04-30 1988-11-11 Nippon Steel Corp 硫化水素の存在する環境で高い割れ抵抗を有するオ−ステナイト合金
JP2579316B2 (ja) * 1987-06-29 1997-02-05 大同特殊鋼株式会社 強度および耐食性に優れた単結晶Ni基超合金
US5108699A (en) * 1988-10-19 1992-04-28 Electric Power Research Institute Modified 1% CrMoV rotor steel
US4962586A (en) * 1989-11-29 1990-10-16 Westinghouse Electric Corp. Method of making a high temperature - low temperature rotor for turbines
US5536022A (en) * 1990-08-24 1996-07-16 United Technologies Corporation Plasma sprayed abradable seals for gas turbine engines
US5116438A (en) * 1991-03-04 1992-05-26 General Electric Company Ductility NiAl intermetallic compounds microalloyed with gallium
RU2020178C1 (ru) * 1991-11-21 1994-09-30 Центральный научно-исследовательский институт конструкционных материалов "Прометей" Высокожаропрочный сплав
JP3141697B2 (ja) * 1994-09-01 2001-03-05 日本鋼管株式会社 耳割れ防止性に優れたシャドウマスク及びICリードフレーム用Fe−Ni系合金の合金帯の製造方法
AUPN273695A0 (en) * 1995-05-02 1995-05-25 University Of Queensland, The Aluminium alloy powder blends and sintered aluminium alloys
DE59703975D1 (de) * 1996-12-10 2001-08-09 Siemens Ag Erzeugnis, welches einem heissen gas aussetzbar ist, mit einer wärmedämmschicht sowie verfahren zur herstellung
EP0861927A1 (fr) * 1997-02-24 1998-09-02 Sulzer Innotec Ag Procédé de fabrication de structures monocristallines
JP2002513081A (ja) * 1998-04-29 2002-05-08 シーメンス アクチエンゲゼルシヤフト 腐食保護層付き製品と腐食保護層の製造方法
US6308767B1 (en) * 1999-12-21 2001-10-30 General Electric Company Liquid metal bath furnace and casting method
US6505673B1 (en) * 1999-12-28 2003-01-14 General Electric Company Method for forming a turbine engine component having enhanced heat transfer characteristics
US6703343B2 (en) * 2001-12-18 2004-03-09 Caterpillar Inc Method of preparing doped oxide catalysts for lean NOx exhaust
US20040131984A1 (en) * 2003-01-06 2004-07-08 Satek Larry C. Low NOx burner
JP4112426B2 (ja) * 2003-05-14 2008-07-02 三菱伸銅株式会社 めっき処理材の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3907555A (en) * 1972-12-22 1975-09-23 Howmedica Nickel alloys
DE2333775A1 (de) * 1973-06-27 1975-01-16 Avco Corp Hafnium enthaltende nickel-legierung
US4708848A (en) * 1986-02-18 1987-11-24 Glass Incorporated International Nickel/chrome base superalloys
US5122206A (en) * 1989-05-16 1992-06-16 Mitsubishi Metal Corporation Precipitation hardening nickel base single crystal cast alloy
US5611670A (en) * 1993-08-06 1997-03-18 Hitachi, Ltd. Blade for gas turbine
WO2001009403A1 (fr) * 1999-07-29 2001-02-08 Siemens Aktiengesellschaft Piece resistant a des temperatures elevees et son procede de production
EP1319729A1 (fr) * 2001-12-13 2003-06-18 Siemens Aktiengesellschaft Pièce résistante à des températures élevées réalisé en superalliage polycristallin ou monocristallin à base de nickel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2876176A1 (fr) * 2013-11-25 2015-05-27 Mitsubishi Hitachi Power Systems, Ltd. Superalliage de coulée à base de Ni et article moulé à partir de celui-ci
US10024174B2 (en) 2013-11-25 2018-07-17 Mitsubishi Hitachi Power Systems, Ltd. Ni-based casting superalloy and cast article therefrom

Also Published As

Publication number Publication date
CN100549197C (zh) 2009-10-14
WO2005061742A1 (fr) 2005-07-07
CN1886525A (zh) 2006-12-27
EP1914326A2 (fr) 2008-04-23
US20070071607A1 (en) 2007-03-29
EP1685264A1 (fr) 2006-08-02
EP1914326A3 (fr) 2009-11-25

Similar Documents

Publication Publication Date Title
EP1536026A1 (fr) Pièce résistante à des températures élevées
EP2382333B1 (fr) Alliage, couche de protection et composant
EP1693473B1 (fr) Alliage-MCrAlX, couche protectrice en cet alliage et son procédé de fabrication
EP1716965A1 (fr) Brasure comprenant de la poudre d'apport métallique sous forme élémentaire
EP1793008A1 (fr) Alliage, couche protectrice pour proteger un élément structurel contre la corrosion et l'oxydation aux temperatures hautes et élément structurel
EP1798299B1 (fr) Alliage, couche de protection et élément de construction
EP1806418A1 (fr) Alliage, couche protectrice pour proteger un élément structurel contre la corrosion et l'oxydation aux temperatures hautes et élément structurel
EP2481518A2 (fr) Alliage de brasage et procédé de réparation d'une pièce
EP1790743A1 (fr) Alliage, couche de protection et composant
EP2474413A1 (fr) Alliage, couche de protection et composant
EP1854898A1 (fr) Alliage, couche de protection et composant
EP1681374B1 (fr) Système de revêtement comprenant une couche barrière et procédé de fabrication
EP2611949B1 (fr) Alliage a base nickel, couche de protection et élément de construction
EP2661370B1 (fr) Alliage, couche protectrice et pièce
WO2013007281A1 (fr) Système de revêtement comprenant une double couche métallique
EP1790746B1 (fr) Alliage, couche de protection et composant
EP1840335B1 (fr) Dépôt
EP1808572A1 (fr) Procédé de soudage suivi d'un traitement de diffusion
EP2345748A1 (fr) Alliage, couche de protection et composant
EP2354260A1 (fr) Alliage, couche de protection et composant
EP1806419B1 (fr) Alliage, couche protectrice pour proteger un élément structurel contre la corrosion et l'oxydation aux temperatures hautes, et élément structurel
EP2568054A1 (fr) Alliage, couche de protection et composant
EP1798300A1 (fr) Alliage, couche protectrice pour proteger un élément de construction contre la corrosion et/ou l'oxidation aux températures élévées et élément de construction
EP1818419A1 (fr) Alliage, couche de protection et composant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

AKX Designation fees paid
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20051202

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566