EP1532716B1 - Dispositif d'etalonnage destine a un reseau d'antennes et procede d'etalonnage de ce reseau d'antennes - Google Patents

Dispositif d'etalonnage destine a un reseau d'antennes et procede d'etalonnage de ce reseau d'antennes Download PDF

Info

Publication number
EP1532716B1
EP1532716B1 EP03730156A EP03730156A EP1532716B1 EP 1532716 B1 EP1532716 B1 EP 1532716B1 EP 03730156 A EP03730156 A EP 03730156A EP 03730156 A EP03730156 A EP 03730156A EP 1532716 B1 EP1532716 B1 EP 1532716B1
Authority
EP
European Patent Office
Prior art keywords
antenna array
antenna
probes
coupling devices
columns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03730156A
Other languages
German (de)
English (en)
Other versions
EP1532716A1 (fr
Inventor
Maximilian GÖTTL
Roland Gabriel
Jörg LANGENBERG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kathrein SE
Original Assignee
Kathrein Werke KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kathrein Werke KG filed Critical Kathrein Werke KG
Publication of EP1532716A1 publication Critical patent/EP1532716A1/fr
Application granted granted Critical
Publication of EP1532716B1 publication Critical patent/EP1532716B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/267Phased-array testing or checking devices

Definitions

  • the invention relates to an antenna array according to claim 1 and an associated method for its calibration according to claim 13.
  • the antenna array is intended in particular for mobile radio technology, in particular for base stations in mobile radio transmission.
  • An antenna array usually comprises a plurality of primary radiators, but at least two juxtaposed and superimposed emitters, so that there is a two-dimensional array arrangement.
  • These antenna arrays which are also known by the term “smart antennas”, are also used, for example, in the military sector for tracking targets (radar). These applications are also often referred to as “phased array” antennas. Recently, however, these antennas are also being used in mobile communications, in particular in the frequency ranges 800 MHz to 1000 MHz and 1700 MHz to 2200 MHz.
  • Such antenna arrays can be used to determine the direction of the incoming signal. At the same time, however, by appropriate tuning of the phase position of the fed into the individual columns transmission signals and the emission direction can be changed, i. There is a selective beam shaping.
  • This alignment of the emission direction of the antenna can be effected both by electronic beam scanning, ie, that the phase positions of the individual signals are adjusted by a suitable signal processing.
  • a suitable signal processing ie, that the phase positions of the individual signals are adjusted by a suitable signal processing.
  • passive beam forming networks are also suitably dimensioned passive beam forming networks.
  • the use of active or controllable by control signals phase shifters in these feed networks to change the emission direction is known.
  • Such a beam-forming network may for example consist of a so-called Butler matrix having, for example, four inputs and four outputs. Depending on the input connected, the network generates a different but fixed phase relationship between the emitters in the individual dipole rows.
  • Such an antenna structure with a Butler matrix is for example from US 6,351,243 known.
  • phase position of the individual, fed into the individual primary radiator signals depends on the length of the connecting cable. Since this can often be relatively long - especially at exposed locations - a calibration of the phase angle of the antenna including the connection cable is required. Also included in the calibration are of course active electronic components in the individual feeders, such as transmit or receive amplifiers.
  • an active phase adjusting device for an antenna is shown in which the antenna array upstream of a coupling device is provided.
  • Subordinate to the coupling device are N parallel transmission paths, each comprising a phase and an amplitude adjusting means, on the output side of which a respective path associated radiating element is driven.
  • the individual paths are measured one after the other, for which purpose a respective probe provided on the output side is assigned to a respective radiating element.
  • the transmission signal supplied to the radiating element via the relevant path is picked up by the probe and likewise fed to an evaluation device.
  • the phase and amplitude setting device By evaluating the input signal diverted on the input signal in comparison with the transmitted signal received via the probe, the phase and amplitude setting device provided there can then be correspondingly controlled via the respective measured path.
  • the calibration device thus requires that the probe is moved in succession to each radiator of the antenna array in order to capture the signals emitted by the radiator in question in order ultimately to carry out the transmission path upstream of the individual radiators.
  • a detailed solution of how to arrange the probes in relation to the beams is not described in this prior publication.
  • the schematic representation when using only one probe at least in arrays with more than two columns no symmetrical coupling with respect to the phase position and the amplitude at least in the near field of the antennas produced.
  • a specific signal is preferably supplied via the individual signal paths to a radiator assigned to the individual signal paths in order to detect a phase angle signal via a probe brought into the near field of the radiator element.
  • a phase control device can be controlled on the input side, via which the signal is supplied to the relevant radiating element.
  • coupling devices can be provided, which are then assigned to each individual radiating element. About the switching device, the coupling devices can be switched on and off sequentially.
  • a method and apparatus for calibrating a group antenna is also out of the DE 198 06 914 C2 known.
  • a directional coupling device is assigned to each antenna element, by means of which a respective signal can be coupled out from the respective signal path.
  • test signals are successively sent to a single antenna radiator and a signal value is coupled out via the directional coupler.
  • Downstream of the directional couplers is a power divider.
  • the signal supplied to a single radiator in the calibration process is thereby decoupled via the relevant directional coupler and guided via the power divider to its central gate. At this central gate, a reflection termination is connected.
  • the transmission signal component is reflected at this reflection section and divided into amplitude and phase-equal partial signals at the branching ports, wherein there are as many branching ports as transmission or reception paths.
  • the individual partial signals derived from the transmission signal are now coupled into the individual reception paths via the directional couplers.
  • the partial signals applied to the outputs of the reception paths and picked up by the radiation form network are evaluated by a control device. As a result, a total transmission factor can be determined for each individual path leading to an antenna radiator, by means of which a weighting and thus ultimately a phase adjustment can be carried out.
  • each antenna column must be assigned a directional coupling device.
  • a coupling device is required here, since as mentioned in each transmission path to one sub-signal hidden and on the other hand coming via the reflection device and the power divider sub-signal in each individual path on the intended directional coupler must be re-coupled to perform the relevant evaluation.
  • a generic calibration device is also from the WO 01/58047 A1 known.
  • the antenna array includes a plurality of radiators fed by feeder cables. Each radiator is associated with a sensor device that could be understood as a digital receiver. Each of these digital receivers generates a complex base band I / Q signal.
  • the output signals of these digital receivers are fed to a digital signal processing unit, where they are added. This gives a resulting signal, which is converted into a DC signal.
  • This DC signal is maximum when all signals picked up by the individual digital receivers have the same phase. On this basis, it is possible to obtain an indirect statement about a same phase position by finding a maximum DC signal.
  • a method for calibrating satellite payloads with hybrid matrices is for example also from EP 0 812 027 A2 known.
  • the preamble discloses a beamforming network having at least one input port mapped to selected output ports, the beamforming network providing an appropriate gain and phase shift between the at least one input port and the output ports.
  • the arrangement comprises a plurality of feed radiating elements, each of these feed radiating elements being connected to a respective one of the outputs of the at least one hybrid matrix.
  • a calibration pickup antenna responsive to the energy radiated by the feed radiating elements to produce a second calibration sweep.
  • the calibration system has a number of inputs corresponding to the number of hybrid matrix circuits, each hybrid matrix circuit being connected via an output to an input of the calibration system.
  • a sample coupler may also be used, which is arranged between the output of the hybrid matrix and an associated feed radiating element.
  • this system requires that at least one output on each hybrid matrix not be connected to a downstream radiator element but to a separate input of a calibration system.
  • the comparison between the injected signal and the measured signal behind the hybrid matrix allows the calibration of the amplifier in the branch in question. This procedure must be repeated for each output of the network to calibrate all amplifiers.
  • the only calibration antenna provided according to this known prior art does not serve a phase calibration, but only the power calibration. For this purpose, only one power component is measured via the calibration antenna, but not one phase. To measure the entire system, a power signal must be emitted via an antenna element and measured by the calibration antenna. This process must be repeated for all antennas.
  • the object of the present invention is in contrast to provide an antenna array with a calibration device and an associated method for calibrating the antenna array, wherein the calibration as well as the calibration should be simple and compared to the prior art, however, should have advantages. It should be possible within the scope of the invention, based on the measurement results to determine a phase relationship with respect to all radiator elements.
  • the calibration device according to the invention should preferably be a calibration device for a dual-polarized antenna array.
  • the inventive antenna array with the associated calibration device and the inventive method for calibrating an antenna array is characterized by numerous simplifications, which are quite surprising.
  • a beam-forming network preferably in the form of a Butler matrix
  • a phase relationship with respect to all radiator elements can ultimately be determined. This is ultimately possible because the manufacturer, the individual emitters, their arrangement and the length of the feeder cables of an input-side connection point to the radiators are measured and tuned so that all the radiator elements, even when using a beam forming network. in the manner of a Butler matrix in a fixed predetermined phase relationship to each other.
  • phase shifts occur due to upstream beam-forming networks or due to different upstream cable lengths, phase shifts caused thereby affect all radiators, so that ultimately even a single fixed probe or possibly only a single coupling device assigned to a radiator will detect a shift in the phase position can. This is true even if a downtilt angle is preset or provided with respect to the plurality of radiators of the antenna array.
  • the tapping of the test signals for the calibration process preferably does not take place via coupling devices, ie in particular not via directional couplers, but via probes, which can be provided in the near field. It proves to be particularly favorable that even with dual-polarized radiators for both polarizations only a single probe is necessary!
  • the probes can be arranged directly on the reflector plate of an antenna array so that the vertical extension height measured with respect to the plane of the reflector plate is lower than the position and arrangement of the radiator elements, for example the dipole structures for the radiator elements.
  • the calibration device according to the invention ie the antenna array according to the invention can also be constructed of patch radiators or combinations of patch radiators with dipole structures.
  • the small number of probes provided for each antenna array column is preferably disposed on the uppermost or lowermost radiator or on the uppermost or lowermost dipole radiator structure.
  • the probes will be arranged in a vertical plane perpendicular to the reflector plane, which extends symmetrically through the dual-polarized radiator structure. But also a page offset is possible in principle.
  • the preferably at least two capacitive or inductive probes or the optionally used coupling devices are interconnected firmly by means of a combination network.
  • This combination network is preferably constructed such that the group delay from the input of the respective column to the output of the combination network is approximately the same for all antenna inputs (at least with respect to one polarization in dual-polarized antennas) and over the entire operating frequency range.
  • the solution according to the invention is suitable for calibrating an antenna array, in which usually the radiators and radiator groups arranged in the individual columns are each driven via a separate input. Therefore, by means of the calibration device according to the invention, a corresponding phase calibration can be carried out in order to obtain a desired beam shaping. In this case, a pivoting of the main beam direction, especially in the azimuth direction (but also, of course, in the elevation direction) can also be realized.
  • the antenna array according to the invention and the calibration device according to the invention can also be used equally if the antenna array is preceded by a beam-forming network, for example in the form of a Butler matrix.
  • phase position of the transmission from the input of the individual columns or the antenna inputs is preferably the same size, in practice the phase position (or the group delay) for the ideal phase position has more or less pronounced tolerance-related deviations.
  • the ideal phase position is given by the fact that the phase is identical for all paths, and also with regard to the beam shaping.
  • the more or less tolerance-related deviations result additively as an offset or frequency dependent by different frequency responses.
  • the deviations are measured over all transmission paths preferably on the path from the input antenna array or beam forming network to the probe output or input to probe outputs and preferably over the entire operating frequency range (for example during the production of the antenna).
  • the transmission paths are preferably measured on the route from the input antenna array or beam forming network to coupling output or coupling outputs.
  • This determined data can then be stored in a data record.
  • These data which are stored in a suitable form, for example in a data record, can then be made available to a transmitting device or to the base station in order then to be taken into account for the electronic generation of the phase position of the individual signals. It proves to be particularly advantageous, for example, to associate this data or the mentioned data record with the corresponding data of a serial number of the antenna.
  • FIG. 1 shows a schematic plan view of an antenna array 1 which, for example, comprises a plurality of dual-polarized radiators or radiator elements 3, which are arranged in front of a reflector 5.
  • the antenna array shows columns 7, which are arranged vertically, wherein in each column in the illustrated embodiment four radiators or radiator groups 3 are arranged one above the other.
  • radiators or radiator groups 3 are positioned.
  • the individual radiators or radiator groups 3 need not necessarily be arranged in the same height in the individual columns.
  • the radiator or radiator groups 3 in each case two adjacent columns 7 by the half vertical distance between two adjacent radiators offset from each other.
  • a respective probe 11, 11a or 11, 11b which can operate inductively or capacitively, is assigned in each case to the furthest leftmost and rightmost column 7, for example to the lowest-positioned dual-polarized emitter 3, respectively.
  • This probe 11 may for example consist of a columnar or pin-shaped probe body which extends perpendicular to the plane of the reflector 5.
  • the probes 11 may, for example, also consist of inductively operating probes in the form of a small induction loop.
  • the respective probe is preferably arranged in a vertical plane in which the either simply polarized radiators or the dual-polarized radiators or radiator elements 3 are arranged.
  • the probes are preferably arranged in the near field of the associated radiator.
  • the probes 11 end below the plane (and thus closer to the reflector 5) in the exemplary embodiment shown, in which the dipole radiators 3 'are located.
  • the dipole radiators 3 'are located In the embodiment shown are capacitive probes.
  • the radiators 3 can consist, for example, of cross-shaped dipole radiators or dipole squares. Particularly suitable dual polarized dipole radiators, such as those from the WO 00/39894 are known.
  • a beam forming network 17 which has, for example, four inputs 19 and four outputs 21.
  • the four outputs of the beamforming network 17 are connected to the four inputs 15 of the antenna array.
  • the number Y of the outputs may differ from the number X of the inputs, ie in particular the number Y of the outputs may be greater than the number of inputs X.
  • a feed cable 23 is connected to one of the inputs 19, about all outputs 21 are fed accordingly.
  • a horizontal emitter orientation with, for example, -45 ° to the left can be effected, as can be seen from the schematic diagram of Figure 3.
  • the feeder cable 23 is connected at the most right terminal 19.4, then a corresponding alignment of the main lobe of the radiation field of the antenna array at an angle of + 45 ° to the right.
  • the antenna array are operated so that, for example, a pivoting by 15 ° to the left or to the right relative to the vertical plane of symmetry of the antenna array can be effected.
  • a beam forming network 17 it is common in such a beam forming network 17 to provide for different angular orientations of the main lobe of the antenna array, a corresponding number of inputs, wherein the number of outputs usually corresponds to the number of columns of the antenna array.
  • Each input is connected to a plurality of outputs, usually each input to all outputs of the beam forming network 17.
  • the calibration device explained in more detail below, however, is above all also suitable for an antenna array according to FIGS. 1 and 2, which does not have an upstream beam-forming network, in particular in the form of a Butler matrix.
  • the column inputs 15 of the antenna array are then fed via a corresponding number of separate feeder cables or other supply terminals.
  • only four exemplary parallel feed lines 23 are provided in Figure 1, which are then connected to the omission of the beam forming network shown in Figure 1 directly to the column inputs 15 of the antenna array.
  • a simplified embodiment is described in which a four-column antenna array only two probes 11c and 11d are used. These probes are arranged so that each probe is associated with a pair of adjacent columns 7, as can be seen in deviation from Figure 4 in the front view of Figure 1.
  • the probe 11c is arranged in the intermediate region between the two left-hand columns and the probe 11d in the intermediate region between the two right-hand columns 7 of the four-column antenna array according to FIG.
  • the two probes 11c and 11d are each connected via a signal line 25 'and 25 "to a combiner 27 (Comb) whose output is connected to a connection S via a line 29.
  • Comb combiner 27
  • a pilot tone will be applied to the input A lead, e.g. given a known signal to measure at the output S of the combination network 27 (Comb), so for example a combiner, the absolute phase. Now you can do this also for the supply line at the inputs B, C and D.
  • phase actuators 37 which are respectively connected upstream of the inputs A to D.
  • a corresponding electrical connection line 23 would then be connected, for example, to the input A, B, C or D, ie an input upstream of the respective phase compensation device 37, to effect a corresponding alignment of the main lobe with different horizontal orientation as desired.
  • the phase actuators 37 can also consist of electrical line sections, which are connected upstream of the individual inputs A to D in a suitable length in order to effect the phase compensation or phase adjustment in the desired sense.
  • probes 11 offer the advantage that the corresponding calibration can be carried out with a corresponding number of probes in the case of both simply polarized and also dual-polarized antenna arrays.
  • FIG. 5 shows a comparable structure in which coupling devices 111 are used instead of probes 11.
  • coupling devices 111 only one calibration for simply polarized antenna arrays can then be carried out.
  • FIG. 6 a calibration device of an antenna array is described which, for example, works in conjunction with a beam-forming network, preferably in a Butler matrix.
  • This beam-forming network may preferably be integrated in the antenna array.
  • the beam-forming network 17 may be, for example, a known Butler matrix 17 'whose four inputs A, B, C and D are each connected to the outputs 21, via which the radiators 3 are fed via lines 35.
  • the decoupled signals are added.
  • the result of the extraction of the signals and the addition can be measured via an additional connection even on the combination network.
  • FIG. 6 shows, for the case of an antenna array with dual-polarized radiators 3, that a combination network can be used for the calibration which does not work with probes 11, but coupling devices 111, for example directional couplers 111.
  • the exemplary embodiment according to FIG. 5 also shows how the calibration network combines for phasing of the supply lines can be.
  • Such a combination is useful if, for example, the respective beam-forming network 17, for example the so-called Butler matrix 17 ', together with the couplers (which are also referred to as coupling devices) and combination networks can be realized on a circuit board, as this largely identical units (each Kopplerkombinationsnetzwerke) can be produced.
  • FIG. 6 shows, in comparison with FIG. 5, the extension to dual-polarized radiators with a beam-forming network, the two outputs of the respective combination network 27 'and 27 ", for example in the form of a combiner (Comb), also having the inputs of a downstream second combination network 28 a combiner (Comb) is combined and applied to the common output S.
  • the combination network 27 'thus serves to determine the phase position on a radiator element with respect to the one polarization, wherein the combination network 27 "for determining the phase position of a respective radiator for the other polarization is used.
  • phase actuators 37 are set at the input of the beam forming network 17, that is to say, for example, the Butler matrix 17 'in such a way that a single coupler can be used at the output of a respective matrix and nevertheless always the same phase regardless of input A to D measures.
  • the phase actuators may consist of basically vorschaltbaren cable sections to change the phase position.
  • a probe 11 may be used whereby the signals emitted by a dual polarized emitter can be received in both polarizations. Thus, only one probe is necessary for both polarizations.
  • the network points M1, M2, M3 and M4 could be measured and generated, depending on whether a connecting line 23 is connected to the input A, B, C or D.
  • the straight lines shown in FIG. 7 can then be determined, as a result of which the exact phase position can be deduced.
  • a corresponding phase adjustment can then be carried out on the input side, preferably even before the beam-forming network.
  • the use of only one probe is only feasible if it is an antenna array with only two columns is or an antenna array with multiple columns, which is preceded by a beam forming network, for example in the form of a Butler matrix. Because only in this case is there a predetermined phase relation to the radiators in the individual columns.
  • corresponding single probe or the corresponding single coupler pair would be arranged, for example, in the second column, then corresponding measurement points M11, M12, M13 and M14 would be able to be determined, whereby the corresponding straight lines could again be laid by the fixed phase relationship through these points. Also by this one would be able to derive the same diagram of Figure 7 in order to make the appropriate phase settings and calibrations can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radar Systems Or Details Thereof (AREA)

Claims (14)

  1. Réseau d'antenne comportant un dispositif de calibrage, le réseau d'antenne comprenant plusieurs colonnes (7) dans lesquelles sont prévus plusieurs éléments de rayonnement respectifs (3, 3'), présentant les éléments suivants :
    - les plusieurs éléments de rayonnement (3, 3') sont agencés les uns au-dessus des autres dans plusieurs colonnes respectives (7),
    - le réseau d'antenne comprend des organes de couplage (111) ou des sondes (11),
    - il est en outre prévu un réseau de combinaison (27, 27', 27") via lequel les organes de couplage prévus (111) ou les sondes prévues (11) sont mutuellement branché(e)s,
    - les plusieurs éléments de rayonnement (3, 3') sont agencés devant un réflecteur (5), et
    - les entrées de colonne (15) pour les éléments de rayonnement (3, 3') agencés dans une colonne respective (7) sont soit reliées via un réseau de formage de rayon (17) soit directement aux lignes d'alimentation (23),
    caractérisé par les autres éléments suivants :
    - pour N éléments de rayonnement (3, 3') prévus au total pour une colonne (7), N étant un nombre naturel ≥ 4, il n'est prévu que N/2 organes de couplage (111) et/ou sondes (11) ou moins,
    - le nombre prévu d'organes de couplage (111) ou de sondes (11) n'est associé qu'à une partie des éléments de rayonnement (3,3'),
    - les organes de couplage (111) ou les sondes (11) sont connecté(e)s à un combineur (27, 27') via des lignes de signaux, dont la sortie est en communication avec un raccord (S) d'évaluation via une ligne (29), et
    - le dispositif de calibrage comprend en outre des organes de positionnement de phase (37) qui sont branchés en amont des entrées du réseau de formage de rayon (17).
  2. Réseau d'antenne selon la revendication 1, caractérisé en ce que les sondes (11) ou les organes de couplage (111) assurent un découplage hors du champ proche des éléments de rayonnement (3, 3').
  3. Réseau d'antenne selon la revendication 2, caractérisé en ce que le réseau de combinaison est conçu de telle sorte que le temps de propagation de groupe depuis l'entrée (15) de la colonne respective (7) jusqu'à la sortie (S) du réseau de combinaison est approximativement égal pour toutes les entrées d'antenne dans un réseau d'antenne à polarisation simple ou dans au moins une polarisation d'un réseau d'antenne à polarisation double, de préférence égal dans toute la plage de fréquence de fonctionnement.
  4. Réseau d'antenne selon l'une des revendications 1 à 3, caractérisé en ce que le réseau de combinaison comprend des composants affectés d'une perte, qui contribuent à réduire des résonances.
  5. Réseau d'antenne selon l'une des revendications 1 à 4, caractérisé en ce que dans un réseau d'antenne à polarisation double, ladite sonde ou les plusieurs sondes prévues (11) conviennent chacune pour la réception d'un signal pour les deux polarisations.
  6. Réseau d'antenne selon l'une des revendications 2 à 5, caractérisé en ce que par colonne (7), il n'est prévu une sonde (11) ou un organe de couplage (111) ou une paire d'organes de couplage (111) que pour un élément de rayonnement (3, 3').
  7. Réseau d'antenne selon l'une des revendications 2 à 6, caractérisé en ce qu'il n'est prévu de préférence une sonde (11) ou un organe de couplage (111) ou une paire d'organes de couplage (111) que pour une partie des colonnes (7), qui est/sont associé(s) à au moins un élément de rayonnement (3, 3').
  8. Réseau d'antenne selon l'une des revendications 1 à 7, caractérisé en ce que ladite au moins une sonde (11) ou les plusieurs sondes (11) se trouve(nt), par rapport aux éléments de rayonnement (3, 3') qui leur sont associés, sur un plan de symétrie vertical passant par les éléments de rayonnement (3, 3').
  9. Réseau d'antenne selon l'une des revendications 2 à 8, caractérisé en ce que dans un réseau d'antenne comportant quatre colonnes (7), il est prévu au moins deux sondes (11), deux organes de couplage (111) ou deux paires d'organes de couplage (111) qui sont associés chacun à un élément de rayonnement (3, 3') qui est agencé dans les deux colonnes (7) extérieures du réseau d'antenne.
  10. Réseau d'antenne selon l'une des revendications 2 à 8, caractérisé en ce que dans un réseau d'antenne comportant quatre colonnes (7), il est prévu de préférence deux sondes (11), deux organes de couplage (111) ou deux paires d'organes de couplage (111) qui sont associés chacun à un élément de rayonnement (3, 3') qui est agencé dans les deux colonnes (7) intérieures du réseau d'antenne.
  11. Réseau d'antenne selon l'une des revendications 2 à 10, caractérisé en ce que les sondes (11) qui sont associées par colonne (7) à un élément de rayonnement (3, 3') sont agencées sur la même ligne en hauteur.
  12. Réseau d'antenne selon l'une des revendications 1 à 11, caractérisé en ce qu'il est prévu une sonde (11 ; 11c, 11d) pour deux colonnes respectives voisines (7) d'un réseau d'antenne, sonde qui présente de préférence la même atténuation de couplage.
  13. Procédé pour le calibrage d'un réseau d'antenne, présentant les éléments suivants :
    - on utilise un dispositif de calibrage pour un réseau d'antenne selon l'une des revendications 1 à 12,
    - parmi les signaux d'émission amenés aux éléments de rayonnement (3, 3'), un signal est découplé via un dispositif de découplage (111) et/ou une sonde (11) et il est amené à un réseau de combinaison (27, 27', 27") pour l'évaluation,
    caractérisé par les autres éléments suivants :
    - on mesure toutes les voies (colonnes 7) du réseau d'antenne, grâce à quoi on peut saisir des données par rapport à la position de phase et/ou au temps de propagation de groupe et/ou aux écarts de la position de phase réciproque par rapport aux éléments de rayonnement individuels ou aux groupes d'éléments de rayonnement (3, 3'),
    - les résultats de mesure saisis et/ou les écarts saisis par rapport à une position de phase idéale sont traités pour toutes les voies de transmission de préférence sur le trajet de l'entrée du réseau de formage de rayon jusqu'à la sortie de sonde ou de couplage, de préférence sur toute la plage de fréquence de fonctionnement, et
    - on mémorise les données saisies qui sont alors à la disposition d'un dispositif émetteur pendant le fonctionnement de la station de base en vue d'une génération électronique de la position de phase des signaux individuels.
  14. Procédé selon la revendication 13, caractérisé en ce que le lot de données saisies est associé au numéro de série d'une antenne.
EP03730156A 2002-08-19 2003-06-05 Dispositif d'etalonnage destine a un reseau d'antennes et procede d'etalonnage de ce reseau d'antennes Expired - Lifetime EP1532716B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10237823A DE10237823B4 (de) 2002-08-19 2002-08-19 Antennen-Array mit einer Kalibriereinrichtung sowie Verfahren zum Betrieb eines derartigen Antennen-Arrays
DE10237823 2002-08-19
PCT/EP2003/005930 WO2004023600A1 (fr) 2002-08-19 2003-06-05 Dispositif d'etalonnage destine a un reseau d'antennes et procede d'etalonnage de ce reseau d'antennes

Publications (2)

Publication Number Publication Date
EP1532716A1 EP1532716A1 (fr) 2005-05-25
EP1532716B1 true EP1532716B1 (fr) 2007-10-03

Family

ID=31197075

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03730156A Expired - Lifetime EP1532716B1 (fr) 2002-08-19 2003-06-05 Dispositif d'etalonnage destine a un reseau d'antennes et procede d'etalonnage de ce reseau d'antennes

Country Status (11)

Country Link
US (1) US7068218B2 (fr)
EP (1) EP1532716B1 (fr)
CN (1) CN2692853Y (fr)
AT (1) ATE375015T1 (fr)
AU (1) AU2003240747A1 (fr)
BR (1) BR0313600A (fr)
CA (1) CA2494620C (fr)
DE (2) DE10237823B4 (fr)
ES (1) ES2294290T3 (fr)
TW (1) TWI249268B (fr)
WO (1) WO2004023600A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10673399B2 (en) 2017-12-06 2020-06-02 Space Systems/Loral, Llc Multiport amplifier input network with compensation for output network gain and phase frequency response imbalance

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040061644A1 (en) * 2002-09-11 2004-04-01 Lockheed Martin Corporation CCE calibration with an array of calibration probes interleaved with the array antenna
US7492841B2 (en) * 2003-01-30 2009-02-17 Andrew Corporation Relative phase/amplitude detection system
DE102005011128B4 (de) * 2005-03-10 2011-12-29 Imst Gmbh Kalibrierung einer elektronischen steuerbaren Planarantenne und elektronisch steuerbare Antenne mit einer Messsonde im reaktiven Nahfeld
JP4478606B2 (ja) 2005-05-19 2010-06-09 富士通株式会社 リニアアレイアンテナの校正装置及び校正方法
DE102006045645B4 (de) 2006-09-27 2015-05-07 Rohde & Schwarz Gmbh & Co. Kg Antennenkoppler
US7830307B2 (en) * 2007-04-13 2010-11-09 Andrew Llc Array antenna and a method of determining an antenna beam attribute
WO2009027725A1 (fr) * 2007-08-31 2009-03-05 Bae Systems Plc Etalonnage d'antennes
US8004456B2 (en) * 2007-08-31 2011-08-23 Bae Systems Plc Antenna calibration
AU2008291898B2 (en) * 2007-08-31 2013-09-05 Bae Systems Plc Antenna calibration
AU2008291897B2 (en) * 2007-08-31 2013-03-07 Bae Systems Plc Antenna calibration
DE102007060083A1 (de) 2007-12-13 2009-06-18 Kathrein-Werke Kg Mehrspalten-Multiband-Antennen-Array
IL188507A (en) * 2007-12-31 2012-06-28 Elta Systems Ltd Phased array antenna having integral calibration network and method for measuring calibration ratio thereof
US8212716B2 (en) * 2007-12-31 2012-07-03 Elta Systems Ltd. System and method for calibration of phased array antenna having integral calibration network in presence of an interfering body
CN101686068B (zh) * 2008-09-28 2013-01-30 华为技术有限公司 一种功分网络装置
IL199560A (en) 2009-06-25 2017-04-30 Elta Systems Ltd An antenna calibration system and method having an integral calibration network in the presence of a disruptive body
GB2473663B (en) * 2009-09-21 2016-11-23 Aveillant Ltd Radar Receiver
KR101172240B1 (ko) 2010-05-18 2012-08-07 주식회사 만도 센서 및 얼라이먼트 조절 방법
US8704705B2 (en) 2011-03-16 2014-04-22 Src, Inc. Radar apparatus calibration via individual radar components
DE102012204174B4 (de) * 2012-03-16 2022-03-10 Rohde & Schwarz GmbH & Co. Kommanditgesellschaft Verfahren, System und Kalibrierobjekt zur automatischen Kalibrierung einer bildgebenden Antennenanordnung
US8908753B2 (en) * 2012-05-17 2014-12-09 Andrew Llc Calibration sub-system for telecommunication systems
US9300408B2 (en) * 2013-11-04 2016-03-29 Alcatel-Lucent Shanghai Bell Co., Ltd Methods and systems for calibrating LTE antenna systems
US9893715B2 (en) * 2013-12-09 2018-02-13 Shure Acquisition Holdings, Inc. Adaptive self-tunable antenna system and method
CN105790860B (zh) * 2014-12-25 2020-12-29 中兴通讯股份有限公司 天线耦合校准系统
US10720702B2 (en) * 2016-01-08 2020-07-21 National Chung Shan Institute Of Science And Technology Method and device for correcting antenna phase
US10263330B2 (en) * 2016-05-26 2019-04-16 Nokia Solutions And Networks Oy Antenna elements and apparatus suitable for AAS calibration by selective couplerline and TRX RF subgroups
US20180062260A1 (en) 2016-08-26 2018-03-01 Analog Devices Global Antenna array calibration systems and methods
US10284308B1 (en) 2017-12-06 2019-05-07 Space Systems/Loral, Llc Satellite system calibration in active operational channels
US10361762B2 (en) 2017-12-06 2019-07-23 Space Systems/Loral, Llc Calibration of satellite beamforming channels
US10921427B2 (en) * 2018-02-21 2021-02-16 Leolabs, Inc. Drone-based calibration of a phased array radar
US11177567B2 (en) * 2018-02-23 2021-11-16 Analog Devices Global Unlimited Company Antenna array calibration systems and methods
JP7091197B2 (ja) * 2018-09-10 2022-06-27 株式会社東芝 無線通信装置及び無線通信システム
US11349208B2 (en) 2019-01-14 2022-05-31 Analog Devices International Unlimited Company Antenna apparatus with switches for antenna array calibration
US11404779B2 (en) 2019-03-14 2022-08-02 Analog Devices International Unlimited Company On-chip phased array calibration systems and methods
WO2021000203A1 (fr) * 2019-06-30 2021-01-07 瑞声声学科技(深圳)有限公司 Unité de réseau d'étalonnage d'antenne, réseau d'étalonnage d'antenne, et antenne mimo
CN112310659B (zh) * 2019-07-29 2023-03-07 成都恪赛科技有限公司 一种重构波束指向天线阵列
US11450952B2 (en) 2020-02-26 2022-09-20 Analog Devices International Unlimited Company Beamformer automatic calibration systems and methods
US10979152B1 (en) * 2020-03-05 2021-04-13 Rockwell Collins, Inc. Conformal ESA calibration
US11444376B2 (en) 2020-06-05 2022-09-13 Analog Devices International Unlimited Com Pany Systems and methods for calibrating arrays of dual-polarization antenna elements
EP4040600A1 (fr) * 2021-02-04 2022-08-10 Urugus S.A. Système et dispositif de communication définis par logiciel
EP4305707A1 (fr) * 2021-03-11 2024-01-17 Telefonaktiebolaget LM Ericsson (publ) Système d'antenne active comprenant des trajets de couplage entre des réseaux d'alimentation
CN115395249A (zh) * 2022-08-05 2022-11-25 中兴通讯股份有限公司 多频天线及通信设备

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4347280A (en) * 1981-07-08 1982-08-31 Geos Corporation Shock absorbing sheet material
US5695418A (en) * 1991-01-14 1997-12-09 Huang; Ben Shock absorbing grip for racquets and the like
US5813921A (en) * 1991-01-14 1998-09-29 Huang; Ben Sleeve-type grip for golf shafts
FR2672436B1 (fr) 1991-01-31 1993-09-10 Europ Agence Spatiale Dispositif de controle electronique du diagramme de rayonnement d'une antenne a un ou plusieurs faisceaux de direction et/ou de largeur variable.
US5086302A (en) * 1991-04-10 1992-02-04 Allied-Signal Inc. Fault isolation in a Butler matrix fed circular phased array antenna
US5276452A (en) * 1992-06-24 1994-01-04 Raytheon Company Scan compensation for array antenna on a curved surface
FR2696553B1 (fr) 1992-10-01 1994-11-25 Alcatel Espace Méthode de calibration d'antenne en champ proche pour antenne active.
US5502447A (en) * 1993-10-28 1996-03-26 Hazeltine Corporation Beam sharpened pencil beam antenna systems
EP0762541A3 (fr) 1995-08-29 2000-01-12 DaimlerChrysler AG Dispositif pour calibrer et éprouver des modules émetteurs/récepteurs dans un réseau d'antennes actives à commande électroniqe de phase
JPH09271536A (ja) * 1996-04-03 1997-10-21 Bridgestone Sports Co Ltd 糸巻きゴルフボール
US5644316A (en) * 1996-05-02 1997-07-01 Hughes Electronics Active phased array adjustment using transmit amplitude adjustment range measurements
US5784030A (en) 1996-06-06 1998-07-21 Hughes Electronics Corporation Calibration method for satellite communications payloads using hybrid matrices
US5784031A (en) 1997-02-28 1998-07-21 Wireless Online, Inc. Versatile anttenna array for multiple pencil beams and efficient beam combinations
SE510995C2 (sv) * 1997-03-24 1999-07-19 Ericsson Telefon Ab L M Aktiv sändnings/mottagnings gruppantenn
US6104935A (en) 1997-05-05 2000-08-15 Nortel Networks Corporation Down link beam forming architecture for heavily overlapped beam configuration
SE509342C2 (sv) 1997-05-05 1999-01-18 Ericsson Telefon Ab L M Förfarande för användning av lobportar i ett lobformningsnät samt ett antennarrangemang
US6046697A (en) * 1997-09-05 2000-04-04 Northern Telecom Limited Phase control of transmission antennas
US5936569A (en) 1997-12-02 1999-08-10 Nokia Telecommunications Oy Method and arrangement for adjusting antenna pattern
DE19806914C2 (de) * 1998-02-19 2002-01-31 Bosch Gmbh Robert Verfahren und Vorrichtung zum Kalibrieren einer Gruppenantenne
US6252542B1 (en) * 1998-03-16 2001-06-26 Thomas V. Sikina Phased array antenna calibration system and method using array clusters
US6133868A (en) 1998-06-05 2000-10-17 Metawave Communications Corporation System and method for fully self-contained calibration of an antenna array
DE19844239C1 (de) 1998-09-26 2000-07-27 Dornier Gmbh Verfahren zur genauen Winkelbestimmung von Zielen mittels eines Mehrfachantennen-Radarsystems
DE19860121A1 (de) * 1998-12-23 2000-07-13 Kathrein Werke Kg Dualpolarisierter Dipolstrahler
US6515616B1 (en) 1999-04-30 2003-02-04 Metawave Communications Corporation System and method for aligning signals having different phases
US6236839B1 (en) * 1999-09-10 2001-05-22 Utstarcom, Inc. Method and apparatus for calibrating a smart antenna array
SE518207C2 (sv) * 1999-09-10 2002-09-10 Ericsson Telefon Ab L M Gles gruppantenn
JP4303373B2 (ja) 1999-09-14 2009-07-29 株式会社日立コミュニケーションテクノロジー 無線基地局装置
FR2800202B1 (fr) * 1999-10-26 2007-08-31 Thomson Csf Dispositif de commande pour la formation de plusieurs faisceaux simultanes de reception radar a antenne a balayage electronique
AU2001232166A1 (en) 2000-01-27 2001-08-07 Celletra Ltd. System and method for providing polarization matching on a cellular communication forward link
SE522564C2 (sv) * 2000-02-01 2004-02-17 Ericsson Telefon Ab L M Gruppantennkalibrering
US6642908B2 (en) * 2000-08-16 2003-11-04 Raytheon Company Switched beam antenna architecture
WO2002052677A1 (fr) 2000-12-23 2002-07-04 Nokia Corporation Station de base, module de station de base et procede pour estimer le sens d'arrivee
US6680698B2 (en) * 2001-05-07 2004-01-20 Rafael-Armament Development Authority Ltd. Planar ray imaging steered beam array (PRISBA) antenna
US6426726B1 (en) * 2001-08-15 2002-07-30 Northrop Grumman Corporation Polarized phased array antenna
US6771216B2 (en) * 2001-08-23 2004-08-03 Paratex Microwave Inc. Nearfield calibration method used for phased array antennas containing tunable phase shifters

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10673399B2 (en) 2017-12-06 2020-06-02 Space Systems/Loral, Llc Multiport amplifier input network with compensation for output network gain and phase frequency response imbalance

Also Published As

Publication number Publication date
DE10237823B4 (de) 2004-08-26
CA2494620C (fr) 2008-12-23
TW200403887A (en) 2004-03-01
US7068218B2 (en) 2006-06-27
US20040032365A1 (en) 2004-02-19
CA2494620A1 (fr) 2004-03-18
BR0313600A (pt) 2005-06-21
DE10237823A1 (de) 2004-03-04
DE50308322D1 (de) 2007-11-15
EP1532716A1 (fr) 2005-05-25
ES2294290T3 (es) 2008-04-01
AU2003240747A1 (en) 2004-03-29
CN2692853Y (zh) 2005-04-13
WO2004023600A1 (fr) 2004-03-18
ATE375015T1 (de) 2007-10-15
TWI249268B (en) 2006-02-11

Similar Documents

Publication Publication Date Title
EP1532716B1 (fr) Dispositif d'etalonnage destine a un reseau d'antennes et procede d'etalonnage de ce reseau d'antennes
EP1530816B1 (fr) Dispositif de calibrage pour un reseau d'antennes commutable et procede pour faire fonctionner ce dispositif
DE102009042509B4 (de) Antennenvorrichtung mit Linse oder als Linse wirkendem passivem Element
DE3911373C2 (de) Phasengesteuertes Radargerät mit Selbstüberwachung/Selbstabgleich und auswechselbare einstellbare Sende/Empfangs-Baueinheit
DE602004002145T2 (de) Radaranordnung mit Schaltermatrix zur adaptiven Strahlformung im Empfangszweig und Umschalten des Sendezweigs
DE60221150T2 (de) Antennensystem
EP1327287B1 (fr) Reseau d'antennes a double polarisation
EP2168211B1 (fr) Réseau d'alimentation pour une antenne réseau
EP2965382B1 (fr) Système d'antennes à caractéristique directionnelle variable
DE102017210781A1 (de) Radarantenne für ein Füllstandmessgerät
DE112019006800T5 (de) Antennenvorrichtung und Radarvorrichtung
EP2862235A1 (fr) Système d'antenne et procédé
DE102012104090A1 (de) Stapelbare Hornantennenelemente für Antennenanordnungen
DE19943952A1 (de) Verfahren zum Kalibrieren einer Gruppenantenne
DE102005011128B4 (de) Kalibrierung einer elektronischen steuerbaren Planarantenne und elektronisch steuerbare Antenne mit einer Messsonde im reaktiven Nahfeld
DE69216851T2 (de) Gerät und methode zur korrektur von elektrischen leitungslängenphasenfehlern
DE112019005668T5 (de) Antennenvorrichtung und radarsystem
DE69832964T2 (de) Elektromagnetisch gekoppelte Mikrostreifenleiterantenne
WO2019158251A1 (fr) Système d'antenne pour un capteur radar
DE3902739C2 (de) Radar-Gruppenantenne
DE3545639C1 (en) Transmitter operating at at least two frequencies - uses single VHF antenna array with different polar diagrams
DE102007055534B4 (de) Kompakte Richtantennenanordnung mit Mehrfachnutzung von Strahlerelementen
DE2451708C1 (de) Anordnung zur Stoerung einer Monopuls-Zielverfolgungs-Radareinrichtung durch Wiederausstrahlung in Kreuzpolarisation
DE102008027640A1 (de) Gruppenantenne
DE19636151A1 (de) Phasengesteuerte Antenne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041202

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GOETTL, MAXIMILIAN

Inventor name: LANGENBERG, JOERG

Inventor name: GABRIEL, ROLAND

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20071003

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50308322

Country of ref document: DE

Date of ref document: 20071115

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2294290

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071003

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080103

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080303

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071003

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071003

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071003

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071003

26N No opposition filed

Effective date: 20080704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071003

BERE Be: lapsed

Owner name: KATHREIN-WERKE K.G.

Effective date: 20080630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080104

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071003

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080605

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080404

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071003

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150623

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20160622

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160621

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160605

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50308322

Country of ref document: DE

Representative=s name: FLACH BAUER & PARTNER PATENTANWAELTE MBB, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50308322

Country of ref document: DE

Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50308322

Country of ref document: DE

Owner name: KATHREIN SE, DE

Free format text: FORMER OWNER: KATHREIN-WERKE KG, 83022 ROSENHEIM, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50308322

Country of ref document: DE

Owner name: ERICSSON AB, SE

Free format text: FORMER OWNER: KATHREIN-WERKE KG, 83022 ROSENHEIM, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50308322

Country of ref document: DE

Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL), SE

Free format text: FORMER OWNER: KATHREIN-WERKE KG, 83022 ROSENHEIM, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50308322

Country of ref document: DE

Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170606

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50308322

Country of ref document: DE

Owner name: ERICSSON AB, SE

Free format text: FORMER OWNER: KATHREIN SE, 83022 ROSENHEIM, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50308322

Country of ref document: DE

Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50308322

Country of ref document: DE

Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL), SE

Free format text: FORMER OWNER: KATHREIN SE, 83022 ROSENHEIM, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50308322

Country of ref document: DE

Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50308322

Country of ref document: DE

Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL), SE

Free format text: FORMER OWNER: ERICSSON AB, STOCKHOLM, SE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20220627

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220629

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50308322

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG