EP1530816B9 - Dispositif de calibrage pour un reseau d'antennes commutable et procede pour faire fonctionner ce dispositif - Google Patents

Dispositif de calibrage pour un reseau d'antennes commutable et procede pour faire fonctionner ce dispositif Download PDF

Info

Publication number
EP1530816B9
EP1530816B9 EP03740191A EP03740191A EP1530816B9 EP 1530816 B9 EP1530816 B9 EP 1530816B9 EP 03740191 A EP03740191 A EP 03740191A EP 03740191 A EP03740191 A EP 03740191A EP 1530816 B9 EP1530816 B9 EP 1530816B9
Authority
EP
European Patent Office
Prior art keywords
antenna array
calibration apparatus
columns
inputs
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03740191A
Other languages
German (de)
English (en)
Other versions
EP1530816B1 (fr
EP1530816A1 (fr
Inventor
Jörg LANGENBERG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kathrein SE
Original Assignee
Kathrein Werke KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kathrein Werke KG filed Critical Kathrein Werke KG
Publication of EP1530816A1 publication Critical patent/EP1530816A1/fr
Publication of EP1530816B1 publication Critical patent/EP1530816B1/fr
Application granted granted Critical
Publication of EP1530816B9 publication Critical patent/EP1530816B9/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/40Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with phasing matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/22Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation in accordance with variation of frequency of radiated wave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/267Phased-array testing or checking devices

Definitions

  • the invention relates to a calibration device for an antenna array according to the preamble of claim 1.
  • a generic antenna array usually comprises a plurality of primary radiators, but at least two juxtaposed and superimposed emitters, so that there is a two-dimensional array arrangement.
  • These antenna arrays which are also known by the term “smart antennas", are also used, for example, in the military sector for tracking targets (radar). Recently, however, these antennas are also being used in mobile communications, in particular in the frequency ranges 800 MHz to 1000 MHz and 1700 MHz to 2200 MHz.
  • Such antenna arrays can be used to determine the direction of the incoming signal. At the same time, however, by appropriate tuning of the phase position of the fed into the individual columns transmission signals and the emission direction can be changed, i. There is a selective beam shaping.
  • This alignment of the antenna in different horizontal directions for example, by means of a beam-forming network (beam-forming network).
  • a beam-forming network may for example consist of a so-called Butler matrix having, for example, four inputs and four outputs. Depending on the input connected, the network generates a different but fixed phase relationship between the emitters in the individual dipole rows.
  • Such an antenna structure with a Butler matrix is for example from US-A-6,351,243 known.
  • the antenna array known from the aforementioned US patent has, for example, four vertically extending and horizontally adjacent columns, in each of which four radiators or radiating devices are accommodated one above the other.
  • the four inputs for each arranged in a column radiators (hereinafter sometimes also called column inputs) are connected to the four outputs of an upstream Butler matrix.
  • the Butler matrix has four inputs.
  • This upstream beam forming network in the form of the Butler matrix generated in a conventional manner, depending on the connected input, that is, depending on which of the four inputs the connection cable is connected, another but fixed phase relationship between the radiators in the four columns. As a result, four different orientations of the main beam direction and thus the main lobe are determined.
  • the main beam direction can be set in a horizontal plane in a different angular position.
  • the antenna array may also be provided with a down-tilt device, in addition to change the Absenkwinkel the main beam direction and thus the main lobe.
  • From the EP-A-0 877 444 is to take a generic type calibration device for an antenna array as known, wherein the emitters are assigned inputs, which is preceded by a beam forming network.
  • the outputs of the beamforming network are each associated with one Connected to the input of the antenna array, via which the radiators provided in a column are fed.
  • the calibration device further comprises probes which are arranged in the wake of the emitters, as well as an adjustment device which is associated with the outputs of the beam forming network and by means of which the phase position for the incoming radiation limit can be adjusted and adjusted feedable signals.
  • the object of the invention is also to provide a corresponding operating method for operating a corresponding antenna array.
  • This is preferably realized by arranging the phases in front of the inputs of the beam-forming network, at least with respect to the radiators arranged in some columns of the antenna array. in the form of the Butler matrix, can be moved so that the fed emitters are driven in accordance with simultaneous wiring of multiple inputs to achieve a desired pivoting of the lobe.
  • phase positions of all radiators are preferably shifted simultaneously accordingly.
  • the calibration of the phase position can be performed by phase actuators, which are connected upstream of the corresponding inputs of the Butler matrix.
  • this can also be done by using upstream additional lines to the Butler matrix, which must be selected in a suitable length in order to realize the desired phase balance.
  • phase position of the transmission from the input of the individual columns or the antenna inputs is preferably the same size, in practice the phase position (or the group delay) for the ideal phase position has more or less pronounced tolerance-related deviations.
  • the ideal phase position is given by the fact that the phase is identical for all paths, and also with respect to the beam shaping.
  • the more or less tolerance-related deviations result additively as an offset or frequency dependent by different frequency responses.
  • the deviations are measured over all transmission paths preferably on the path from the input antenna array or beam forming network to the probe output or input to probe outputs and preferably over the entire operating frequency range (for example during the production of the antenna).
  • the transmission paths are preferably measured on the route from the input antenna array or beam forming network to coupling output or coupling outputs.
  • This determined data can then be stored in a data record.
  • These data which are stored in a suitable form, for example in a data record, can then be made available to a transmitting device or to the base station in order then to be taken into account for the electronic generation of the phase position of the individual signals. It proves to be particularly advantageous, for example, to associate this data or the mentioned data record with the corresponding data of a serial number of the antenna.
  • FIG. 1 shows, in a schematic plan view, an antenna array 1 which, for example, comprises a large number of dual-polarized radiators or radiator elements 3, which are arranged in front of a reflector 5.
  • a reflector belonging to the edge boundary 5 ' which is set up at right angles to the plane of the reflector sheet.
  • these reflector edge boundaries 5 ' are positioned slightly obliquely outwards in the emission direction.
  • the antenna array has four columns 7, which are arranged vertically, with four radiators or radiator groups 3 being arranged one above the other in each column in the exemplary embodiment shown.
  • radiators or radiator groups 3 are positioned one above the other in the vertical direction.
  • the individual radiators or radiator groups 3 need not necessarily be arranged in the same height in the individual columns.
  • the radiators or radiator groups 3 it is possible, for example, for the radiators or radiator groups 3 to be two in each case adjacent columns 7 offset by half the vertical distance between two adjacent radiators to each other. Deviating from this, in the schematic plan view in FIG. 1, a representation is reproduced in which the radiators or radiator groups 3 in adjacent columns each come to rest on the same contour line.
  • the radiators 3 can consist, for example, of cross-shaped dipole radiators or dipole squares.
  • Particularly suitable dual polarized Dipolstrahler 3 ', as for example from the WO 00/39894 are known. Reference is made in its entirety to the disclosure content of this prior publication and made part of the content of this application.
  • a beam forming network 17 which has, for example, four inputs 19 and four outputs 21.
  • the four outputs of the beamforming network 17 are connected to the four inputs 15 of the antenna array.
  • the number of outputs N may differ from the number of inputs n, ie in particular, the number of outputs N may be greater than the number of inputs n.
  • a feed cable 23 is connected to one of the inputs 19, about all outputs 21 are fed accordingly.
  • a horizontal emitter orientation 16.1 be effected with, for example, -45 ° to the left, as can be seen from the schematic diagram of Figure 3. If, for example, the supply cable 23 is connected at the most right connection 19.4, then a corresponding Alignment 16.4 causes the main lobe 16 of the radiation field of the antenna array in an angle of + 45 ° to the right.
  • the antenna array when the feeder cable 23 is connected to the terminal 19.2 or to the terminal 19.3, the antenna array is operated so that, for example, a pivoting 16.2, 16.3 causes by 15 ° to the left or to the right with respect to the vertical plane of symmetry of the antenna array can be, so in different azimuth direction.
  • a beam forming network 17 it is common in such a beam forming network 17 to provide a corresponding number of inputs for different azimuth angular orientations of the main lobe 16 of the antenna array, wherein the number of outputs usually corresponds to the number of columns of the antenna array.
  • Each input is connected to a plurality of outputs, usually each input to all outputs of the beam forming network 17.
  • the beam-forming network 17 may, for example, be a known Butler matrix 17 'whose four inputs 19.1, 19.2, 19.3 and 19.4 are each connected to all outputs 21.1, 21.2, 21.3 and 21.4, via which the radiators are connected via lines 35 3 are fed.
  • the feed cable 23 via a branching or summing 26 not only with an input, but at least two inputs or more of the inputs 19.1 to 19.4 to connect.
  • a calibration of the Butler matrix and the connected antenna array must first be performed.
  • This first requires the phase characteristic at the outputs 21.1 to 21.4 of the beam-forming network 17, preferably in the form of the Butler matrix 17 ', to be metered in response to feed of the feed signal once via the inputs 19.1, 19.2, 19.3 and 19.4 of the Butler matrix 17 '.
  • the beam-forming network 17 Depending on the connected input 19.1 to 19.4, the beam-forming network 17 generates different radiation patterns in the form of the Butler matrix 17 'because of the different phase assignments of the dipoles or dipole rows, ie the radiators 3, 3'.
  • the radiators 3, 3' For example, in the vertical arrangement of radiators 3, 3 'in the four columns 7 four different horizontal diagrams generated. The phase relationships of the radiators in the individual columns gives the diagram according to FIG. 4.
  • a phase jump of, for example, 180 ° between the primary radiators 3, 3' of the different polarizations can occur.
  • the measured curves (straight lines) reproduced in FIG. 4 must be changed in their position according to the arrow illustration 28 so that the two upper ones Traces in the form of straight lines 30 and 32 with the two in Figure 4 deeper and steeper extending traces 34 and 36 intersect at a common intersection X, as shown in Figure 5.
  • phase actuators 37th take place, which are the inputs 19.1 to 19.4 of the Butler matrix 17 'upstream, so that inputs A to D result for the overall circuit.
  • phase actuators 37 shown in FIG. 1 corresponding additional cable lengths can be connected in series at the individual inputs 19. 1 to 19. 4, whose length is dimensioned such that the desired phase shift is effected.
  • intermediate lobes 116 can now be generated, as shown for example in the case of the diagram according to FIG. 6, in that the inputs 19.1 and 19.2 or 19.2 and 19.3 or 19.3 and 19.4 are connected together. Preferably, all inputs are supplied with the same power.
  • FIG. 7 now shows the device for phase alignment of the supply lines, that is to say for carrying out a phase calibration.
  • the phase actuators of the Butler matrix 17 'of the mentioned phase adjustment for the intermediate lobes 116 is performed so that they by combining the inputs A and B, B and C or C and D makes sense and without further action can be used on the antenna feeders.
  • a suitable calibration signal i. given a known signal and measured at the output S of the combination network (Comb) the absolute phase. Now you can do this also for the supply lines to the inputs B, C and D.
  • the couplers 111 are preferably connected between the respective output 21 and the respective input 15 of the associated column 7 of the antenna array.
  • the couplers must be connected between the network accommodated in the Butler matrix 17 'and at least one emitter 3, 3' in an associated column 7 of the antenna array.
  • FIG. 8 it is shown how to use an antenna with two polarizations, e.g. + 45 ° and -45 ° can combine the network for phase alignment of the supply lines.
  • Such a combination makes sense if e.g. the Butler matrix can be realized together with the couplers and combination networks on a board, as this largely identical units (each coupler and combination networks) can be produced.
  • the extension from the representation according to FIG. 7 is effected by combining the two outputs of the respective combination network 27 and 27 ', for example in the form of a combiner (Comb), with the inputs of a downstream second combination network 27 "likewise in the form of a combiner (Comb) and to the common output S.
  • the combination network 27 thus serves to determine the phase position on a radiator element with respect to the one polarization, wherein the combination network 27 'is used to determine the phase position at a respective radiator for the other polarization.
  • phase actuators may consist of basically vorschaltbaren cable sections to change the phase position.
  • a coupler 111 for example in the form of a directional coupler on all four lines 35 in order to obtain even more measuring points to achieve the reproduced in the diagrams of Figures 4 and 5 straight lines.
  • probes 11 can be used, which are designed, for example, pin-shaped and preferably rise at right angles from the plane of the reflector sheet 5 and are assigned to a particular radiator 3.
  • the probes 11 may preferably consist of capacitive coupling pins. But they can also be formed from inductively operating coupling loops. In both cases, the probes 11 protrude from the reflector into the near field of the radiator.
  • the mentioned probes 11 can also be used for dual-polarized radiators 3 'since both polarizations can be measured via this. In FIG. 1, for example, for the left-hand column and the right-hand column, in each case the lowermost radiator 3, 3 'is associated with such a probe 11 and 11b shown in plan view.
  • This probe is then used in place of the directional couplers 11 shown in FIGS. 7 and 8 to detect the signal measured thereon in a combination network 27 or in a combination network dual polarized antenna in a combination network 27 'and 27 "is shown in Figure 9.
  • a combination network 27 is shown which operates with two probes 11, ie 11a and 11b.
  • the combination networks are suitable for single polarized antennas. In principle, they are also suitable for a dual-polarized antenna array.
  • probes 11 is suitable here, since a single probe suffices to be assigned to a dual-polarized emitter arrangement 3, 3 ', since the desired partial signals in both polarizations can ultimately be received via this one probe.
  • a coupling device a coupling device would then have to be used for each polarization, that is, in the case of the dual-polarized antenna array, instead of a probe, a pair of coupling device would then become necessary.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)

Claims (16)

  1. Dispositif de calibrage pour un réseau d'antennes, qui comprend au moins un réseau d'antennes (1) pourvu d'au moins deux colonnes verticales (7) comprenant chacune plusieurs éléments rayonneurs (3, 3') agencés les uns au-dessus des autres, des entrées (15) étant associées aux plusieurs colonnes (7) dans lesquelles sont agencés lesdits plusieurs éléments rayonneurs respectifs (3, 3'), entrées en amont desquelles est prévu un réseau de formation de rayon (17) dont les sorties (21) sont connectées chacune à une entrée associée (15) du réseau d'antennes, via laquelle sont alimentés les éléments rayonneurs (3, 3') prévus dans une colonne (7), le réseau de formation de rayon (17) génère, en fonction de l'entrée branchée (19.1 à 19.4), une autre relation de phase entre les éléments rayonneurs (3, 3') agencés dans les colonnes individuelles (7), afin d'obtenir différentes directions de rayonnement en direction azimutale, et au moins deux entrées (19.1, 19.2, 19.3, 19.4) sont alimentées via un câble d'alimentation commun (23) ou via des câbles d'alimentation séparés (23),
    caractérisé par les autres éléments suivants :
    - le dispositif de calibrage comprend en outre au moins une sonde (11) qui est agencée dans le champ proche des éléments rayonneurs (3, 3') et/ou au moins un dispositif de couplage (111) qui est agencé en aval du réseau de formation de rayon (17),
    - le dispositif de calibrage comprend uniquement pour une partie des colonnes (7) au moins une sonde (11) ou au moins un dispositif de couplage (111) ou au moins une paire de dispositifs de couplage (111),
    - le dispositif de calibrage comprend en outre un dispositif d'étalonnage qui est agencé en amont des entrées (19) du réseau de formation de rayon (17 ; 17'), au moyen duquel le phasage des signaux amenés aux entrées (19) du réseau de formation de rayon (17 ; 17') est présélectionné en fonction des signaux de sortie de ladite au moins une sonde (11) ou dudit au moins un dispositif de couplage (111), et
    - au moyen du dispositif d'étalonnage ainsi formé, le phasage aux entrées du réseau de formation de rayon (17 ; 17') est présélectionnable ou modifiable de telle sorte qu'au moyen du réseau d'antennes (1), on peut générer, outre deux lobes intermédiaires situés au milieu entre deux lobes principaux, au choix également des lobes orientés dans différentes directions de rayonnement azimutales.
  2. Dispositif de calibrage pour un réseau d'antennes commutable selon la revendication 1, caractérisé en ce que le dispositif d'étalonnage appartenant au dispositif de calibrage comprend des organes de réglage de phase (37) qui sont branchés en amont du réseau de formation de rayon (17 ; 17').
  3. Dispositif de calibrage pour un réseau d'antennes commutable selon la revendication 1, caractérisé en ce que des lignes supplémentaires sont agencées en amont des entrées sélectionnées individuellement (19.1, 19.2, 19.3, 19.4) à une longueur prédéterminée en avant du réseau de formation de rayon (17) ou sont branchées à ces entrées (19.1, 19.2, 19.3, 19.4).
  4. Dispositif de calibrage pour un réseau d'antennes commutable selon l'une des revendications 1 à 3, caractérisé en ce que les sondes (11) et/ou le dispositif de couplage (111) sont branchés à un réseau de calibrage (27, 27', 27").
  5. Dispositif de calibrage pour un réseau d'antennes commutable selon la revendication 4, caractérisé en ce qu'au moins une colonne (7) comprend une sonde (11) et de préférence au moins deux colonnes (7) comprennent chacune au moins une sonde (11) qui est ou sont associée(s) chacune à un élément rayonneur (3, 3'), via lesquelles un signal partiel (signaux de champ proche) est amené au réseau de calibrage (27, 27', 27") pendant la phase de calibrage, ce qui fixe l'étalonnage de phase.
  6. Dispositif de calibrage pour un réseau d'antennes commutable selon la revendication 4, caractérisé en ce qu'au moins un dispositif de couplage (111) est associé à au moins un élément rayonneur (3, 3') d'une colonne (7) ou au moins un dispositif de couplage respectif (111) est associé à au moins un élément rayonneur respectif (3, 3') de deux colonnes (7), via lequel un signal partiel (un signal découplé) est amené au réseau de calibrage (27, 27', 27") pendant la phase de calibrage, ce qui fixe l'étalonnage de phase.
  7. Dispositif de calibrage pour un réseau d'antennes commutable selon la revendication 6, caractérisé en ce que le dispositif de couplage (111) est agencé de préférence entre la sortie respective (21) du réseau de formation de rayon (17, 17') et l'entrée associée (15) du réseau d'antennes (1).
  8. Dispositif de calibrage pour un réseau d'antennes commutable selon l'une des revendications 1 à 7, caractérisé en ce que la sonde (11) ou les sondes (11) sont constituées par des sondes capacitives ou par une sonde (11) à fonctionnement inductif sous la forme d'une petite boucle d'induction.
  9. Dispositif de calibrage pour un réseau d'antennes commutable selon la revendication 6, caractérisé en ce que dans le cas d'un réseau d'antennes à polarisation double, au moins une colonne (7), de préférence au moins deux colonnes (7) sont pourvues chacune d'une paire de dispositifs de couplage (111), à savoir d'un dispositif de couplage respectif (111) pour une polarisation.
  10. Dispositif de calibrage selon l'une des revendications 1 à 9, caractérisé en ce que dans un réseau d'antennes à polarisation double, ladite une ou les plusieurs sondes prévues (11) conviennent chacune à recevoir un signal pour les deux polarisations.
  11. Dispositif de calibrage selon l'une des revendications 1 à 10, caractérisé en ce que pour chaque colonne (7), il est prévu une sonde (11) ou un dispositif de couplage (111) ou une paire de dispositifs de couplage (111) uniquement pour un élément rayonneur (3, 3').
  12. Dispositif de calibrage selon l'une des revendications 1 à 11, caractérisé en ce que par rapport aux éléments rayonneurs (3, 3') associés à ladite au moins une sonde (11) ou aux plusieurs sondes (11), celles-ci se trouvent sur un plan de symétrie vertical traversant les éléments rayonneurs (3, 3').
  13. Dispositif de calibrage selon l'une des revendications 1 à 12, caractérisé en ce que dans un réseau d'antennes comprenant quatre colonnes (7), il est prévu au moins deux sondes (11) qui sont agencées dans le champ proche d'un élément rayonneur respectif (3, 3') qui est agencé dans les deux colonnes extérieures (7) ou dans les deux colonnes intérieures (7) du réseau d'antennes.
  14. Dispositif de calibrage selon l'une des revendications 1 à 13, caractérisé en ce que dans un réseau d'antennes comprenant quatre colonnes (7), il est prévu au moins deux dispositifs de couplage (111) ou deux paires de dispositifs de couplage (111), ou encore deux paires de dispositifs de couplage (111) associés chacun à un élément rayonneur (3, 3'), qui sont agencés dans les deux colonnes extérieures ou dans les deux colonnes intérieures (7) du réseau d'antennes.
  15. Dispositif de calibrage selon l'une des revendications 1 à 14, caractérisé en ce que les sondes (11) sont agencées à la même ligne en hauteur.
  16. Dispositif de calibrage selon l'une des revendications 1 à 15, caractérisé en ce qu'il est prévu une sonde respective (11 ; 11c, 11d) pour deux colonnes voisines (7) d'un réseau d'antennes, sondes qui présentent de préférence le même amortissement de couplage.
EP03740191A 2002-08-19 2003-06-05 Dispositif de calibrage pour un reseau d'antennes commutable et procede pour faire fonctionner ce dispositif Expired - Lifetime EP1530816B9 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10237822 2002-08-19
DE10237822A DE10237822B3 (de) 2002-08-19 2002-08-19 Kalibriereinrichtung für ein umschaltbares Antennen-Array sowie ein zugehöriges Betriebsverfahren
PCT/EP2003/005932 WO2004023601A1 (fr) 2002-08-19 2003-06-05 Dispositif de calibrage pour un reseau d'antennes commutable et procede pour faire fonctionner ce dispositif

Publications (3)

Publication Number Publication Date
EP1530816A1 EP1530816A1 (fr) 2005-05-18
EP1530816B1 EP1530816B1 (fr) 2006-06-07
EP1530816B9 true EP1530816B9 (fr) 2007-10-03

Family

ID=31501801

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03740191A Expired - Lifetime EP1530816B9 (fr) 2002-08-19 2003-06-05 Dispositif de calibrage pour un reseau d'antennes commutable et procede pour faire fonctionner ce dispositif

Country Status (9)

Country Link
US (1) US7132979B2 (fr)
EP (1) EP1530816B9 (fr)
KR (1) KR100893656B1 (fr)
CN (1) CN2800506Y (fr)
AT (1) ATE329381T1 (fr)
AU (1) AU2003297841A1 (fr)
DE (2) DE10237822B3 (fr)
ES (1) ES2263987T3 (fr)
WO (1) WO2004023601A1 (fr)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6970002B1 (en) 2004-05-13 2005-11-29 The United States Of America As Represented By The Secretary Of The Navy Tube measurement and calibration system
US20060044183A1 (en) * 2004-08-30 2006-03-02 Wells Donald R Low frequency radar antenna
CN101076923B (zh) * 2004-12-13 2013-12-25 艾利森电话股份有限公司 天线装置及其相关方法
EP1878206A4 (fr) * 2005-04-25 2012-12-19 Xocyst Transfer Ag L L C Systemes et procedes de formation de faisceau
US7215298B1 (en) * 2005-09-06 2007-05-08 Lockheed Martin Corporation Extendable/retractable antenna calibration element
KR100706614B1 (ko) * 2005-09-29 2007-04-12 한국전자통신연구원 높은 격리도를 갖는 송수신 분리형 안테나
US7847740B2 (en) * 2006-02-13 2010-12-07 Kyocera Corporation Antenna system having receiver antenna diversity and configurable transmission antenna and method of management thereof
WO2008088859A2 (fr) * 2007-01-18 2008-07-24 Mobileaccess Networks Ltd. Antenne à large bande hybride passive-active pour système d'antennes réparties
WO2008103374A2 (fr) * 2007-02-19 2008-08-28 Mobile Access Networks Ltd. Procédé et système pour améliorer l'efficacité d'une liaison montante
KR101172240B1 (ko) * 2010-05-18 2012-08-07 주식회사 만도 센서 및 얼라이먼트 조절 방법
WO2013067657A1 (fr) * 2011-11-11 2013-05-16 Telefonaktiebolaget L M Ericsson (Publ) Procédé, appareil et système de configuration dynamique d'un réseau d'antennes
BR112015010998B1 (pt) * 2012-12-03 2022-02-08 Telefonaktiebolaget Lm Ericsson (Publ) Nó em uma rede de comunicação sem fio
US9300408B2 (en) * 2013-11-04 2016-03-29 Alcatel-Lucent Shanghai Bell Co., Ltd Methods and systems for calibrating LTE antenna systems
DE102014011883A1 (de) 2014-08-13 2016-02-18 Tesat-Spacecom Gmbh & Co.Kg Speisenetzwerkanordnung zum Generieren eines Mehrfachantennensignals
US9848370B1 (en) * 2015-03-16 2017-12-19 Rkf Engineering Solutions Llc Satellite beamforming
WO2018007995A1 (fr) * 2016-07-08 2018-01-11 Magna Electronics Inc. Système radar mimo 2d pour véhicule
CN106450796B (zh) * 2016-09-07 2020-01-07 四川九洲电器集团有限责任公司 一种阵列天线系统及天线的校准方法
US10571503B2 (en) * 2018-01-31 2020-02-25 Rockwell Collins, Inc. Methods and systems for ESA metrology
US11114757B2 (en) * 2018-08-31 2021-09-07 Rockwell Collins, Inc. Embedded antenna array metrology systems and methods
WO2022141165A1 (fr) * 2020-12-30 2022-07-07 华为技术有限公司 Procédé et système de calibrage d'antennes
EP4305707A1 (fr) * 2021-03-11 2024-01-17 Telefonaktiebolaget LM Ericsson (publ) Système d'antenne active comprenant des trajets de couplage entre des réseaux d'alimentation

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3788125T2 (de) 1986-12-22 1994-06-09 Hughes Aircraft Co Steuerbare strahlungskeule eines antennensystems mit butler-matrix.
FR2672436B1 (fr) * 1991-01-31 1993-09-10 Europ Agence Spatiale Dispositif de controle electronique du diagramme de rayonnement d'une antenne a un ou plusieurs faisceaux de direction et/ou de largeur variable.
US5086302A (en) * 1991-04-10 1992-02-04 Allied-Signal Inc. Fault isolation in a Butler matrix fed circular phased array antenna
US5276452A (en) 1992-06-24 1994-01-04 Raytheon Company Scan compensation for array antenna on a curved surface
FR2696553B1 (fr) 1992-10-01 1994-11-25 Alcatel Espace Méthode de calibration d'antenne en champ proche pour antenne active.
US5502447A (en) 1993-10-28 1996-03-26 Hazeltine Corporation Beam sharpened pencil beam antenna systems
US5644316A (en) 1996-05-02 1997-07-01 Hughes Electronics Active phased array adjustment using transmit amplitude adjustment range measurements
US5784030A (en) * 1996-06-06 1998-07-21 Hughes Electronics Corporation Calibration method for satellite communications payloads using hybrid matrices
FR2750258B1 (fr) 1996-06-24 1998-08-21 Europ Agence Spatiale Systeme de conformation de faisceau zonal reconfigurable pour une antenne embarquee sur un satellite en orbite et procede d'optimisation de la reconfiguration
US5784031A (en) * 1997-02-28 1998-07-21 Wireless Online, Inc. Versatile anttenna array for multiple pencil beams and efficient beam combinations
SE510995C2 (sv) 1997-03-24 1999-07-19 Ericsson Telefon Ab L M Aktiv sändnings/mottagnings gruppantenn
US6104935A (en) * 1997-05-05 2000-08-15 Nortel Networks Corporation Down link beam forming architecture for heavily overlapped beam configuration
SE509342C2 (sv) * 1997-05-05 1999-01-18 Ericsson Telefon Ab L M Förfarande för användning av lobportar i ett lobformningsnät samt ett antennarrangemang
US5840032A (en) * 1997-05-07 1998-11-24 General Electric Company Method and apparatus for three-dimensional ultrasound imaging using transducer array having uniform elevation beamwidth
SE509434C2 (sv) * 1997-05-16 1999-01-25 Ericsson Telefon Ab L M Anordning och förfarande vid antennkalibrering
US6046697A (en) * 1997-09-05 2000-04-04 Northern Telecom Limited Phase control of transmission antennas
US5936569A (en) * 1997-12-02 1999-08-10 Nokia Telecommunications Oy Method and arrangement for adjusting antenna pattern
DE19806914C2 (de) 1998-02-19 2002-01-31 Bosch Gmbh Robert Verfahren und Vorrichtung zum Kalibrieren einer Gruppenantenne
US6252542B1 (en) * 1998-03-16 2001-06-26 Thomas V. Sikina Phased array antenna calibration system and method using array clusters
US6133868A (en) * 1998-06-05 2000-10-17 Metawave Communications Corporation System and method for fully self-contained calibration of an antenna array
DE19844239C1 (de) * 1998-09-26 2000-07-27 Dornier Gmbh Verfahren zur genauen Winkelbestimmung von Zielen mittels eines Mehrfachantennen-Radarsystems
US6157340A (en) * 1998-10-26 2000-12-05 Cwill Telecommunications, Inc. Adaptive antenna array subsystem calibration
DE19860121A1 (de) * 1998-12-23 2000-07-13 Kathrein Werke Kg Dualpolarisierter Dipolstrahler
US6515616B1 (en) * 1999-04-30 2003-02-04 Metawave Communications Corporation System and method for aligning signals having different phases
US6236839B1 (en) * 1999-09-10 2001-05-22 Utstarcom, Inc. Method and apparatus for calibrating a smart antenna array
SE518207C2 (sv) * 1999-09-10 2002-09-10 Ericsson Telefon Ab L M Gles gruppantenn
JP4303373B2 (ja) * 1999-09-14 2009-07-29 株式会社日立コミュニケーションテクノロジー 無線基地局装置
FR2800202B1 (fr) 1999-10-26 2007-08-31 Thomson Csf Dispositif de commande pour la formation de plusieurs faisceaux simultanes de reception radar a antenne a balayage electronique
WO2001056186A2 (fr) * 2000-01-27 2001-08-02 Celletra, Ltd. Systeme et procede d'adaptation de la polarisation dans une liaison aval de telecommunication cellulaire
SE522564C2 (sv) 2000-02-01 2004-02-17 Ericsson Telefon Ab L M Gruppantennkalibrering
EP2474436A3 (fr) * 2000-08-16 2012-07-25 Valeo Radar Systems, Inc. Architecture d'antenne à faisceau commuté
JP3923897B2 (ja) * 2000-12-23 2007-06-06 ノキア コーポレイション 到来方向を推定するための基地局、基地局モジュールおよび方法
US6680698B2 (en) 2001-05-07 2004-01-20 Rafael-Armament Development Authority Ltd. Planar ray imaging steered beam array (PRISBA) antenna
US6426726B1 (en) 2001-08-15 2002-07-30 Northrop Grumman Corporation Polarized phased array antenna
WO2003019722A1 (fr) 2001-08-23 2003-03-06 Paratek Microwave, Inc. Procede d'etalonnage en champ proche pour antennes reseau a commande de phase comprenant des dephaseurs accordables

Also Published As

Publication number Publication date
AU2003297841A1 (en) 2004-03-29
EP1530816B1 (fr) 2006-06-07
DE50303722D1 (de) 2006-07-20
US7132979B2 (en) 2006-11-07
EP1530816A1 (fr) 2005-05-18
ATE329381T1 (de) 2006-06-15
WO2004023601A1 (fr) 2004-03-18
US20040032366A1 (en) 2004-02-19
DE10237822B3 (de) 2004-07-22
KR20050033065A (ko) 2005-04-08
CN2800506Y (zh) 2006-07-26
KR100893656B1 (ko) 2009-04-17
ES2263987T3 (es) 2006-12-16

Similar Documents

Publication Publication Date Title
EP1530816B9 (fr) Dispositif de calibrage pour un reseau d'antennes commutable et procede pour faire fonctionner ce dispositif
EP1532716B1 (fr) Dispositif d'etalonnage destine a un reseau d'antennes et procede d'etalonnage de ce reseau d'antennes
EP1082781B1 (fr) Reseau d'antennes a plusieurs modules excitateurs superposes
EP2168211B1 (fr) Réseau d'alimentation pour une antenne réseau
DE3911373C2 (de) Phasengesteuertes Radargerät mit Selbstüberwachung/Selbstabgleich und auswechselbare einstellbare Sende/Empfangs-Baueinheit
DE10256960B3 (de) Zweidimensionales Antennen-Array
EP2929589B1 (fr) Antenne omnidirectionnelle à double polarité
DE60104270T2 (de) Phasenschieber
EP2965382B1 (fr) Système d'antennes à caractéristique directionnelle variable
DE202021106120U1 (de) Strahlerelemente mit abgewinkelten Einspeiseschäften und Basisstationsantennen einschließlich derselben
DE69831323T2 (de) Kombination von butler-strahlungskeulenanschlüssen für hexagonale zellenbedeckung
DE102013012305A1 (de) Breitband-Antennenarray
EP1525642B1 (fr) Reseau d'antennes bidimensionnel
EP2862234B1 (fr) Système d'antennes actif
DE102005011128B4 (de) Kalibrierung einer elektronischen steuerbaren Planarantenne und elektronisch steuerbare Antenne mit einer Messsonde im reaktiven Nahfeld
DE10336071B3 (de) Antennenanordnung sowie Verfahren insbesondere zu deren Betrieb
EP1652267B1 (fr) Systeme d'antenne
AT502159B1 (de) Mikrostreifen-patchantenne und einpunkteinspeisung in diese antenne
EP1471600B1 (fr) Procéde de génération de multi-faisceaux de transmission de système SAR et système d'antenna de SAR
DE102007055534B4 (de) Kompakte Richtantennenanordnung mit Mehrfachnutzung von Strahlerelementen
EP3625894A1 (fr) Système de radio mobile comprenant un réseau de formation de faisceau et un système multi-antennes prévu pour générer un faisceau de diffusion et procédé correspondant
DE4201933A1 (de) Strahlergruppenantenne
EP0227005A2 (fr) Dispositif d'émission à deux émetteurs haute fréquence émettant des fréquences différentes avec des diagrammes de rayonnement différents
WO1999031758A1 (fr) Systeme d'alimentation d'antenne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041125

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17Q First examination report despatched

Effective date: 20050624

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060607

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50303722

Country of ref document: DE

Date of ref document: 20060720

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060907

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061107

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2263987

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20061123

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070308

BERE Be: lapsed

Owner name: KATHREIN-WERKE K.G.

Effective date: 20070630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070630

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060908

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061208

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150623

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20150622

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20160622

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160621

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160605

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160605

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160605

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50303722

Country of ref document: DE

Representative=s name: FLACH BAUER & PARTNER PATENTANWAELTE MBB, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50303722

Country of ref document: DE

Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50303722

Country of ref document: DE

Owner name: ERICSSON AB, SE

Free format text: FORMER OWNER: KATHREIN-WERKE KG, 83022 ROSENHEIM, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50303722

Country of ref document: DE

Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL), SE

Free format text: FORMER OWNER: KATHREIN-WERKE KG, 83022 ROSENHEIM, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50303722

Country of ref document: DE

Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50303722

Country of ref document: DE

Owner name: KATHREIN SE, DE

Free format text: FORMER OWNER: KATHREIN-WERKE KG, 83022 ROSENHEIM, DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170606

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50303722

Country of ref document: DE

Owner name: ERICSSON AB, SE

Free format text: FORMER OWNER: KATHREIN SE, 83022 ROSENHEIM, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50303722

Country of ref document: DE

Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50303722

Country of ref document: DE

Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL), SE

Free format text: FORMER OWNER: KATHREIN SE, 83022 ROSENHEIM, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50303722

Country of ref document: DE

Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50303722

Country of ref document: DE

Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL), SE

Free format text: FORMER OWNER: ERICSSON AB, STOCKHOLM, SE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20220627

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220629

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50303722

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG