EP1528097A2 - Procédé pour diminuer l'écaillage des dépôts de la chambre de combustion. - Google Patents
Procédé pour diminuer l'écaillage des dépôts de la chambre de combustion. Download PDFInfo
- Publication number
- EP1528097A2 EP1528097A2 EP04024823A EP04024823A EP1528097A2 EP 1528097 A2 EP1528097 A2 EP 1528097A2 EP 04024823 A EP04024823 A EP 04024823A EP 04024823 A EP04024823 A EP 04024823A EP 1528097 A2 EP1528097 A2 EP 1528097A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- manganese
- manganese tricarbonyl
- metal
- fuel
- containing compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M27/00—Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
- F02M27/02—Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by catalysts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/182—Organic compounds containing oxygen containing hydroxy groups; Salts thereof
- C10L1/1828—Salts thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/12—Inorganic compounds
- C10L1/1216—Inorganic compounds metal compounds, e.g. hydrides, carbides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/12—Inorganic compounds
- C10L1/1225—Inorganic compounds halogen containing compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/12—Inorganic compounds
- C10L1/1233—Inorganic compounds oxygen containing compounds, e.g. oxides, hydroxides, acids and salts thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/12—Inorganic compounds
- C10L1/1266—Inorganic compounds nitrogen containing compounds, (e.g. NH3)
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/12—Inorganic compounds
- C10L1/1275—Inorganic compounds sulfur, tellurium, selenium containing compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/12—Inorganic compounds
- C10L1/1283—Inorganic compounds phosphorus, arsenicum, antimonium containing compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/1814—Chelates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/188—Carboxylic acids; metal salts thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/24—Organic compounds containing sulfur, selenium and/or tellurium
- C10L1/2431—Organic compounds containing sulfur, selenium and/or tellurium sulfur bond to oxygen, e.g. sulfones, sulfoxides
- C10L1/2437—Sulfonic acids; Derivatives thereof, e.g. sulfonamides, sulfosuccinic acid esters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/26—Organic compounds containing phosphorus
- C10L1/2608—Organic compounds containing phosphorus containing a phosphorus-carbon bond
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/30—Organic compounds compounds not mentioned before (complexes)
- C10L1/301—Organic compounds compounds not mentioned before (complexes) derived from metals
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/30—Organic compounds compounds not mentioned before (complexes)
- C10L1/305—Organic compounds compounds not mentioned before (complexes) organo-metallic compounds (containing a metal to carbon bond)
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L10/00—Use of additives to fuels or fires for particular purposes
- C10L10/02—Use of additives to fuels or fires for particular purposes for reducing smoke development
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L10/00—Use of additives to fuels or fires for particular purposes
- C10L10/04—Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M25/00—Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
Definitions
- the present invention is directed to a method of reducing combustion chamber deposit flaking, and consequently, reducing cold start emissions.
- the method includes combustion of a fuel having a fuel additive containing a metallic compound.
- the metallic compound is a manganese-containing compound.
- Spark ignited internal combustion engines (carbureted, port fuel injection “PFI”, multiple point injection “MPI”, direct-injection gasoline “DIG”, etc.) accumulate combustion chamber deposits (CCD) during operation.
- This deposit is a result of both inefficient combustion of the fuel during the power stroke, and thermal polymerization reactions of certain fuel components to give high molecular weight material that does not burn very well.
- the deposit layers both on cylinder head surfaces inside the combustion chamber and on piston tops.
- the piston top deposit in particular is fuel and moisture sensitive, and tends to curl and slough off when the deposit is fuel wetted and/or exposed to moisture. The symptoms of this flaking manifest themselves during cold start cranking when the combustion charge blows the sloughed off deposit from the combustion chamber and into the exhaust valve seats.
- the emission control changes being made have resulted in cold start difficulties ascribed to the higher fueling rates during cold start causing combustion chamber deposits to flake off and become lodged in the exhaust valve sealing band area, thereby preventing a good seal during compression and hence leading to misfires.
- the OBD system detects this immediately because of the subsequent elevated hydrocarbon emissions due to unburned fuel, and illuminates the malfunction indicator light (MIL) on the dashboard, necessitating a visit to the dealership for corrective repairs.
- Cold start difficulties due to CCD flaking tend to occur mainly in higher displacement engines with more cylinders (6, 8, and 10 cylinder engines) because in these bigger engines the cranking rate is lower, and it takes longer to blow the flaked deposits away from the exhaust valves.
- Combustion chamber deposit (CCD) flaking has been discovered to be reduced and even eliminated with the use of a fuel additive containing a metallic compound.
- a manganese-containing compound, MMT completely suppresses CCD flaking.
- a method of reducing combustion chamber deposit flaking in or of reducing cold start emissions from spark ignited internal combustion engines that experience combustion chamber deposits comprises the steps of supplying a fuel comprising an additive that includes a metal-containing compound to a spark ignited internal combustion engine, wherein the metal-containing compound is supplied in an amount effective to reduce combustion chamber deposit flaking.
- the metal-containing compound may be a compound containing one or more of the following metals: manganese, platinum, palladium, rhodium, iron, cerium, copper, nickel, silver, cobalt and molybdenum, and mixtures thereof.
- manganese platinum, palladium, rhodium, iron, cerium, copper, nickel, silver, cobalt and molybdenum, and mixtures thereof.
- An example of a manganese compound is described in detail herein, but other metal-containing additives may be used.
- the metal compound in the fuel is combusted in a spark ignited internal combustion engine. Use of the metal - containing additive reduces or eliminates CCD flaking.
- the fuels and additives herein are adapted to be combusted in any spark ignited internal combustion engine.
- Specific engines that will benefit include those having carbureted systems, port fuel injection systems, multi point injection systems, and direct injection gasoline systems. Also, turbocharged and supercharged versions of the foregoing will benefit. Other engines having advanced emissions controls, including for example exhaust gas recirculation, will benefit. Additionally, Otto cycle and two-stroke internal combustion engines will benefit.
- the nonleaded or unleaded gasoline bases in the present fuel composition are conventional motor fuel distillates boiling in the general range of about 70°F to 440°F. They include substantially all grades of unleaded gasoline presently being employed in spark ignition internal combustion engines. Generally they contain both straight runs and cracked stock, with or without alkylated hydrocarbons, reformed hydrocarbons and the like.
- Such gasolines can be prepared from saturated hydrocarbons, e.g., straight stocks, alkylation products and the like, with detergents, antioxidants, dispersants, metal deactivators, rust inhibitors, multi-functional additives, demulsifiers, fluidizer oils, antiicing, combustion catalysts, corrosion inhibitors, emulsifiers, surfactants, solvents or other similar and known additives. It is contemplated that in certain circumstances these additives may be included in concentrations above normal levels.
- the base gasoline will be a blend of stocks obtained from several refinery processes.
- the final blend may also contain hydrocarbons made by other procedures such as alkylates made by the reaction of C 4 olefins and butanes using an acid catalyst such as sulfuric acid or hydrofluoric acid, and aromatics made from a reformer.
- the motor gasoline bases used in formulating the fuel blends of this invention generally have initial boiling points ranging from about 70°F to about 100°F and final boiling points ranging from about 420°F to about 440°F as measured by the standard ASTM distillation procedure (ASTM D-86). Intermediate gasoline fractions boil away at temperatures within these extremes.
- base gasolines having a low sulfur content as the oxides of sulfur tend to contribute to the irritating and choking characteristics of smog and other forms of atmospheric pollution.
- Fuel sulfur also contributes significantly to the poisoning of exhaust aftertreatment catalysts.
- the base gasolines should contain not more than about 100 ppm of sulfur in the form of conventional sulfur-containing impurities.
- Another alternative includes fuels in which the sulfur content is no more than about 30 ppm.
- the gasoline bases which this invention employs should be lead-free or substantially lead-free.
- the gasoline may contain antiknock quantities of other agents such as cyclopentadienyl nickel nitrosyl, N-methyl aniline, oxygenates, and the like.
- Antiknock promoters such as 2.4 pentanedione may also be included.
- the gasoline may contain supplemental valve and valve seat recession protectants.
- Nonlimiting examples include; boron oxides, bismuth oxides, ceramic bonded CaF.sub.2, iron phosphate, tricresylphosphate, phosphorus and sodium based additives and the like.
- the fuel may further contain antioxidants such as 2,6 di-tert-butylephenol, 2,6-di-tert-buyl-p-cresol, phenylenediamines such as N-N.sup.1 -di-sec-butyl-p-pheylenediamine, N-isopropylphenylenediamine, and the like.
- the gasoline may contain dyes, metal deactivators, or other additives recognized to serve some useful purpose.
- the descriptive characteristics of one common base gasoline is given as follows. Obviously many other standard and specialized gasolines can be used in Applicants' fuel blend.
- One metal that may be used includes elemental and ionic manganese, precursors thereof, and mixtures of metal compounds including manganese. These manganese compounds may be either inorganic or organic. Also effective is the generation, liberation or production in situ of manganese or manganese ions.
- Inorganic metallic compounds in an example can include by example and without limitation fluorides, chlorides, bromides, iodides, oxides, nitrates, sulfates, phosphates, nitrides, hydrides, hydroxides, carbonates and mixtures thereof.
- Metal sulfates and phosphates will be operative and may, in certain fuels and combustion applications, not present unacceptable additional sulfur and phosphorus combustion byproducts.
- Organometallic compounds in an example include alcohols, aldehydes, ketones, esters, anhydrides, sulfonates, phosphonates, chelates, phenates, crown ethers, carboxylic acids, amides, acetyl acetonates, and mixtures thereof.
- Exemplary manganese containing organometallic compounds are manganese tricarbonyl compounds. Such compounds are taught, for example, in US Patent Nos. 4,568,357; 4,674,447; 5,113,803; 5,599,357; 5,944,858 and European Patent No. 466 512 B1.
- Suitable manganese tricarbonyl compounds which can be used include cyclopentadienyl manganese tricarbonyl, methylcyclopentadienyl manganese tricarbonyl, dimethylcyclopentadienyl manganese tricarbonyl, trimethylcyclopentadienyl manganese tricarbonyl, tetramethylcyclopentadienyl manganese tricarbonyl, pentamethylcyclopentadienyl manganese tricarbonyl, ethylcyclopentadienyl manganese tricarbonyl, diethylcyclopentadienyl manganese tricarbonyl, propylcyclopentadienyl manganese tricarbonyl, isopropylcyclopentadienyl manganese tricarbonyl, tert-butylcyclopentadienyl manganese tricarbonyl, octylcyclopentadienyl manganese tricarbonyl, do
- cyclopentadienyl manganese tricarbonyls which are liquid at room temperature such as methylcyclopentadienyl manganese tricarbonyl, ethylcyclopentadienyl manganese tricarbonyl, liquid mixtures of cyclopentadienyl manganese tricarbonyl and methylcyclopentadienyl manganese tricarbonyl, mixtures of methylcyclopentadienyl manganese tricarbonyl and ethylcyclopentadienyl manganese tricarbonyl, etc.
- the metal-containing compound When formulating additives to be used in the methods herein, the metal-containing compound must be employed in amounts sufficient to reduce or eliminate CCD flaking in the spark ignited internal combustion engine.
- the amounts will vary according to the particular metal or mixture of metals and metal-containing compounds.
- the amount of manganese added can be about 1 to about 50 mg manganese per liter.
- the metal-containing compounds are believed to act as both a free radical sink and a combustion catalyst.
- a radical sink the compounds may be inhibiting radical initiated fuel polymerization reactions hence limiting contribution to hydrocarbonaceous CCD by this route.
- the manganese for instance, catalytically participates in the CCD removal mechanism by promoting carbon oxidation at lower temperatures.
- cold start emissions refers to and is defined herein in accordance with the industry definition.
- the industry recognized definition of cold-start emissions can be found in the FTP-75 (Federal Test Procedure). Details of the test procedure are described in the Code of Federal Regulations (CFR 40, Part 86). Briefly, the test procedure consists of the following three phases: 1) Cold-start, 2) Transient, and 3) Hot-start.
- the FTP-75 emissions cycle simulates 11.04 miles (17.77 km) distance of travel in a time of 1874 seconds at an average speed of 21.2 mph (34.1 km/h). Before the test, the vehicle is conditioned overnight at 25 +/- 5 C to assure cold start conditions. The cold start is initiated followed by the transient phase.
- the vehicle is shut down for a hot soak of 10 minutes before being restarted to perform the hot phase.
- the emissions from each phase are collected in a separate Teflon bag for each test phase, and analyzed. Quantities of each emission component (HC, CO, CO 2 , NO x , etc) are expressed in g/mile (g/km) for each phase.
- HC hydrocarbon emissions
- the cold-start phase is the most important because it contributes 80 - 90% of the total from the three phases.
- Fuels that included and did not include a metal-containing compound were compared in an engine test.
- Manganese in MMT® was the additive used at a treat rate 8.25 mg. of manganese per liter of fuel.
- the vehicle used in this study was a Dodge Intrepid with a six cylinder engine. It was operated for 3000 miles on the test cycle described below while fueled with non additized CITGO RUL gasoline. At the end of the test the engine was dismantled and rated for CCD flaking according to a procedure adapted from that published by Gautam T. Kalghatgi in the SAE Paper Series 2002-01-2833. Then the test was repeated with the additive treated fuel.
- the use of the specific metal-containing additive noted completely eliminated flaking of combustion chamber deposits. In other words, no CCD flaked off when the additive was used.
- Other metal-containing additives known to be radical sinks (anti-knocks) and/or combustion improvers such as those that enhance carbon burnout at lower temperatures may be used, and the treat rate of any additive may be varied. By changing the selection of additive and/or the treat rate of the additive, the amount of reduction in flaking may be controlled. It is believed that, in the case of a manganese-containing additive, a treat rate of about two mg. of manganese per liter of fuel will achieve up to about a 50% reduction in CCD flaking.
- the reactants and components are identified as ingredients to be brought together either in performing a desired chemical reaction (such as formation of the organometallic compound) or in forming a desired composition (such as an additive concentrate or additized fuel blend).
- a desired chemical reaction such as formation of the organometallic compound
- a desired composition such as an additive concentrate or additized fuel blend
- the additive components can be added or blended into or with the base fuels individually per se and/or as components used in forming preformed additive combinations and/or sub-combinations.
- the claims hereinafter may refer to substances, components and/or ingredients in the present tense ("comprises”, "is”, etc.), the reference is to the substance, components or ingredient as it existed at the time just before it was first blended or mixed with one or more other substances, components and/or ingredients in accordance with the present disclosure.
- the fact that the substance, components or ingredient may have lost its original identity through a chemical reaction or transformation during the course of such blending or mixing operations or immediately thereafter is thus wholly immaterial for an accurate
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Emergency Medicine (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Liquid Carbonaceous Fuels (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
- Catalysts (AREA)
- Spark Plugs (AREA)
- Ignition Installations For Internal Combustion Engines (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US696618 | 2003-10-29 | ||
US10/696,618 US20050091913A1 (en) | 2003-10-29 | 2003-10-29 | Method for reducing combustion chamber deposit flaking |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1528097A2 true EP1528097A2 (fr) | 2005-05-04 |
EP1528097A3 EP1528097A3 (fr) | 2005-07-13 |
EP1528097B1 EP1528097B1 (fr) | 2010-12-08 |
Family
ID=34423374
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04024823A Expired - Lifetime EP1528097B1 (fr) | 2003-10-29 | 2004-10-19 | Procédé pour diminuer l'écaillage des dépôts de la chambre de combustion. |
Country Status (15)
Country | Link |
---|---|
US (1) | US20050091913A1 (fr) |
EP (1) | EP1528097B1 (fr) |
JP (1) | JP2005133720A (fr) |
KR (1) | KR20050040783A (fr) |
CN (2) | CN101914397A (fr) |
AR (1) | AR046559A1 (fr) |
AT (1) | ATE491012T1 (fr) |
AU (1) | AU2004218620A1 (fr) |
BR (1) | BRPI0404762A (fr) |
CA (2) | CA2482735C (fr) |
DE (1) | DE602004030408D1 (fr) |
MX (1) | MXPA04010020A (fr) |
RU (1) | RU2283437C2 (fr) |
SG (1) | SG111280A1 (fr) |
ZA (1) | ZA200408543B (fr) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006005543B4 (de) * | 2006-02-07 | 2010-06-24 | Airbus Deutschland Gmbh | Flugzeugklimatisierungssystem mit Zyklonausströmern |
US20070245621A1 (en) * | 2006-04-20 | 2007-10-25 | Malfer Dennis J | Additives for minimizing injector fouling and valve deposits and their uses |
US7780746B2 (en) * | 2006-09-22 | 2010-08-24 | Afton Chemical Corporation | Additives and lubricant formulations for improved used oil combustion properties |
US8715373B2 (en) * | 2007-07-10 | 2014-05-06 | Afton Chemical Corporation | Fuel composition comprising a nitrogen-containing compound |
CN103965978A (zh) * | 2014-05-09 | 2014-08-06 | 陕西禾合化工科技有限公司 | 一种过渡金属型汽油抗爆剂 |
Family Cites Families (64)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3127351A (en) * | 1964-03-31 | Xxvii | ||
US2086775A (en) * | 1936-07-13 | 1937-07-13 | Leo Corp | Method of operating an internal combustion engine |
US2151432A (en) * | 1937-07-03 | 1939-03-21 | Leo Corp | Method of operating internal combustion engines |
US2844447A (en) * | 1953-12-29 | 1958-07-22 | Standard Oil Co | Gasoline fuel compositions |
US2818417A (en) * | 1955-07-11 | 1957-12-31 | Ethyl Corp | Cyclomatic compounds |
GB787374A (en) * | 1956-01-12 | 1957-12-04 | Ethyl Corp | Antiknock compounds |
NL248043A (fr) * | 1959-03-16 | 1900-01-01 | ||
US3179506A (en) * | 1962-05-02 | 1965-04-20 | Shell Oil Co | Gasoline composition |
US3442631A (en) * | 1967-09-28 | 1969-05-06 | Ethyl Corp | Jet engine deposit modification |
US4036605A (en) * | 1971-09-01 | 1977-07-19 | Gulf Research & Development Company | Chelates of cerium (IV), their preparation and gasoline containing said chelates |
US4104036A (en) * | 1976-03-08 | 1978-08-01 | Atlantic Richfield Company | Iron-containing motor fuel compositions and method for using same |
US4139349A (en) * | 1977-09-21 | 1979-02-13 | E. I. Du Pont De Nemours & Co. | Fuel compositions containing synergistic mixtures of iron and manganese antiknock compounds |
US4175927A (en) * | 1978-03-27 | 1979-11-27 | Ethyl Corporation | Fuel compositions for reducing hydrocarbon emissions |
US4317657A (en) * | 1978-03-27 | 1982-03-02 | Ethyl Corporation | Gasoline additive fluids to reduce hydrocarbon emissions |
US4191536A (en) * | 1978-07-24 | 1980-03-04 | Ethyl Corporation | Fuel compositions for reducing combustion chamber deposits and hydrocarbon emissions of internal combustion engines |
US4266946A (en) * | 1980-04-28 | 1981-05-12 | Ethyl Corporation | Gasoline containing exhaust emission reducing additives |
US4674447A (en) * | 1980-05-27 | 1987-06-23 | Davis Robert E | Prevention of fouling in internal combustion engines and their exhaust systems and improved gasoline compositions |
US4390345A (en) * | 1980-11-17 | 1983-06-28 | Somorjai Gabor A | Fuel compositions and additive mixtures for reducing hydrocarbon emissions |
US4474580A (en) * | 1982-03-16 | 1984-10-02 | Mackenzie Chemical Works, Inc. | Combustion fuel additives comprising metal enolates |
AU3432684A (en) * | 1983-10-05 | 1985-04-23 | Lubrizol Corporation, The | Manganese and copper containing compositions |
US6039772A (en) * | 1984-10-09 | 2000-03-21 | Orr; William C. | Non leaded fuel composition |
US4891050A (en) * | 1985-11-08 | 1990-01-02 | Fuel Tech, Inc. | Gasoline additives and gasoline containing soluble platinum group metal compounds and use in internal combustion engines |
US4568357A (en) * | 1984-12-24 | 1986-02-04 | General Motors Corporation | Diesel fuel comprising cerium and manganese additives for improved trap regenerability |
US4670020A (en) * | 1984-12-24 | 1987-06-02 | Ford Motor Company | Carbon ignition temperature depressing agent and method of regenerating an automotive particulate trap utilizing said agent |
US4690687A (en) * | 1985-08-16 | 1987-09-01 | The Lubrizol Corporation | Fuel products comprising a lead scavenger |
US4588416A (en) * | 1985-09-20 | 1986-05-13 | Ethyl Corporation | Fuel compositions |
US4804388A (en) * | 1987-10-02 | 1989-02-14 | Ira Kukin | Combustion control by addition of manganese and magnesium in specific amounts |
DE3801947A1 (de) * | 1988-01-23 | 1989-08-03 | Veba Oel Ag | Verfahren zum betreiben eines otto-motors |
DE3809307A1 (de) * | 1988-03-19 | 1989-09-28 | Veba Oel Ag | Motorschmieroel fuer dieselmotoren und verfahren zum betreiben eines dieselmotors |
US4908045A (en) * | 1988-12-23 | 1990-03-13 | Velino Ventures, Inc. | Engine cleaning additives for diesel fuel |
US5501714A (en) * | 1988-12-28 | 1996-03-26 | Platinum Plus, Inc. | Operation of diesel engines with reduced particulate emission by utilization of platinum group metal fuel additive and pass-through catalytic oxidizer |
US5584894A (en) * | 1992-07-22 | 1996-12-17 | Platinum Plus, Inc. | Reduction of nitrogen oxides emissions from vehicular diesel engines |
US6051040A (en) * | 1988-12-28 | 2000-04-18 | Clean Diesel Technologies, Inc. | Method for reducing emissions of NOx and particulates from a diesel engine |
US5034020A (en) * | 1988-12-28 | 1991-07-23 | Platinum Plus, Inc. | Method for catalyzing fuel for powering internal combustion engines |
CA2045706C (fr) * | 1990-07-13 | 2002-09-17 | Thomas Albert Leeper | Carburants de moteur a essence aux proprietes ameliorees |
US5599357A (en) * | 1990-07-13 | 1997-02-04 | Ehtyl Corporation | Method of operating a refinery to reduce atmospheric pollution |
US5944858A (en) * | 1990-09-20 | 1999-08-31 | Ethyl Petroleum Additives, Ltd. | Hydrocarbonaceous fuel compositions and additives therefor |
US5113803A (en) * | 1991-04-01 | 1992-05-19 | Ethyl Petroleum Additives, Inc. | Reduction of Nox emissions from gasoline engines |
US5376154A (en) * | 1991-05-13 | 1994-12-27 | The Lubrizol Corporation | Low-sulfur diesel fuels containing organometallic complexes |
TW230781B (fr) * | 1991-05-13 | 1994-09-21 | Lubysu Co | |
US5551957A (en) * | 1992-05-06 | 1996-09-03 | Ethyl Corporation | Compostions for control of induction system deposits |
AU668151B2 (en) * | 1992-05-06 | 1996-04-26 | Afton Chemical Corporation | Composition for control of induction system deposits |
EP0590814B1 (fr) * | 1992-09-28 | 1996-12-18 | Ford Motor Company Limited | Système de contrÔle d'émission de particules et de gaz d'échappement |
JPH06128570A (ja) * | 1992-10-14 | 1994-05-10 | Nippon Oil Co Ltd | 無鉛高オクタン価ガソリン |
US6003303A (en) * | 1993-01-11 | 1999-12-21 | Clean Diesel Technologies, Inc. | Methods for reducing harmful emissions from a diesel engine |
US6152972A (en) * | 1993-03-29 | 2000-11-28 | Blue Planet Technologies Co., L.P. | Gasoline additives for catalytic control of emissions from combustion engines |
DE4423003C2 (de) * | 1993-07-06 | 1999-01-21 | Ford Werke Ag | Verfahren und Vorrichtung zum Reduzieren von NO¶x¶ in den Abgasen von Kraftfahrzeugverbrennungsmotoren |
US5732548A (en) * | 1994-10-07 | 1998-03-31 | Platinum Plus, Inc. | Method for reducing harmful emissions from two-stroke engines |
DE19504450A1 (de) * | 1995-02-10 | 1996-08-22 | Florian Gamel | Abgasreinigungsvorrichtung für Verbrennungskraftmaschinen |
EP0846151A1 (fr) * | 1995-04-24 | 1998-06-10 | The Associated Octel Company Limited | Amelioration de la combustion |
GB9508248D0 (en) * | 1995-04-24 | 1995-06-14 | Ass Octel | Process |
CA2205143C (fr) * | 1996-05-14 | 2003-07-15 | Ethyl Corporation | Procede et produits permettant d'ameliorer l'efficacite de combustion de combustibles de chauffage hydrocarbones |
US5809774A (en) * | 1996-11-19 | 1998-09-22 | Clean Diesel Technologies, Inc. | System for fueling and feeding chemicals to internal combustion engines for NOx reduction |
GB2321906A (en) * | 1997-02-07 | 1998-08-12 | Ethyl Petroleum Additives Ltd | Fuel additive for reducing engine emissions |
US6361754B1 (en) * | 1997-03-27 | 2002-03-26 | Clean Diesel Technologies, Inc. | Reducing no emissions from an engine by on-demand generation of ammonia for selective catalytic reduction |
US5809775A (en) * | 1997-04-02 | 1998-09-22 | Clean Diesel Technologies, Inc. | Reducing NOx emissions from an engine by selective catalytic reduction utilizing solid reagents |
US5976475A (en) * | 1997-04-02 | 1999-11-02 | Clean Diesel Technologies, Inc. | Reducing NOx emissions from an engine by temperature-controlled urea injection for selective catalytic reduction |
US5924280A (en) * | 1997-04-04 | 1999-07-20 | Clean Diesel Technologies, Inc. | Reducing NOx emissions from an engine while maximizing fuel economy |
TW509719B (en) * | 1997-04-17 | 2002-11-11 | Clean Diesel Tech Inc | Method for reducing emissions from a diesel engine |
DE19818536C2 (de) * | 1998-04-24 | 2002-04-11 | Daimler Chrysler Ag | Verfahren zur Neutralisierung von Schwefeldioxid und/oder Schwefeltrioxid in Abgasen |
US6206685B1 (en) * | 1999-08-31 | 2001-03-27 | Ge Energy And Environmental Research Corporation | Method for reducing NOx in combustion flue gas using metal-containing additives |
US6193767B1 (en) * | 1999-09-28 | 2001-02-27 | The Lubrizol Corporation | Fuel additives and fuel compositions comprising said fuel additives |
US6629407B2 (en) * | 2000-12-12 | 2003-10-07 | Ethyl Corporation | Lean burn emissions system protectant composition and method |
MXPA03008598A (es) * | 2001-03-22 | 2005-03-07 | Oryxe energy int inc | Metodo y composicion para utilizar materiales organicos, derivados de plantas, extraidos de aceite en combustibles fosiles para emisiones reducidas. |
-
2003
- 2003-10-29 US US10/696,618 patent/US20050091913A1/en not_active Abandoned
-
2004
- 2004-09-28 CA CA002482735A patent/CA2482735C/fr not_active Expired - Lifetime
- 2004-09-28 CA CA2677761A patent/CA2677761C/fr not_active Expired - Lifetime
- 2004-10-05 AU AU2004218620A patent/AU2004218620A1/en not_active Abandoned
- 2004-10-12 MX MXPA04010020A patent/MXPA04010020A/es active IP Right Grant
- 2004-10-19 AT AT04024823T patent/ATE491012T1/de not_active IP Right Cessation
- 2004-10-19 EP EP04024823A patent/EP1528097B1/fr not_active Expired - Lifetime
- 2004-10-19 DE DE602004030408T patent/DE602004030408D1/de not_active Expired - Lifetime
- 2004-10-21 ZA ZA2004/08543A patent/ZA200408543B/en unknown
- 2004-10-25 JP JP2004309792A patent/JP2005133720A/ja active Pending
- 2004-10-26 AR ARP040103895A patent/AR046559A1/es active IP Right Grant
- 2004-10-28 CN CN2010102753375A patent/CN101914397A/zh active Pending
- 2004-10-28 CN CNA2004100921718A patent/CN1637120A/zh active Pending
- 2004-10-28 BR BR0404762-1A patent/BRPI0404762A/pt not_active Application Discontinuation
- 2004-10-28 RU RU2004131494/06A patent/RU2283437C2/ru not_active IP Right Cessation
- 2004-10-28 KR KR1020040086425A patent/KR20050040783A/ko active Search and Examination
- 2004-10-28 SG SG200406302A patent/SG111280A1/en unknown
Non-Patent Citations (1)
Title |
---|
None |
Also Published As
Publication number | Publication date |
---|---|
CA2677761C (fr) | 2011-09-13 |
AU2004218620A1 (en) | 2005-05-19 |
AR046559A1 (es) | 2005-12-14 |
US20050091913A1 (en) | 2005-05-05 |
BRPI0404762A (pt) | 2005-06-28 |
CA2677761A1 (fr) | 2005-04-29 |
ZA200408543B (en) | 2005-09-28 |
CN101914397A (zh) | 2010-12-15 |
EP1528097B1 (fr) | 2010-12-08 |
CN1637120A (zh) | 2005-07-13 |
CA2482735A1 (fr) | 2005-04-29 |
KR20050040783A (ko) | 2005-05-03 |
SG111280A1 (en) | 2005-05-30 |
RU2004131494A (ru) | 2006-05-10 |
CA2482735C (fr) | 2009-11-24 |
DE602004030408D1 (de) | 2011-01-20 |
MXPA04010020A (es) | 2005-05-03 |
ATE491012T1 (de) | 2010-12-15 |
JP2005133720A (ja) | 2005-05-26 |
RU2283437C2 (ru) | 2006-09-10 |
EP1528097A3 (fr) | 2005-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8852299B2 (en) | Fuel composition | |
US5819529A (en) | Method for reducing emissions from two-stroke engines | |
JP3796355B2 (ja) | 点火改良剤を含有するガソリン組成物 | |
CN102643691A (zh) | 一种汽油复合添加剂 | |
US7063729B2 (en) | Low-emissions diesel fuel | |
CA2219029A1 (fr) | Procede synergique d'amelioration de la combustion | |
RU2296152C2 (ru) | Способ улучшения работы систем сжигания дизельного топлива | |
RU2355737C2 (ru) | Топливная композиция, содержащая железо и марганец, для уменьшения засорения свечи зажигания | |
CA2677761C (fr) | Methode de reduction des emissions de depart a froid | |
Danilov | Fuel additives: evolution and use in 1996-2000 | |
EP0667387B1 (fr) | Réduire les émissions d'échappement de moteurs à allumage par étincelle | |
JP2004091657A (ja) | 予混合圧縮自己着火式エンジン用燃料 | |
Tupa et al. | Gasoline and Diesel Fuel Additives for Performance/Distribution Quality—II | |
JP2004091659A (ja) | 予混合圧縮自己着火式エンジン用燃料 | |
Tupa et al. | Gasoline and diesel fuel additives for performance/distribution/quality | |
RU2263135C2 (ru) | Многофункциональная добавка к моторному топливу | |
JP4458405B2 (ja) | 予混合圧縮自己着火式エンジン用燃料 | |
SG171415A1 (en) | Improvement in or relating to fuel additive compositions | |
JP2004091660A (ja) | 予混合圧縮自己着火式エンジン用燃料 | |
JP2004091667A (ja) | 予混合圧縮自己着火式エンジン用燃料 | |
FI4065671T3 (fi) | Alkyylifenoliyhdisteiden käyttö bensiinien puhdistusaineen lisäaineina | |
JP2004091663A (ja) | 予混合圧縮自己着火式エンジン用燃料 | |
JP2004091664A (ja) | 予混合圧縮自己着火式エンジン用燃料 | |
EP1054051A1 (fr) | Compositions de combustible diesel contenant des amines primaires d alkyle tertiaire | |
JPH06192208A (ja) | アロファン酸エステル、その製造方法およびそれを含む自動車用燃料組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20041019 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL HR LT LV MK |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL HR LT LV MK |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 602004030408 Country of ref document: DE Date of ref document: 20110120 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20101208 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101208 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101208 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101208 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110308 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101208 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101208 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101208 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110408 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110319 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101208 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101208 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101208 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101208 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101208 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101208 |
|
26N | No opposition filed |
Effective date: 20110909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101208 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602004030408 Country of ref document: DE Effective date: 20110909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111031 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111031 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111019 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111019 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101208 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101208 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20161027 Year of fee payment: 13 Ref country code: FR Payment date: 20161025 Year of fee payment: 13 Ref country code: GB Payment date: 20161027 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20161027 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602004030408 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20171019 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20180629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171019 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180501 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20171031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171031 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171031 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602004030408 Country of ref document: DE Representative=s name: SOMMER, ANDREA, DIPL.-CHEM. DR.PHIL.NAT., DE |