EP1527306B1 - Ofen sowie verfahren und system zur überwachung von dessen betriebsbedingungen - Google Patents

Ofen sowie verfahren und system zur überwachung von dessen betriebsbedingungen Download PDF

Info

Publication number
EP1527306B1
EP1527306B1 EP03784190A EP03784190A EP1527306B1 EP 1527306 B1 EP1527306 B1 EP 1527306B1 EP 03784190 A EP03784190 A EP 03784190A EP 03784190 A EP03784190 A EP 03784190A EP 1527306 B1 EP1527306 B1 EP 1527306B1
Authority
EP
European Patent Office
Prior art keywords
optical
furnace
optical waveguide
refractory lining
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03784190A
Other languages
English (en)
French (fr)
Other versions
EP1527306A2 (de
Inventor
Wilfried Schmitz
Henrik Hoff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otto Junker GmbH
Luna Innovations Germany GmbH
Original Assignee
Otto Junker GmbH
Lios Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=31716600&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1527306(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE10236033A external-priority patent/DE10236033A1/de
Application filed by Otto Junker GmbH, Lios Technology GmbH filed Critical Otto Junker GmbH
Publication of EP1527306A2 publication Critical patent/EP1527306A2/de
Application granted granted Critical
Publication of EP1527306B1 publication Critical patent/EP1527306B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/24Test rods or other checking devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4673Measuring and sampling devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5241Manufacture of steel in electric furnaces in an inductively heated furnace
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/20Arrangement of controlling, monitoring, alarm or like devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • F27D1/0006Linings or walls formed from bricks or layers with a particular composition or specific characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices

Definitions

  • the ceramic lining is subject to severe thermal, chemical and mechanical stresses during operation. These stresses lead to abrasion of the lining, i.e. to a decreased strength of the wall, so that at regular intervals (e.g. six to eight weeks), the used lining must be removed and a new lining inserted. If this is not done in time, damage to the induction coil may result.
  • Measurement procedures for evaluating the physical condition or state of preservation of the lining are known.
  • One temperature measurement system uses a magnetic contact thermometer placed on the outer cover.
  • Another temperature measurement method is based on pyrometric principles.
  • Another measurement method is described in EP-B1-519231 . This principle is based on the determination of the conductivity of the refractory lining.
  • a net of electrodes is applied by means of which abrasion associated change of conductivity of the ceramic material can be measured. The net provides a surface picture of the conductivity of the lining based on which conclusions concerning the temperature conditions may be made.
  • An electric system has the disadvantage of being sensitive to electromagnetic noise.
  • the conductivity measurement system is strongly dependent on materials, which necessitates costly calibration.
  • the pyrometric system has the disadvantage that the point determination of temperature is possible only from the outside and only appropriate for the determination of the surface temperature of the areas considered. It is not possible directly to measure temperature conditions inside the refractory lining.
  • DD-A-240 947 discloses a system for monitoring melting furnaces by means of optical waveguides mounted on or near the outer surface of the vessel holding the melt.
  • the system aims at detecting wear and weak spots in the walls of the vessel.
  • a change in the wall thickness due to spotty wear results in an increased temperature at the location of the optical waveguide located near the weak spot, which again results in an increased intensity of light radiated by the optical waveguide.
  • This increased intensity is detected by an optoelectronic receiver.
  • an indication of the location of a weak spot may be derived by decoding the combination of photo-detectors that are activated.
  • a disadvantage of the system is that an array of photo-detectors are needed to get a precise location of the weak spot
  • US-5,356,220 discloses a method and an apparatus for monitoring the temperature of a blast furnace by laying an optical fibre on a surface of the iron skin of a hot-air oven. A temperature distribution of the optical fibre is measured by an apparatus based on the intensity of Raman back scattering.
  • a disadvantage of this system is that only the temperature of the outer surface of the furnace, here an iron shell, is monitored. This makes it difficult to predict the condition of e.g. the lining, and to protect essential parts of the furnace.
  • JP 04 074813 A discloses a blast furnace which comprises a hot blast furnace charge as a heat source and a container comprising an inner refractory lining and an outer wall. Between the outer wall and the refractory lining an optical fibre is wounded around the refractory lining.
  • the optical fibre can be used for monitoring the temperature of the furnace by optical back scattering measurement.
  • the fibre can be arranged in a helical or an circular form around the refractory lining.
  • the bottom of the blast furnace also comprises an optical fibre, which is arranged in an meander form.
  • the location of the at least one optical waveguide close to the vital part of the furnace allows sensitive detection of slow processes such as corrosion whereby long term changes can be monitored.
  • optical back scatter measurements it is obtained that it is the condition of vital parts can be monitored without being dependent on material properties of the vital parts.
  • an optical waveguide ensures that the condition of vital parts can be monitored in presence of an electromagnetic field.
  • the location of the optical waveguide close to the vital part of the furnace allows several optical waveguides to be located near the vital part whereby a high spatial accuracy can be obtained and e.g. hot spots can be accurately determined.
  • an optical fibre is mounted directly on the surface of the coil by fixing it with fibreglass-tape wound around the conductor.
  • the induction coil is further provided with a high temperature varnish.
  • the optical fibre is inserted in a steel tube insulated by a polymer-sheath, preferably a fluoropolymer.
  • an insulated steel tube with the fibre is fixed to the induction coil fibreglass-tape wound around the conductor.
  • said at least one optical waveguide is located in the outer wall whereby it is obtained that a risk of heat damage of critical parts in the outer wall, e.g. the coils of an induction furnace, can be monitored thereby providing low operation cost, easy handling, appropriate response time to hot spots coming from a weak refractory lining and/or the induction coil. Also, temperature profiles close to the coil at least on the surface of the coil can be monitored when using optical waveguides which are insensitive to electromagnetic fields.
  • said at least one optical waveguide consists of a net whereby improved resolution can be obtained.
  • more optical fibre nets are located in different layers whereby a combined evaluation of the temperature profiles of more critical parts of a furnace (e.g. the lining and an induction coil of an induction furnace) can be monitored simultaneously in three dimensions, i.e. information about both vertical and horizontal coordinates, and better spatial resolution in 3 dimensions can be achieved.
  • said at least one optical waveguide is arranged in at least one meander, whereby an accurate monitoring can be obtained.
  • the optical fibre is enclosed in a metallic tube, the spiral shape of the optical waveguide results in induced eddy currents inside the metallic tube thereby leading to "self-heating" and consequently misleading temperature profile measurements.
  • the optical waveguide (and the metal tube) should be arranged orthogonally to the inductive fields as in the case of the meander shaped arrangement.
  • said intermediate layer consists of a flexible mat made of temperature resistant material whereby a thermal and electrical insulation and protective effect of the intermediate layers, e.g. a permanent layer and induction coil can be obtained. Further, this allows easy maintenance as the mat can be a prefabricated element which is easy to install.
  • the material of the mat is adapted to have a low friction to adjacent layers whereby an easier and smoother removal and/or insertion of the mat adjacent to e.g. a refractory lining can be obtained. Also, this allows easy maintenance.
  • said induction coil comprises at least one turn arranged around at least a part of said container.
  • said optical waveguide consists of an optical fibre.
  • the optical fibre is a polymer coated quartz fibres, 62.5 core diameter, large core because we need high energy density inside the fibre, polyimid coating, A1, Au (e.g. Pyrocoat high temperature fibre, PCU/MDU062H from Spectran, Connecticut, USA).
  • the at least one optical waveguide is embedded in a waveguide-hosting layer comprising a heat resistant filler such as a heat resistant concrete whereby the waveguide is protected and fixed.
  • said optical back scattering measurement comprises Raman back scattering measurements based on the principle of optical time domain reflectometry, or on optical frequency domain reflectometry whereby a distributed measurement of temperature, a temperature profile is obtained.
  • Suitable Raman back scattering measurement equipment is known in the art.
  • DTS distributed temperature sensing
  • said at least two optical waveguides are serially coupled whereby different parts - e.g. the upper part and the lower parts of the furnaces - could be monitored simultaneously with the same back scatter measuring equipment is obtained.
  • said optical waveguides are serially coupled whereby temperature profiles for several furnaces may be obtained with one back scattering and evaluation unit.
  • the object of the present invention is fulfilled by providing a mat, the mat comprising said at least one optical waveguide adapted for monitoring a temperature profile by optical back scattering measurement, said at least one optical waveguide consisting of a net.
  • the mat or waveguide-hosting layer has - besides its measuring function - further advantageous functions, in particular because of its location between lining and outer furnace wall:
  • the object of the present invention is fulfilled by providing a method according to claim 8.
  • said optical back scattering measurement equipment is adapted to perform Raman back scattering measurements based on the principle of optical time domain reflectometry, or optical frequency domain reflectometry.
  • a correlation between the length coordinates of said at least one optical waveguide on its path in the furnace and the corresponding polar spatial coordinates is established.
  • the method further comprises determining a first temperature profile to be recorded as a reference profile.
  • the object of the present invention is fulfilled by providing a system according to claim 13.
  • the optical measurement equipment is adapted to perform Raman back scattering measurements based on the principle of optical time domain reflectometry or optical frequency domain reflectometry.
  • the present invention provides a method of monitoring the state of preservation of a refractory lining of melting furnaces comprising a temperature sensor arranged in the furnace wherein at least one optical fibre is arranged between the wall and the lining of the furnace and where temperatures are detected by a fibre-optic back scattering measuring system.
  • the temperature sensor is at least one optical fibre, the optical fibre functioning as a sensor and where the temperatures are spatially distributed over the optical fibre.
  • the spatially distributed temperatures are detected by optical time domain reflectometry or optical frequency domain reflectometry.
  • the detected temperatures in an electronic evaluation system are put together to a spatial or time based temperature profile for the lining.
  • the method further comprises
  • the present invention provides a system for monitoring the condition of a refractory lining of melting furnaces comprising a temperature sensor arranged in the furnace wherein an optical fibre functioning as a sensor is arranged in a layer between the wall and the lining of the furnace and where the optical fibre is coupled to a fibre-optic back scattering measuring system.
  • the temperature sensor is at least one optical fibre, the optical fibre functioning as a sensor and where the temperatures detected by the fibre-optic back scattering measuring system are spatially distributed over the optical fibre.
  • the measuring system is based on optical time domain reflectometry or optical frequency domain reflectometry.
  • At least one optical fibre is laid out in a layer in the form of a net.
  • the net is formed as at least one meander from the at least one optical fibre.
  • the layer is formed as flexible mat made of temperature resistant material.
  • the material of the mat comprises a low friction material.
  • the present invention provides a system for monitoring the temperature of induction coils wherein an optical waveguide is arranged in spatial vicinity of the induction coil so that the temperature of the induction coil or the temperature of a heat source located in the vicinity of the induction coil is transferred to the optical waveguide and that an optical measurement system is connected to the optical waveguide for detecting the heating of the optical waveguide is provided.
  • At least one optical waveguide is located relative to the part of the furnace that is to be monitored in such a way that the temperature distribution of the optical waveguide enables conclusions regarding the temperature distribution of the induction coil and/or of a heat source located in the vicinity of the induction coil to be drawn.
  • the present invention provides a measuring system for detecting the heat distribution of the optical waveguide and connected to the optical waveguide is provided and wherein the optical waveguide itself is the temperature sensing element.
  • the spatially distributed temperatures are detected by optical time domain reflectometry or optical frequency domain reflectometry.
  • the induction coil comprises a copper profile.
  • the induction coil comprises a bundle of copper wires.
  • the optical waveguide is located inside an insulation surrounding the induction coil.
  • the optical waveguide is located inside an insulation surrounding individual turns of the induction coil.
  • the optical waveguide is located along the periphery of the turns of the induction coil.
  • the location of the optical waveguide is displaced in a direction of an external heat source with respect to the location of the induction coil.
  • the optical waveguide is formed as mesh or net.
  • the present invention provides use of a monitoring system according to the invention for monitoring an inductively heated crucible.
  • the present invention provides use of a system according to the invention for monitoring the condition of the refractory lining of an induction furnace.
  • FIG. 1 shows a typical profile of a turn of an induction coil equipped with an optical waveguide, here an optical fibre embedded in the outer wall (not shown), FIG. 1.a being a view along the direction of the current flow and FIG.1.b being a cross sectional view taken along line AA'.
  • Fig. 2 is identical to FIG. 1 except that a sheet 3 of an electrically insulating material (e.g. a fibreglass-tape) is wound around the turn 1 of a coil, including the optical fibre 2 thereby locating the optical fibre inside an insulation surrounding individual turns of the induction coil.
  • the bandage 3 of insulating material is shown partially open, indicating a possible outtake of the optical fibre 2 (e.g. for connection to an optical back scattering system or for being relocated to another part of the furnace).
  • the bandage Apart from electrical insulation of the coil (i.e. insulation of the turns from each other and insulation of the coil from the surroundings), the bandage has the purpose of fixing the optical fibre to the coil and to protect the fibre mechanically.
  • the process of arranging the electrically insulating bandage on the induction coil is preferably combined with the provision of a means for protecting the coil with a high-temperature stable insulating sheath or layer.
  • FIG. 3 shows a partial perspective view of an induction coil with a number of turns equipped with a meander formed optical waveguide positioned on the interior side of the coil, the detailed form and distance between individual 'branches' of the meander contributing to providing an adjustable spatial resolution of the temperature measurement.
  • the induction coil 4 comprises a number of turns.
  • the cross sectional profile 7 of each turn made of a hollow Cu-tube is illustrated.
  • An optical waveguide 5 is shown in a meander structure positioned a distance s from the induction coil (the distance s preferably being taken in a direction of the axis of the coil (cf. 301 in FIG. 7 )).
  • the net constituted by the meander formed optical waveguide covers the entire inner surface of the coil (at a distance s from the coil following a direction from the coil periphery towards the axis of the coil). This allows a temperature profile for the coil to be monitored which profile is induced mainly by the heating source (cf. 80 in FIG. 5 ).
  • the waveguide may e.g.
  • the waveguide may be incorporated in a layer hosting the coil (cf. e.g. W1 in FIG. 5 ) or in a separate layer (e.g. W2 or W3 in FIG. 5 ) thereby allowing the waveguide to be located any convenient distance s from the coil.
  • a layer hosting the coil cf. e.g. W1 in FIG. 5
  • a separate layer e.g. W2 or W3 in FIG. 5
  • FIG. 4 is identical to FIG. 3 , except that FIG. 4 additionally indicates the outer surface 6 of a refractory lining or crucible wherein heated or melted metal is situated. Ceramic material in various layers is typically located between the interior of the crucible and the induction coil. The optical waveguide is thus fully or partially surrounded by ceramic materials.
  • the distance s is preferably chosen with a view to the thermal properties of the ceramic materials so that thermal events originating from the coil as well as from the interior of the crucible (e.g. the melt) may be detected with appropriate sensitivity. In an embodiment of the invention, the distance s is in the range 0-20 cm, such as 10 cm.
  • the optical waveguide is a high-temperature optical fibre coated with polyimide, aluminium or gold.
  • the optical fibre is further provided with a jacket or a sheath or a tube (cf. 12 in FIG. 6 ), here in a stainless steel tube.
  • the tube dimension is designed for high pressure purpose (e.g. 1.8 mm in diameter with a thickness of 0.15 mm for a 62.5/125 ⁇ m optical fibre) and provides a certain "over length" of the fibre to compensate often large differences in material expansion (e.g. 4.5-5 ⁇ , i.e. the length of the fibre has to be around 5 ⁇ longer than the stainless steel tube).
  • the optical fibre is preferably arranged in meander shaped net with an orientation ensuring a minimum inductive coupling.
  • a spiral shape of the jacket allows induction of eddy currents inside the jacket and leads to a "self-heating" of the jacket thereby affecting the temperature profiles. It is preferred that a major part of the length of the jacket is orthogonal to the inductive field.
  • connection of one end of the optical waveguide 5 to an optical back scattering measurement equipment 14 via an optical connection cable 16 and optical connectors 17 is schematically indicated in FIG. 4 .
  • FIG. 5 shows an embodiment of an induction furnace according to the invention.
  • the structure of the wall and location of the optical fibres and the associated the use of the optical measuring principle may be used for other furnaces and for other vital parts thereof than the lining and the induction coil.
  • FIG. 5 shows a schematic structure of the wall of an induction furnace from the inner surface 31 of the first refractory lining layer A0 to the outer surface 41 of the outer wall 40.
  • the wall of the furnace comprises a number of different layers (A0, A1, A2, W1, W2, W3) with various functions between the refractory lining 30 (e.g. the first refractory lining layer A0) and the wall 40 (e.g. the outer wall W1) of the furnace, including at least one optical waveguide located in a separate layer.
  • the mat is constricted as an insulating and sliding (low friction) layer W3 of mica whereby the removal of the mat during replacement of the (worn out) lining is eased.
  • the Layers A1 and A2 may e.g. be formed as special ceramic inner protective layers.
  • the layer W2 may be made of further insulating sheets or be a part of the mat (20 in FIG. 6 ) in the form of sheet material (e.g. ceramic non-woven fabric or staple tissue).
  • the heat source here a melt 80
  • the refractory lining 30 is made of known sinter materials (such as a ceramic material), and implemented in one or more layers (A0, A1, ).
  • FIG. 6 shows a flexible mat for a furnace, the mat containing an optical waveguide connected (schematically) to an optical back scattering measuring system for determining a temperature profile of a part of the waveguide.
  • FIG. 6 illustrates a flexible mat 20 made of a temperature resistant material.
  • the mat is prepared and installed in connection with the switch of the refractory lining.
  • a heat resistant mica-art e.g. Phlogopit, KMg 3 [(OH,F) 2
  • the mat may additionally be enforced by glass- or carbon-fibres.
  • the mat may cover the whole surface area of the crucible wall or only temperature critical parts of the wall.
  • FIG. 6 indicates that the mat comprises a first 21 and a second 22 half part, which (along a longitudinal edge or fold 24) are assembled by folding one part on the other.
  • the optical waveguide is situated in the interlayer (or layer groove) 23. Before the assembly of the two mat half parts 21, 22, the optical waveguide 10 may be fixed in the interlayer 23 with an appropriate temperature resistant adhesive (e.g. silicone).
  • an appropriate temperature resistant adhesive e.g. silicone
  • the optical waveguide, her an optical fibre 10 is laid out in the mat 20 in the form of a meander net 100.
  • the main direction of the straight pieces of the meander 100 is denoted x in FIG. 6 .
  • a second optical fibre may be arranged in a meander form perpendicular to the main direction x so that the straight pieces of the second meander run in the direction denoted y in FIG. 6 .
  • the main direction x is parallel to the furnace or crucible axis (e.g. 301 in FIG. 7 ).
  • the helixes may be left or right oriented and fully or partially overlapping or be located beside each other.
  • the optical waveguide 10 may be provided with a jacket or sleeve 12 (e.g. of stainless steel). The jacket may extend over the full length of the optical waveguide.
  • the optical waveguide 10 is connected to an optical temperature measuring system 14 for fibre-optic back scattering measurements via an optical connection 16 (e.g. established via a pigtail or an optical connector or any other suitable connection).
  • the optical waveguide for the present purpose is typically an optical fibre comprising a high index core for guiding light and a low index cladding for confining the light to the core and a primary coating for serving as a mechanical protection.
  • the optical waveguide may e.g. be a high-temperature stable optical fibre.
  • An optical fibre e.g. made of quartz
  • polyimide a heat resistant polymer
  • a large core, polyimide coated quartz fibre (adapted to sustain a high energy density inside the fibre and to tolerated elevated surrounding temperatures) may preferable be used, e.g. the 'Pyrocoat' high temperature fibre TCU/MDU062H from Spectran, Connecticut, USA).
  • aluminium or gold coated fibres are used, which extend the temperature range up to 600°C.
  • a relatively brittle high-temperature optical fibre may additionally be protected by a secondary coating. This provides a considerable increase in the mechanical load capacity of the optical fibre, which is an advantage during embedding of the optical waveguide in the mica-mat and for its handling in general.
  • High-temperature resistant fluorpolymers or polyimides are known and useful as materials for such coating.
  • a non-metallic jacket e.g. of Capton foil, Kevlar®, or carbon fibre web
  • in which the optical waveguide is loosely inserted may be used as an additional protective jacket (or used without a secondary coating).
  • the length of the optical waveguide may be adapted to the surface area of the mat and thus to the size of the furnace and to the layout of the waveguide.
  • the remote (relatively remote to the optical measuring system 14) end 27 of the waveguide may be located inside the mat.
  • the local (relatively close to the optical measuring system 14) end 26 of the waveguide is provided with a normal optical connector or an optical pigtail.
  • the pigtail or connector, respectively, is taken out of the furnace at an appropriate location, e.g. inside the insulation rings for insulating the induction coil at the top or bottom of the furnace between the yokes (i.e. the strong iron or steel bars for fixing the furnace during operation).
  • the electronic evaluation unit may also be refined to a warning or alarm system.
  • a basic temperature profile is recorded and stored as a reference profile.
  • every temperature of each data points within the area to be monitored e.g. the lining area or the induction coil area
  • a warning or an alarm is issued and a specific action may be initiated (e.g. disconnection of the induction coil from its electrical power supply).
  • a specific action e.g. disconnection of the induction coil from its electrical power supply.
  • FIG. 7 shows an induction melting furnace 300 according to the invention with two optical waveguide nets 100, 101 for monitoring the lining 30 and the induction coil 4, respectively.
  • Two independent waveguide nets 100 and 101 are located in layers W1 and W3, respectively, of the container wall of the furnace and adapted for monitoring the induction coil 4 and the lining 30 of the crucible, respectively.
  • the local end 26 of each of the waveguide nets are provided with an optical connector 17 and is connected to an optical back scattering and evaluation system 14 (possibly through and optical multiplexer for both nets to utilize the same equipment) via an optical connecting cable 16. Due to the considerable length range of operation (several km) of OTDR- or OFDR-measuring systems, it is possible to monitor several furnaces with one single measuring and evaluation unit 14 by serially connecting several waveguides 100, 102 by means of an optical connecting cable 16.
  • the remote end 27 of the optical waveguide of a first waveguide hosting layer W3 is also provided with an optical connector 17 or an optical pigtail by means of which the first waveguide is optically connected to the start end 26 of a second optical waveguide 102 of a second waveguide hosting layer 200 (e.g. for monitoring another lining or induction coil or some other vital part of another furnace).
  • the protection or covering of the splice must be free of any metals or other electrically conducting materials.
  • Candidates for this purpose are plastic splice protection solutions based on shrinkable tubing techniques (e.g. heat-shrinkable tubing).
  • waveguide net 101 for monitoring the induction coil is located in-the outer wall layer W1 comprising the induction coil 4 in a position inside the coil (in a direction towards the centre axis 301 of the furnace).
  • the layer W1 comprises an electrically insulating filler (such as concrete) around the induction coil and in which the optical waveguide is located. It may, however, be advantageous to host the optical waveguide in a separate layer e.g. in the layer W2 in FIG. 7 between the coil and the layer W3 in the form of a thin layer of concrete in which the fibre is embedded. The fibre net is held fixed in place by the hardened concrete.
  • the layer W2 may alternatively be a separate layer of a thermally and/or electrically insulating material.
  • the optical fibre may be positioned along the periphery of each turn of the coil as illustrated in FIG. 2 .
  • the waveguide net 101 for monitoring the induction coil is fastened to the inner surface of the layer W1 hosting the coil (i.e. the surface of the layer facing the centre axis 301).
  • Waveguide net 100 for monitoring the refractive lining 30 is located in a separate waveguide-hosting layer W3.
  • the waveguide net 100 may, however, alternatively be integrated with the liner, e.g. by fastening the waveguide to the surface of the lining with an adhesive.
  • the optical temperature measurement based on the well-known Raman effect.
  • a laser beam coupled into the optical fibre generates two additional signals in the spectrum of the scattered light (Stokes- and Antistokes lines) caused by excitation of electrons and relaxation / transition in different vibration states.
  • the amount of transition and therefore the intensity of Raman scattering light is a function of the temperature.
  • the OTDR process uses the pulse-echo process and the scattering level and scatter location are determined from the difference in the time it takes the light impulse to travel from the moment it was sent to the moment it is detected.
  • the OFDR process provides a statement about the local course but only once the backscatter signal detected during the entire measurement period has been measured in a complex fashion as a function of frequency and then has been Fourier transformed.
  • the OFDR-technique uses a continuous-wave laser technology.
  • the OTDR-technique has a high energy density locally limited to the duration of the pulse, which may give problems with reflections in connectors, which again may lead to distorted temperature profiles especially in connection with small measurement ranges like in induction furnaces (60-100 m, minimum 3 connectors for one furnace-device/supply line/upper mat/lower mat).
  • thermal wear e.g.
  • optical back scattering technique (OFDR-technique), is e.g. described in the following references:
  • FIG. 8 shows an example of a measuring equipment for optical back scattering for determining a temperature profile of an induction furnace.
  • FIG. 8 shows the schematic set-up of an OFDR Raman temperature measurement system 14.
  • the temperature measurement system is composed of a controller (frequency generator, laser source, optical module, HF mixer, reception and microprocessor unit) and a quartz glass fibre 5 (optical waveguide) as line shaped temperature sensor. Its structure consists of three channels as in addition to the two measurement channels (Antistokes and Stokes), an additional reference channel is required.
  • the output performance of the laser is passed through the frequency in a sinus shape from the start frequency to the end frequency (100 MHz) within a measurement time interval with the help of the HF modulator.
  • the resulting frequency lift is a direct measurement for the local resolution of the reflectometer.
  • the frequency modulated laser light is coupled via the optical module into the optical waveguide (see figure above).
  • the Raman light which is continuously backscattered from every local element of the fibre is spectrally filtered in the optical module and converted into electrical signals via photodetectors.
  • the measurement signals are amplified and mixed into the low frequency spectral range (NF range).
  • the Fourier transform of the averaged NF signals result in the two Raman backscatter curves in the local area.
  • the amplitudes of these backscatter curves are proportional to the intensity of the Raman scattering of the local element observed.
  • the fibre temperature along the sensor cable is a result of the amplitude relationship of the two measurement channels.
  • FIG. 8 schematically shows the position of the temperature monitoring optical waveguide 5 between the induction coil 4 and the crucible lining 30 of an induction furnace.
  • a standard PC with a software which is able to decode the controller-protocol may be used.
  • DTS distributed temperature sensing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Blast Furnaces (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Claims (14)

  1. Ofen, wobei der Ofen umfasst:
    (a) einen Behälter, der zu erhitzendes Material enthalten kann, das während des Betriebs des Ofens als Wärmequelle (80) dient, wobei der Behälter eine hitzebeständige Verkleidung (30) mit einer ersten hitzebeständigen Verkleidungsschicht (A0), die zu dem zu erhitzenden Material benachbart sein kann, und eine Behälterwand (40) mit mindestens einer Zwischenschicht (W2, W3) und einer Außenwand (W1) mit einer äußeren Oberfläche (41) distal zu der ersten hitzebeständigen Verkleidungsschicht (A0) enthält, wobei das zu erhitzende Material während des Betriebs des Ofens ein Temperaturprofil in der hitzebeständigen Verkleidung (30) und in der Behälterwand schaffen kann;
    (b) eine Induktionsspule (60) in der Außenwand (W1); und
    (c) mindestens einen optischen Wellenleiter, der zur Überwachung des Temperaturprofils durch optische Rückstreuungsmessung ausgelegt ist; wobei der mindestens eine optische Wellenleiter in mindestens einem Mäander angeordnet ist und in der Behälterwand (40) zwischen der ersten hitzebeständigen Verkleidungsschicht (A0) und der äußeren Oberfläche (41) der Außenwand (W1) angeordnet ist, wobei der mindestens eine optische Wellenleiter eine optische Faser (10) und ein Stahlrohr umfasst, das durch einen Polymermantel isoliert ist, wobei das Stahlrohr die optische Faser (10) umgibt, wobei der mindestens eine optische Wellenleiter direkt auf der Oberfläche der Induktionsspule (60) angeordnet ist.
  2. Ofen nach Anspruch 1, wobei der mindestens eine optische Wellenleiter aus einem Netz (100) besteht.
  3. Ofen nach einem der Ansprüche 1 oder 2, wobei die Zwischenschicht (W2, W3) aus einer-flexiblen Matte besteht, die aus einem temperaturbeständigen Material hergestellt ist.
  4. Ofen nach Anspruch 3, wobei das Material der Matte so ausgelegt ist, dass es ein Material mit geringer Reibung zum verringern der Reibung an einer benachbarten Schicht enthält.
  5. Ofen nach einem der Ansprüche 1-4, wobei die Induktionsspule mindestens eine Windung enthält, die um zumindest einen Teil des Behälters angeordnet ist.
  6. Ofen nach einem von Anspruch 1-5, wobei mindestens zwei optische Wellenleiter seriell gekoppelt sind.
  7. System von Öfen nach einem der Ansprüche 1-6, wobei die optischen Wellenleiter seriell gekoppelt sind.
  8. Verfahren zur thermischen Überwachung des Zustandes von wesentlichen Teilen eines Ofens durch Messen eines Temperaturprofils hiervon, wobei das Verfahren umfasst
    (a) Vorsehen eines Behälters, der zu erhitzendes Material enthält, das während des Betriebs des Ofens als Wärmequelle (80) dient, wobei der Behälter eine hitzebeständige Verkleidung (30) mit einer ersten hitzebeständigen Verkleidungsschicht (A0), die zu dem zu erhitzenden Material benachbart ist, und eine Behälterwand (40) mit mindestens einer Zwischenschicht (W2, W3) und einer Außenwand (W1) mit einer äußeren Oberfläche (41) distal von der ersten hitzebeständigen Verkleidungsschicht (A0) enthält, wobei das zu erhitzende Material während des Betriebs des Ofens ein Temperaturprofil in der hitzebeständigen Verkleidung (30) und in der Behälterwand (40) schafft; und
    (b) Vorsehen einer Induktionsspule (60) in der Außenwand (W1);
    (c) Vorsehen mindestens eines optischen Wellenleiters, der zur Überwachung des Temperaturprofils durch optische Rückstreuungsmessung ausgelegt ist; wobei der mindestens eine optische Wellenleiter in mindestens einem Mäander angeordnet ist und in der Behälterwand (40) zwischen der ersten hitzebeständigen Verkleidungsschicht (A0) und der äußeren Oberfläche (41) der Außenwand (W1) angeordnet ist, wobei der mindestens eine optische Wellenleiter eine optische Faser (10) und ein Stahlrohr, das durch einen Polymermantel isoliert ist, enthält, wobei das Stahlrohr die optische Faser (10) umgibt, wobei der mindestens eine optische Wellenleiter direkt auf der Oberfläche der Induktionsspule (60) angeordnet ist;
    (d) Koppeln des mindestens einen optischen Wellenleiters mit einer Einrichtung zur optischen Rückstreuungsmessung;
    (e) Messen einer Temperaturverteilung entlang des mindestens einen optischen Wellenleiters durch eine optische Rückstreuungsmessung;
    (f) Bestimmen des Temperaturprofils für die wesentlichen Teile auf der Basis der gemessenen Temperaturverteilung; und
    (g) Beurteilen des Zustandes der wesentlichen Teile auf der Basis des bestimmten Temperaturprofils.
  9. Verfahren nach Anspruch 8, wobei die Einrichtung zur optischen Rückstreuungsmessung dazu ausgelegt ist, Raman-Rückstreuungsmessungen auf der Basis des Prinzips der optischen Zeitbereichsreflektometrie oder der optischen Frequenzbereichsreflektometrie durchzuführen.
  10. Verfahren nach Anspruch 8 oder 9, wobei eine Korrelation zwischen den Längenkoordinaten des mindestens einen optischen Wellenleiters auf seinem Weg im Ofen und den entsprechenden räumlichen Polarkoordinaten festgestellt wird.
  11. Verfahren nach einem der Ansprüche 8-10, wobei das Verfahren ferner das Bestimmen eines als Referenzprofil aufzuzeichnenden ersten Temperaturprofils umfasst.
  12. Verfahren nach Anspruch 11, wobei das Verfahren ferner das Vergleichen des aktuellen Temperaturprofils und des Referenzprofils sowie das Liefern eines Auslösesignals, wenn eine kritische Differenz auftritt, umfasst.
  13. System zur thermischen Überwachung des Zustandes von wesentlichen Teilen eines Ofens durch Messen eines Temperaturprofils hiervon, wobei das System umfasst:
    (a) einen Behälter, der zu erhitzendes Material enthalten kann, das während des Betriebs des Ofens als Wärmequelle (80) dient, wobei der Behälter eine hitzebeständige Verkleidung (30) mit einer ersten hitzebeständigen Verkleidungsschicht (A0), die zu dem zu erhitzenden Material benachbart sein kann, und eine Behälterwand (40) mit mindestens einer Zwischenschicht (W2, W3) und einer Außenwand (W1) mit einer äußeren Oberfläche (41) distal von der ersten hitzebeständigen Verkleidungsschicht (A0) enthält, wobei das zu erhitzende Material während des Betriebs des Ofens ein Temperaturprofil in der hitzebeständigen Verkleidung (30) und in der Behälterwand (40) schaffen kann;
    (b) eine Induktionsspule (60) in der Außenwand (W1); und
    (c) mindestens einen optischen Wellenleiter, der zur Überwachung des Temperaturprofils durch optische Rückstreuungsmessung ausgelegt ist; wobei der mindestens eine optische Wellenleiter in mindestens einem Mäander angeordnet ist und in der Behälterwand (40) zwischen der ersten hitzebeständigen Verkleidungsschicht (A0) und der äußeren Oberfläche (41) der Außenwand (W1) angeordnet ist, wobei der mindestens eine optische Wellenleiter eine optische Faser (10) und ein Stahlrohr, das durch einen Polymermantel isoliert ist, umfasst, wobei das Stahlrohr die optische Faser (10) umgibt, wobei der mindestens eine optische Wellenleiter direkt auf der Oberfläche der Induktionsspule (60) angeordnet ist;
    (d) eine Einrichtung zur optischen Rückstreuungsmessung, die mit dem mindestens einen optischen Wellenleiter gekoppelt ist, wobei die Einrichtung zur optischen Rückstreuungsmessung dazu ausgelegt ist, eine Temperaturverteilung entlang des mindestens einen optischen Wellenleiters zu messen;
    (e) wobei die Einrichtung zur optischen Rückstreuungsmessung ferner dazu ausgelegt ist, das Temperaturprofil für die wesentlichen Teile auf der Basis der gemessenen Temperaturverteilung zu bestimmen; und
    (f) eine Anzeige zum Anzeigen des Zustandes der wesentlichen Teile auf der Basis des bestimmten Temperaturprofils.
  14. System nach Anspruch 13, wobei die optische Messeinrichtung dazu ausgelegt ist, Raman-Rückstreuungsmessungen auf der Basis des Prinzips der optischen Zeitbereichsreflektometrie oder der optischen Frequenzbereichsreflektometrie durchzuführen.
EP03784190A 2002-08-06 2003-08-06 Ofen sowie verfahren und system zur überwachung von dessen betriebsbedingungen Expired - Lifetime EP1527306B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10236033 2002-08-06
DE10236033A DE10236033A1 (de) 2002-08-06 2002-08-06 Verfahren und Anordnung zum Überwachen des Erhaltungszustands der feuerfesten Auskleidung von Schmelzöfen
DE10327094 2003-06-13
DE10327094 2003-06-13
PCT/EP2003/008705 WO2004015349A2 (en) 2002-08-06 2003-08-06 Furnace, method and monitoring system for monitoring its condition

Publications (2)

Publication Number Publication Date
EP1527306A2 EP1527306A2 (de) 2005-05-04
EP1527306B1 true EP1527306B1 (de) 2011-06-01

Family

ID=31716600

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03784190A Expired - Lifetime EP1527306B1 (de) 2002-08-06 2003-08-06 Ofen sowie verfahren und system zur überwachung von dessen betriebsbedingungen

Country Status (4)

Country Link
EP (1) EP1527306B1 (de)
AT (1) ATE511624T1 (de)
AU (1) AU2003266262A1 (de)
WO (1) WO2004015349A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI612303B (zh) * 2016-11-30 2018-01-21 中國鋼鐵股份有限公司 爐內耐火材狀態監測系統及方法
TWI731812B (zh) * 2020-10-30 2021-06-21 中國鋼鐵股份有限公司 估測高爐溫度的方法、電腦程式產品及電腦可讀取紀錄媒體

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006006524B4 (de) * 2006-02-10 2008-11-27 Saveway Gmbh & Co. Kg Verfahren zur Überwachung eines Induktionsofens und Induktionsofen
DE102007042546B4 (de) 2007-09-07 2010-01-14 Ulrich Glombitza Verfahren zur ortsaufgelösten Temperaturmessung in einem Rohr- oder Kanalsystem
GB0810942D0 (en) * 2008-06-14 2008-07-23 Elmelin Ltd Furnace lifting
DE102008029742A1 (de) 2008-06-25 2009-12-31 Sms Siemag Aktiengesellschaft Kokille zum Gießen von Metall
DE102008060032A1 (de) * 2008-07-31 2010-02-04 Sms Siemag Aktiengesellschaft Gießspiegelmessung in einer Kokille durch ein faseroptisches Messverfahren
DE102009049479B4 (de) * 2009-06-08 2024-07-04 Sms Group Gmbh Einbindung eines Lichtwellenleiters eines Messsensors in ein Bauteil
DE102010008481A1 (de) * 2009-09-30 2011-03-31 Sms Siemag Ag Metallurgisches Gefäß
DE102010034315A1 (de) 2010-02-01 2011-08-04 SMS Siemag AG, 40237 Verfahren zur Überwachung einer metallurgischen Anlage und metallurgische Anlage
DE102010025562A1 (de) 2010-02-18 2011-08-18 SMS Siemag AG, 40237 Injektorkühlblock zur Halterung mindestens eines Injektors
DE102010008944A1 (de) 2010-02-23 2011-08-25 SMS Siemag AG, 40237 Gießpfanne oder Zwischenbehälter zur Aufnahme eines flüssigen Metalls
DE102010035910A1 (de) * 2010-06-09 2011-12-15 Sms Siemag Ag Einrichtung zur Temperaturmessung in einem Konverter
JP6057988B2 (ja) * 2011-05-23 2017-01-11 インダクトサーム・コーポレイションInductotherm Corporation ライニング損耗検出システムを備える電気的誘導炉
DE102011088127A1 (de) 2011-06-07 2012-12-13 Sms Siemag Ag Strangführungssegment einer Strangführung einer Stranggießanlage und Verfahren zum Betreiben eines Strangführungssegments
DE102011085932A1 (de) 2011-06-07 2012-12-13 Sms Siemag Ag Verfahren zum Regeln der Höhe des Gießspiegels in einer Kokille einer Stranggießanlage
KR20140034111A (ko) * 2011-07-13 2014-03-19 베리 메탈 컴패니 내화물 마모 모니터 및 처리 서모커플을 갖는 스테이브 및 벽돌 구조물
DE102014209981A1 (de) * 2013-11-28 2015-05-28 Sms Siemag Ag Verfahren zum Erfassen des Schmelze- und/oder Schlackenniveaus in einem Ofengefäß
EP3118554A1 (de) * 2015-07-17 2017-01-18 Refractory Intellectual Property GmbH & Co. KG Verfahren insbesondere zur ausbesserung einer feuerfestauskleidung eines metallurgischen gefässes im heissen zustand
CN108088255A (zh) * 2017-12-14 2018-05-29 湖南顶立科技有限公司 一种浸渍炉的炉体结构和压力浸渍炉
FR3084661B1 (fr) * 2018-08-01 2021-01-22 Saint Gobain Ct Recherches Four de verrerie pourvu de fibres optiques
CN110986612A (zh) * 2019-12-17 2020-04-10 广德因达电炉成套设备有限公司 一种金属液处理炉用监测装置
FR3123975A1 (fr) 2021-06-09 2022-12-16 Saint-Gobain Centre De Recherches Et D'etudes Europeen Plaque instrumentee pour four
FR3147358A1 (fr) 2023-03-29 2024-10-04 Saint-Gobain Centre De Recherches Et D'etudes Europeen Four metallurgique suivi par reflectometrie electrique

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD240947A1 (de) * 1985-09-11 1986-11-19 Inducal Veb Anzeigesystem fuer die gefahr von wanddurchbruechen bei schmelzoefen
JPH0696726B2 (ja) * 1990-07-18 1994-11-30 住友金属工業株式会社 高炉壁厚測定方法とその装置
DE4120205A1 (de) * 1991-06-19 1992-12-24 Saveway Gmbh Vorwarneinrichtung fuer induktionsschmelzoefen
US5356220A (en) * 1992-05-29 1994-10-18 Kawasaki Steel Corporation Method and apparatus for monitoring temperature of blast furnace and temperature control system using temperature monitoring apparatus
EP0692705B1 (de) * 1994-07-16 1998-03-11 Felten & Guilleaume Energietechnik AG Verfahren zur Auswertung optisch rückgestreuter Signale zur Bestimmung eines streckenabhängigen Messprofils eines Rückstreumediums
JPH09218125A (ja) * 1996-02-08 1997-08-19 Nippon Steel Corp 溶融金属精錬容器用湯漏れ検知方法、並びにその判断方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI612303B (zh) * 2016-11-30 2018-01-21 中國鋼鐵股份有限公司 爐內耐火材狀態監測系統及方法
TWI731812B (zh) * 2020-10-30 2021-06-21 中國鋼鐵股份有限公司 估測高爐溫度的方法、電腦程式產品及電腦可讀取紀錄媒體

Also Published As

Publication number Publication date
AU2003266262A1 (en) 2004-02-25
EP1527306A2 (de) 2005-05-04
WO2004015349A3 (en) 2004-04-22
WO2004015349A2 (en) 2004-02-19
ATE511624T1 (de) 2011-06-15
AU2003266262A8 (en) 2004-02-25

Similar Documents

Publication Publication Date Title
EP1527306B1 (de) Ofen sowie verfahren und system zur überwachung von dessen betriebsbedingungen
CA2730241C (en) Temperature measurement in a chill mold by a fiber optic measurement method
EP1989525B1 (de) Fehlerdetektionssystem
CN102112253B (zh) 通过纤维光学的测量方法在结晶器中的铸造液面测量
JP6816969B2 (ja) 海底ケーブルを監視するための方法および装置
EP3295209B1 (de) Verfahren und vorrichtung zur messung der länge einer elektrode in einem elektrolichtbogenofen
AU2010333657A1 (en) Thermal sensing for material processing assemblies
CN102507042B (zh) 智能电网电力电缆嵌入光纤传感器的方法
CN108181025A (zh) 一种光纤复合架空地线热故障在线监测方法
JP2006504966A (ja) 流速を検出するための測定要素
CN104989959A (zh) 一种智能电热集油集气系统
JP4264301B2 (ja) 測温センサ、耐火物及び耐火ライニングの診断方法
EP1314011B1 (de) Optische zustandsanzeige für ein leistungsgeneratorsystem und verfahren zu dessen anzeige
CN102782433A (zh) 带有集成的用于获取温度和/或机械的负载的测量元件的用于容纳液态的金属的浇包或中间容器
DE10236033A1 (de) Verfahren und Anordnung zum Überwachen des Erhaltungszustands der feuerfesten Auskleidung von Schmelzöfen
JP5571631B2 (ja) 高炉の炉底耐火物の温度測定装置及び方法
KR20120128645A (ko) 금속 용융로의 전극 지지 암
RU2675201C2 (ru) Устройство и способ контроля поверхности реактора
Bascom et al. Considerations for advanced temperature monitoring of underground power cables
CN105969935A (zh) 用于固定至少一个喷射器的喷射器冷却块
Kasinathan et al. Fiber optic sensors for nuclear power plant applications
Sandlin et al. Coating integrated optical fibres for monitoring of boiler heat transfer surfaces
CN214471400U (zh) 一种牵引变压器光纤测温装置
CN117607626A (zh) 电缆局放和电缆温度在线一体化监测方法
Takinami et al. Development of cable fault location method using fiber optic distributed temperature sensor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050121

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20061205

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HOFF, HENRIK

Inventor name: SCHMITZ, WILFRIED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60337284

Country of ref document: DE

Effective date: 20110714

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: OTTO JUNKER GMBH

Owner name: LIOS TECHNOLOGY GMBH

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110912

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110601

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110902

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110601

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110601

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110601

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110601

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110601

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110601

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110601

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26 Opposition filed

Opponent name: SAVEWAY GMBH & CO. KG

Effective date: 20120301

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110901

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

R26 Opposition filed (corrected)

Opponent name: SAVEWAY GMBH & CO. KG

Effective date: 20120301

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 60337284

Country of ref document: DE

Effective date: 20120301

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110601

R26 Opposition filed (corrected)

Opponent name: SAVEWAY GMBH & CO. KG

Effective date: 20120301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110806

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110601

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 60337284

Country of ref document: DE

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20141126

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 60337284

Country of ref document: DE

Effective date: 20141126

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60337284

Country of ref document: DE

Representative=s name: FRITZ PATENT- UND RECHTSANWAELTE PARTNERSCHAFT, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 60337284

Country of ref document: DE

Owner name: NKT PHOTONICS GMBH, DE

Free format text: FORMER OWNERS: OTTO JUNKER GMBH, 52152 SIMMERATH, DE; LIOS TECHNOLOGY GMBH, 51063 KOELN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 60337284

Country of ref document: DE

Owner name: OTTO JUNKER GMBH, DE

Free format text: FORMER OWNERS: OTTO JUNKER GMBH, 52152 SIMMERATH, DE; LIOS TECHNOLOGY GMBH, 51063 KOELN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220825

Year of fee payment: 20

Ref country code: DE

Payment date: 20220620

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220823

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60337284

Country of ref document: DE