EP1527537A1 - Procede de transmission d'au moins un premier et un deuxieme signal de donnees en multiplexage de polarisation dans un systeme de transmission optique - Google Patents

Procede de transmission d'au moins un premier et un deuxieme signal de donnees en multiplexage de polarisation dans un systeme de transmission optique

Info

Publication number
EP1527537A1
EP1527537A1 EP03790635A EP03790635A EP1527537A1 EP 1527537 A1 EP1527537 A1 EP 1527537A1 EP 03790635 A EP03790635 A EP 03790635A EP 03790635 A EP03790635 A EP 03790635A EP 1527537 A1 EP1527537 A1 EP 1527537A1
Authority
EP
European Patent Office
Prior art keywords
signal
sideband
modulated
polarization
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03790635A
Other languages
German (de)
English (en)
Inventor
Christoph Glingener
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xieon Networks SARL
Original Assignee
Siemens AG
Nokia Siemens Networks GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG, Nokia Siemens Networks GmbH and Co KG filed Critical Siemens AG
Publication of EP1527537A1 publication Critical patent/EP1527537A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/06Polarisation multiplex systems

Definitions

  • optical transmission systems an expansion of the transmission capacity of existing optical transmission systems is made possible by the fact that the optical data signals are transmitted in polarization multiplex.
  • two carrier signals are generated in at least one transmitter arrangement with the same wavelength, which are each modulated with a data signal.
  • the first and second modulated signals have an orthogonal polarization.
  • the mutually orthogonally polarized modulated signals are combined to form an optical polarization multiplex signal.
  • the optical polarization multiplex signal is coupled into the optical transmission fiber and transmitted to a receiving unit via the optical transmission path.
  • the two orthogonally polarized modulated signals are recovered from the polarization multiplex signal depending on the wavelength and polarization.
  • the recovery of the two orthogonally polarized modulated signals from the polarization multiplex signal represents one of the problems in the transmission of optical data signals in polarization multiplex.
  • the polarization actuator controlled on the basis of the appropriate control criterion and for example a subsequent polarization splitter or a polarization filter
  • the mutually orthogonally polarized transmitted modulated signals are separated.
  • the object of the invention is to be seen in specifying a novel method for the transmission of high bit rate optical signals in polarization multiplex with increased transmission bandwidth.
  • the main advantage of the method according to the invention can be seen in the fact that, in order to transmit at least a first and a second data signal in polarization multiplexing in an optical transmission system, the first data signal is transmitted to a sideband of a first carrier signal in a first step to generate a first sideband modulated Signal and the second .Data signal is modulated onto a sideband of a second carrier signal to generate a second sideband-modulated signal.
  • the first data signal is transmitted to a sideband of a first carrier signal in a first step to generate a first sideband modulated Signal and the second .Data signal is modulated onto a sideband of a second carrier signal to generate a second sideband-modulated signal.
  • the first and second sideband-modulated signals are polarized orthogonally to one another and combined and transmitted to form an optical multiplex signal.
  • the optical multiplex signal is passed on the receiving side via a polarization actuator to a polarization splitter which separates the transmitted optical multiplex signal into the first and second modulated signals.
  • the first sideband-modulated signal is converted into a first electrical signal and / or the second sideband-modulated signal into a second electrical signal
  • the first and / or the second electrical signal is evaluated and, depending on this, at least one control signal Regulation of the polarization actuator derived.
  • Two carrier signals differing by a difference frequency are advantageously used for the transmission of the two optical data signals.
  • the spectral component of the first and / or the second electrical signal at the differential frequency is determined on the transmission side.
  • at least one polarization actuator arranged at the receiving end is controlled, the squaring property of an opto-electrical converter, for example a photodiode, being used to obtain a control criterion.
  • Transmitted electrical signal at the differential frequency undesirable spectral components, provided that the separation carried out with the aid of the polarization splitter of the two sideband-modulated signals transmitted in the polarization multiplex is not exact.
  • These spectral components lying at the difference frequency arise in both the first and the second electrical signal.
  • the amplitude of these spectral components is evaluated to form at least one control signal for controlling the polarization actuator.
  • the polarization actuator is used, for example
  • a separation of the two sideband-modulated signals transmitted in the polarization multiplex that is as exact as possible is possible at the receiving end.
  • the first or second sideband-modulated signal is advantageously delayed on the transmission side, as a result of which an effective decorrelation of the first and second sideband-modulated signal is achieved. This further increases the sharpness of the control criterion.
  • Another advantage of the invention is the fact that at least one pilot tone signal is superimposed on the transmission side of the first and / or the second carrier signal to distinguish the first and second electrical signals.
  • a pilot tone with a fixed frequency is advantageously superimposed on the first and / or second sideband-modulated signal, on the basis of which, after the transmission-side separation of the first and second sideband-modulated signals with the aid of the polarization splitter and the conversion into a first and second electrical signal, a clear identification of the first and second electrical signal as such is possible.
  • the first and second data signals can be transmitted with different transmission bit rates or data formats.
  • the first and second data signals have different transmission bit rates, and thus the respective electrical signal can advantageously be identified on the receiving side using the assigned transmission bit rate.
  • Figure 1 shows an example of an optical transmission system for transmitting at least one first and second data signal modulated on a sideband of carrier signals in polarization multiplex
  • FIGS. 2a-d show the power spectra of the first and second sideband-modulated signals
  • FIG. 3 shows the amplitude profile of the determined spectral component at the difference frequency as a function of the polarization angle.
  • an optical transmission system OTS is shown schematically by way of example, which has a transmission arrangement SA and a reception arrangement EA connected via an optical transmission aser OF.
  • the transmission arrangement SA includes, for example, first and second data units D1, D2, an optical signal generation unit OSU, an optical splitter unit SU, first and second modulator units MU1, MU2, first and second optical sideband filter units 0SBF1, OSBF2, a polarization controller PC and a Polarization multiplexer PM provided.
  • the receiving arrangement EA comprises a polarization actuator PTF, a polarization splitter PBS, a first and second opto-electrical converter RX1, RX2, a first and second filter unit FU1, FU2 and a control unit CU.
  • the control unit CU additionally has a measuring and evaluation unit MBU.
  • the first data unit D1 of the transmission arrangement SA is connected to the first modulator unit MU1, which is connected to the first input il of the polarization multiplexer PM via the first optical sideband filter unit 0SBF1 and the polarization controller PC.
  • the second data unit D2 is connected to the second modulator unit MU2, which is connected via the second optical sideband filter unit 0SBF2 and optionally via a delay element D to the second input e2 of the polarization multiplexer PM.
  • the option of the delay element D is indicated in FIG. 1 by a dashed line.
  • a first and a second electrical sideband filter unit ESBF1, ESBF2 are provided, which are connected between the first data unit D1 and the first multiplexer MU1 or between the second data unit D2 and the second multiplexer MU2.
  • Either the first and second electrical sideband filter units ESBF1, ESBF2 or the first and second optical sideband filter units OSBF1, OSBF2 can be used to generate the electrical or optical sideband signals.
  • the optical signal generation unit OSU is connected to the first and second modulator units MU1, MU2 via the optical splitter unit SU, which has a division ratio of 1: 2, for example.
  • the optical transmission fiber OF is connected to the output e of the polarization multiplexer PM, the output of which is led to the input i of the polarization actuator PTF of the receiving arrangement EA.
  • the optical transmission fiber OF can comprise a plurality of optical transmission fiber sections (not shown in FIG. 1).
  • the output e of the polarization actuator PTF is connected to the input i of the polarization splitter PBS. Its first output is el with the first opto-electrical
  • the first and second opto-electrical converters RX1, RX2 are connected to the first and second filter units FU1, FU2.
  • the first filter unit FU1 and the second filter unit FU2 are connected, for example, via a first or a second control line RL1, RL2 to the first or second input il, i2 of the control unit CU, the output e of which via a control line SL to the control input ri des Polarization actuator PTF is connected.
  • the control unit CU has, for example, a measuring and evaluation unit MBU.
  • An optical signal os is generated in the optical signal generation unit OSU, the optical signal being configured as an optical “white light signal” or an optical pulse signal that has a constant frequency.
  • the optical signal os is transmitted to the optical splitter unit SU and divided into a first and a second carrier signal tsl, ts2.
  • the first and second carrier signals tsl, ts2 have the same frequency fi, f 2 .
  • two separate optical signal generating units 0SU1,2 - in Figure 1 not shown - is provided, with the aid of a first and second carrier signal TSL are generated ts2, the f ⁇ a shifted by a difference frequency .DELTA.f first and second frequency, f 2 have.
  • the first carrier signal tsl is transmitted to the first modulator unit MU1 and the second carrier signal ts2 to the second modulator unit MU2.
  • the first modulator unit MU1 the first data signal is dsl modulated tsl on a sideband of the first carrier signal, and 'thereby generating a first sideband modulated signal msl, which via the first optical sideband filter unit 0SBF1 and the polarization controller PC to the first input il of the polarization PM is controlled.
  • a second data signal ds2 is likewise generated in the second data unit D2 in the first data format or in a second data format - for example the non-return-to-zero data format (NRZ) - and transmitted from the second data unit D2 to the second modulator unit MU2 ,
  • the second data signal ds2 is modulated onto a sideband of the second carrier signal ts2.
  • a second sideband-modulated signal ms2 is formed, which is routed via the second optical sideband filter unit 0SBF1 and optionally via the delay element D to the second input i2 of the polarization multiplexer PM.
  • the first and second carrier signals tsl, ts2 can be modulated with the first and second data signals dsl, ds2 using single sideband modulation or residual sideband modulation.
  • the transmission characteristics of the first and second electrical sideband filter units ESBF1, ESBF2 and the first and second optical sideband filter units OSBF1, OSBF2 are adapted to the respective sideband modulation method used.
  • the first and second electrical sideband filter units ESBF1, ESBF2 and the first and second optical sideband filter units OSBFl, OSBF2 are used to filter out the sideband required for the transmission of the first and second data signals dsl, ds2 before or after the modulation, the sideband modulation is implemented, for example, with the aid of a Hilbert transformer - see the publication by Mike Sieben, et al., "Optical Single Sideband Transmission at 10 Gb / s Using Only Electrical Dispersion Compensation", Journal of Lightwave Technology, Vol. 17 , No. 10, October 1999.
  • first and second sideband-modulated signals ms1, ms2 When the first and second sideband-modulated signals ms1, ms2 are generated, their polarization is preset in such a way that they are polarized orthogonally to one another and thus can be transmitted in polarization multiplex via the optical transmission fiber OF to the receiving arrangement EA.
  • polarization controllers PC can be provided on the receiving side. If the first and second carrier signals tsl, ts2 are generated by two separate optical signal generation units OSU, a polarization controller PC is not absolutely necessary. lent, since with the help of modern optical signal generation units OSU optical signals with a predetermined polarization can already be generated.
  • the polarization controller PC ensures an orthogonal polarization ratio between the first and second sideband-modulated signals ms1, ms2, alternatively or additionally, a polarization controller PC can be arranged between the second optical sideband filter unit OSFB2 and the polarization multiplexer.
  • the second sideband-modulated signal ms2 is optionally delayed by the delay element D, as a result of which the first and second sideband-modulated signals ms1, ms2 can be decorrelated on the transmission side.
  • the first and second sideband-modulated signals msl, ms2 are combined with the aid of the polarization multiplexer PM to form an optical multiplex signal oms, which is fed into the optical transmission fiber OF at the output e of the polarization multiplexer PM.
  • the first and second sideband-modulated signals ms1, ms2 are then transmitted in the form of the optical multiplex signal oms in polarization multiplex via the optical transmission fiber OF.
  • the optical multiplex signal oms is led to the input i of the polarization control element PTF, with the aid of which the polarization of the transmitted first and / or second sideband-modulated signal ms1, ms2 can be regulated within the optical multiplex signal oms.
  • the optical multiplex signal oms is passed to the input i of the polarization splitter PBS, which converts the optical multiplex signal oms into the first sideband-modulated signal msl * and the second sideband-modulated signal ms2 * splits.
  • the accuracy of the splitting of the optical multiplex signal oms into that The first sideband-modulated signal and the second sideband-modulated signal msl *, ms2 * depend on the orthogonality of the polarization of the two signals msl *, ms2 *.
  • the first sideband-modulated signal msl * is output at the first output el of the polarization splitter PSB and is controlled at the first opto-electrical converter RX1.
  • the second sideband-modulated signal ms2 * is emitted at the second output e2 of the polarization splitter PBS and transmitted to the second opto-electrical converter RX2.
  • the recovered first and second sideband-modulated signals ms1 *, ms2 * are converted by the first and second opto-electrical converters RX1, RX2 into first and second electrical signals es1, es2, which are sent to the first and second filter units FU1 , FU2 is controlled.
  • a selected spectral component of the first and second electrical signals es1, es2 is filtered out and the filtered first and second electrical signals es1 F , es2 F via the first and second control lines RL1, RL2 the control unit CU transmitted.
  • the amplitude of the filtered first and / or the second electrical signal es1 F , es2 F is determined with the aid of the measuring and evaluation unit MBU and the amplitude / s is then evaluated. Based on the evaluation result, at least one control signal rs for regulating the polarization actuator PTF is derived, which is fed via the control line SL to the control input ri of the polarization actuator PTF.
  • the control signal rs for example the voltage amplitude or the current amplitude or the power amplitude of the filtered first and / or the second electrical signal es1 F , es2 F can be measured and evaluated.
  • the polarization actuator PTF controlled by the control signal rs the polarization of the optical multiplex signal oms changes in such a way that the amplitude of the filtered first and / or the second electrical signal es1 F , es2 F determined by the measurement and evaluation unit MBU of the control unit CU becomes minimal.
  • the receiving arrangement EA consisting of the polarization actuator PTF and the polarization splitter PBS is set optimally for separating the first sideband-modulated signal ms1 and the second sideband-modulated signal ms2.
  • the polarization actuator PTF can be regulated in various ways, for example by means of a pilot method, correlation method and interference method. Control according to the frequency offset method is particularly preferred (see the teaching of German patent application 10147892.5). In such a control, the first and second carrier signals tsl, ts2, the first and second sideband-modulated signals msl, ms2 have a difference frequency ⁇ f. Due to the squaring properties of the first and second opto-electrical converters RX1, RX2, a spectral component is generated at the difference frequency ⁇ f.
  • these spectral components of the first and second electrical signals comprise esl, es2 a minimum on or are "no longer measurable.
  • the first through the first and second filter unit FU1, FU2 this relevant spectral component at the difference frequency .DELTA.f and second electrical signal esl, es2 and the amplitude and measurement unit MBU determine the amplitude of the filtered first and / or second electrical signal esl F , es2 F.
  • Typical values for the difference frequency ⁇ f des first and second carrier signals tsl, ts2 are in the range greater than one gigahertz.
  • the arrangement shown in FIG. 1 thus realizes an exact reception-side separation of the first and second sideband-modulated signals ms1, ms2, which are polarized orthogonally with respect to one another.
  • the power spectra or distributions PSD of the first and second optical sideband-modulated signals ms1, ms2 are plotted against the frequency f in several diagrams. This is shown by way of example for the transmission of two optical data signals ds1, ds2 present in the NRZ data format using the single-sideband modulation method with a transmission rate of 10 Gbit / s each.
  • the first optical sideband-modulated signal ms1 is indicated by a solid line and the second optical sideband-modulated signal ms2 is indicated by a dotted line.
  • the first and second sideband-modulated signals msl, ms2 likewise have first and second carrier signals tsl, ts2 with the same frequency the first and data signals dsl, dsl are modulated onto the identical single sideband.
  • FIG. 2c shows the power distribution PSD of the first and second optical sideband-modulated signals ms1, ms2 over the frequency f in the event of a shift in the frequencies of the first and second carrier signals tsl, ts2 by a difference frequency ⁇ f and
  • FIG. 2d shows the resulting spectrum for the application shown in FIG. 2c.
  • the polarization angle pa is plotted on the abscissa and the amplitude P on the ordinate.
  • This maximum MAX of the spectral component at the difference frequency ⁇ f decreases with increasing as well as with decreasing polarization shift between the first and second electrical signals es1, es2 and reaches a first minimum MIN ⁇ at 0 ° and a second minimum MIN 2 at 90 °.
  • the first and second sideband-modulated signals ms1, ms2 transmitted within the optical modulation signal oms are ideally orthogonally polarized and can therefore be separated almost perfectly using the polarization splitter PBS.
  • the modulated signal of one polarization for example the first modulated signal msl
  • the modulated signal is other polarization, for example the second modulated signal ms2
  • All other polarization angles pa are not desirable and lead to crosstalk when the first and second modulated signals ms1, ms2 are separated.
  • the control criterion shown in FIG. 3 becomes even more high-contrast, as a result of which an even sharper control signal rs can be formed in the control unit CU.
  • the first or the second sideband-modulated signal ms1, ms2 can be delayed with the help of one or more delay elements D.
  • both the first and / or the second filtered electrical signal es1 F , es2 F can be evaluated to form at least one control signal rs.
  • first and second electrical signals es1, es2 are possible at further frequencies in addition to the difference frequency ⁇ f with the aid of the first and second filter units FU1, FU2 or further filter units, in order to thereby provide further information about the polarization of the first and second electrical signals Signals esl to get es2. This further information can then be further processed to increase the contrast of the at least one control signal rs.
  • the first and second data signals ds1, ds2 can be transmitted at different transmission bit rates or, alternatively, the first and / or the second carrier signal tsl can be transmitted on the transmission side , ts2 or the first and second modulated signal msl, ms2 at least one pilot tone signal.
  • the first and second data signals ds1, ds2 can be transmitted at different transmission bit rates or, alternatively, the first and / or the second carrier signal tsl can be transmitted on the transmission side , ts2 or the first and second modulated signal msl, ms2 at least one pilot tone signal.
  • the pilot tone signal identifies the first and second electrical signals es1, es2 as such and can then be further processed in a signal-specific manner.
  • first and second electrical signals es1, es2, which are separated with the aid of the polarization splitter PBS by using different transmission bit rates for the first and second data signals dsl, ds2.
  • the first and second data signals dsl, ds2 can also be transmitted in different data formats, for example RZ and NRZ, for differentiation purposes at the receiving end.
  • Wavelength division multiplexing technologies can be used to further increase the bandwidth efficiency of the OTS optical transmission system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

Pour la transmission d'au moins un premier et un deuxième signal de données (ds1, ds2) en multiplexage de polarisation, dans une première étape, le premier signal de données (ds1) est modulé côté émission sur une bande latérale (SB1) d'un premier signal porteur (ts) pour la production d'un premier signal à modulation de bande latérale (ms1), et le deuxième signal de données (ds2) est modulé sur une bande latérale (SB2) d'un deuxième signal porteur (ts) pour la production d'un deuxième signal à modulation de bande latérale (ms2). Ensuite, dans une deuxième étape, le premier et le deuxième signal à modulation de bande latérale (ms1, ms2) sont polarisés l'un par rapport à l'autre de façon orthogonale puis assemblés sous forme de signal de multiplexage optique (oms) et transmis. Dans une troisième étape, ledit signal de multiplexage optique (oms) est guidé côté réception par l'intermédiaire d'un élément de réglage de polarisation (PTF) sur un diviseur de polarisation (PBS) divisant le signal de multiplexage optique transmis (oms) en premier et deuxième signal à modulation de bande latérale (ms1, ms2). Dans une quatrième étape, le premier signal à modulation de bande latérale (ms1) est transformé en un premier signal électrique (es1) et/ou le deuxième signal à modulation de bande latérale (ms2) est transformé en un deuxième signal électrique (es2). Dans une cinquième étape, le premier et/ou le deuxième signal électrique (es1, es2) est évalué et au moins un signal de régulation (rs) destiné à la régulation de l'élément de réglage de polarisation (PTF) est dérivé.
EP03790635A 2002-08-09 2003-07-07 Procede de transmission d'au moins un premier et un deuxieme signal de donnees en multiplexage de polarisation dans un systeme de transmission optique Withdrawn EP1527537A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10236603 2002-08-09
DE10236603A DE10236603B4 (de) 2002-08-09 2002-08-09 Verfahren zur Übertragung von mindestens einem ersten und zweiten Datensignal im Polarisationsmultiplex in einem optischen Übertragungssystem
PCT/DE2003/002272 WO2004021618A1 (fr) 2002-08-09 2003-07-07 Procede de transmission d'au moins un premier et un deuxieme signal de donnees en multiplexage de polarisation dans un systeme de transmission optique

Publications (1)

Publication Number Publication Date
EP1527537A1 true EP1527537A1 (fr) 2005-05-04

Family

ID=30775124

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03790635A Withdrawn EP1527537A1 (fr) 2002-08-09 2003-07-07 Procede de transmission d'au moins un premier et un deuxieme signal de donnees en multiplexage de polarisation dans un systeme de transmission optique

Country Status (5)

Country Link
US (1) US7620326B2 (fr)
EP (1) EP1527537A1 (fr)
CN (1) CN100578994C (fr)
DE (1) DE10236603B4 (fr)
WO (1) WO2004021618A1 (fr)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7379235B2 (en) * 2005-03-18 2008-05-27 Fujitsu Limited Reducing polarization dependence of a wavelength dispersion variation monitor
US20070134001A1 (en) * 2005-12-08 2007-06-14 Electronics And Telecommunications Research Institute Polarization division multiplexed optical transmission system
US20070134000A1 (en) * 2005-12-08 2007-06-14 Electronics And Telecommunications Research Institute Polarization division multiplexed optical transmission system
US8698812B2 (en) * 2006-08-04 2014-04-15 Ati Technologies Ulc Video display mode control
JP5157521B2 (ja) * 2007-03-20 2013-03-06 富士通株式会社 偏波多重光受信機、偏波多重光送受信システムおよび偏波多重光送受信システムの制御方法
WO2009007973A1 (fr) * 2007-07-11 2009-01-15 Technion - Research & Development Foundation Ltd Réseaux optiques passifs smf améliorés à mise en forme de faisceaux par polarisation
JP4565256B2 (ja) * 2008-07-22 2010-10-20 独立行政法人情報通信研究機構 偏光方向同期検出回路及び受信装置
JP5141498B2 (ja) * 2008-10-30 2013-02-13 富士通株式会社 光送受信システム,光送信器,光受信器および光送受信方法
US20100150555A1 (en) * 2008-12-12 2010-06-17 Zinan Wang Automatic polarization demultiplexing for polarization division multiplexed signals
US9374188B2 (en) * 2008-12-12 2016-06-21 Alcatel Lucent Optical communication using polarized transmit signal
CN101771491A (zh) * 2008-12-30 2010-07-07 华为技术有限公司 一种偏振复用与解复用的方法、装置和系统
JP5223703B2 (ja) * 2009-01-29 2013-06-26 富士通株式会社 偏波多重光受信器、偏波多重光受信回路、及び偏波多重光伝送システム
CN102045127B (zh) * 2009-10-23 2014-12-10 华为技术有限公司 光解偏振复用的接收装置、发送装置、系统及方法
US8699880B2 (en) * 2010-01-21 2014-04-15 Ciena Corporation Optical transceivers for use in fiber optic communication networks
US8977125B2 (en) * 2010-08-11 2015-03-10 Ciena Corporation Low power optical transceiver using orthogonal polarization detection technique
US9461745B2 (en) * 2012-03-22 2016-10-04 Fujitsu Limited Optimizing optical network simulations
WO2014108982A1 (fr) 2013-01-11 2014-07-17 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Procédé de traitement de données, procédé de précodage et dispositif de communication
US10003133B2 (en) * 2016-01-22 2018-06-19 Telekom Malaysia Berhad Reusable carrier based polarization diversity for uplink of full-duplex radio-over-fiber system
CN107037448B (zh) * 2016-02-03 2019-10-15 清华大学 双频恒包络导航信号的生成方法和装置、接收方法和装置
US10763962B2 (en) * 2016-02-18 2020-09-01 Apriori Network Systems, Llc. Secured fiber link system
US10784969B2 (en) * 2016-02-18 2020-09-22 Apriori Network Systems, Llc. Secured fiber link system
US10284288B2 (en) * 2016-02-18 2019-05-07 Apriori Network Systems, Llc Secured fiber link system
US10833767B2 (en) * 2018-01-24 2020-11-10 Indian Institute Of Technology Bombay Self-homodyne carrier multiplexed transmission system and method for coherent optical links
EP3771126A1 (fr) * 2019-07-25 2021-01-27 Mitsubishi Electric R&D Centre Europe B.V. Optimisation de spectre dans un système de communication à agrégation de porteuses

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6580535B1 (en) * 1999-12-28 2003-06-17 Telefonaktiebolaget Lm Ericsson (Publ) Polarization division multiplexing in optical data transmission systems
US7447436B2 (en) * 1999-12-29 2008-11-04 Forster Energy Llc Optical communications using multiplexed single sideband transmission and heterodyne detection
US20040016874A1 (en) 2001-01-25 2004-01-29 Rao Hemonth G. Automatic polarization controller for polarization multiplexed optical signals
DE10147871B4 (de) * 2001-09-28 2004-01-15 Siemens Ag Verfahren zur Übertragung von mindestens einem ersten und zweiten Datensignal im Polarisationsmultiplex in einem optischen Übertragungssystem
DE10147892B4 (de) * 2001-09-28 2004-02-05 Siemens Ag Verfahren zur Übertragung von mindestens einem ersten und zweiten Datensignal im Polarisationsmultiplex in einem optischen Übertragungssystem
US6999688B1 (en) * 2001-12-20 2006-02-14 Sprint Communications Company L.P. Optical systems with diversity detection
JP2003338805A (ja) 2002-03-15 2003-11-28 Kddi Submarine Cable Systems Inc 光伝送システム、光送信装置及びこれらの方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004021618A1 *

Also Published As

Publication number Publication date
CN1675867A (zh) 2005-09-28
US20050265727A1 (en) 2005-12-01
DE10236603A1 (de) 2004-02-26
US7620326B2 (en) 2009-11-17
DE10236603B4 (de) 2006-05-11
WO2004021618A1 (fr) 2004-03-11
CN100578994C (zh) 2010-01-06

Similar Documents

Publication Publication Date Title
DE10236603B4 (de) Verfahren zur Übertragung von mindestens einem ersten und zweiten Datensignal im Polarisationsmultiplex in einem optischen Übertragungssystem
DE10147871B4 (de) Verfahren zur Übertragung von mindestens einem ersten und zweiten Datensignal im Polarisationsmultiplex in einem optischen Übertragungssystem
DE69833463T2 (de) Minimierung der Dispersion von faseroptischen Übertragungsstrecken
EP1298826B1 (fr) Procédé de transmission d'au moins un premier et un second signaux de données multiplexés en polarisation dans un réseau de communication optique
DE60024208T2 (de) Verbesserter Verzerrungsanalysator für eine Vorrichtung zur Kompensation der Polarisationsmodendispersion erster Ordnung (PMD)
DE602005000916T2 (de) Übertragung optischer Signale mit verschiedenen Modulationsformaten in diskreten Wellenlängenbändern
DE10243141B4 (de) Verfahren zur Übertragung von optischen Polarisationsmultiplexsignalen
DE68926195T2 (de) Stabilisierungsverfahren für eine Frequenztrennung in einer optischen heterodynen oder homodynen Übertragung
DE69535667T2 (de) Optisches Übertragungssystem, optisches Multiplexingübertragungssystem und dazugehörige Verfahren
DE69633816T2 (de) Synchrone Polarisations- und Phasenmodulation mit einer periodischen Wellenform mit harmonischen Oberschwingungen zur Leistungsverbesserung von optischen Übertragungssystemen
DE60025975T2 (de) Optischer Sender und Verfahren zur Steuerung des optischen Senders, die die Einstellung eines variablen Tastverhältnisses und die wechselnde Phaseninvertierung für optische Taktsignale verwendet
DE60101252T2 (de) System eines Diversitätsempfängers zur Verringerung der Faserdispersionseffekte durch die Detektion zweier übertragener Seitenbänder
DE4001039A1 (de) Optisches kabelfernseh-uebertragungssystem
DE4410490A1 (de) System und Verfahren zur Dispersions-Kompensation in faseroptischen Hochgeschwindigkeitssystemen
EP1797654B1 (fr) Procede et dispositif de transmission optique de signaux de donnees par modulation de phase differentielle dans un procede de multiplexage de polarisation
DE602004003488T2 (de) Bandbegrenztes FSK Modulationsverfahren
DE60126542T2 (de) Optisches Übertragungssystem und optischer Empfänger
DE60225853T2 (de) Optische Phasenmodulation
WO2003096584A1 (fr) Procede et dispositif pour limiter la degradation de signal d'un signal multiplexe en polarisation optique
EP1210785B1 (fr) Dispositif et procede de transmission optique d'informations
DE602004002160T2 (de) Verfahren zur Bildung von einem kodierten RZ oder NRZ Signal
DE60207690T2 (de) Zeitmultiplexer mit aktiver Stabilisierung
EP2271013B1 (fr) Dispositif de réseau
DE60208873T2 (de) Empfänger zum Empfang von OTDM/PDM optischen Signalen
EP1177650B1 (fr) Recepteur et procede de transmission optique d'informations

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050107

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GLINGENER, CHRISTOPH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NOKIA SIEMENS NETWORKS GMBH & CO. KG

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NOKIA SIEMENS NETWORKS S.P.A.

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NOKIA SIEMENS NETWORKS GMBH & CO. KG

17Q First examination report despatched

Effective date: 20101015

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NOKIA SOLUTIONS AND NETWORKS GMBH & CO. KG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: XIEON NETWORKS S.A.R.L.

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160202