EP1527213A2 - Procede et systeme de refroidissement d une cuve d elec trolyse pour la production d aluminium - Google Patents

Procede et systeme de refroidissement d une cuve d elec trolyse pour la production d aluminium

Info

Publication number
EP1527213A2
EP1527213A2 EP03763932A EP03763932A EP1527213A2 EP 1527213 A2 EP1527213 A2 EP 1527213A2 EP 03763932 A EP03763932 A EP 03763932A EP 03763932 A EP03763932 A EP 03763932A EP 1527213 A2 EP1527213 A2 EP 1527213A2
Authority
EP
European Patent Office
Prior art keywords
droplets
box
cooling
transfer fluid
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03763932A
Other languages
German (de)
English (en)
Other versions
EP1527213B1 (fr
Inventor
Laurent Fiot
Claude Vanvoren
Airy-Pierre Lamaze
Bernard Eyglunent
Jean-Luc Basquin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rio Tinto France SAS
Original Assignee
Aluminium Pechiney SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=29763681&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1527213(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Aluminium Pechiney SA filed Critical Aluminium Pechiney SA
Priority to SI200331233T priority Critical patent/SI1527213T1/sl
Publication of EP1527213A2 publication Critical patent/EP1527213A2/fr
Application granted granted Critical
Publication of EP1527213B1 publication Critical patent/EP1527213B1/fr
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium

Definitions

  • the invention relates to the production of aluminum by igneous electrolysis, in particular by the Hall-Héroult electrolysis process, and to installations intended for the industrial implementation of this production.
  • the invention relates more specifically to the control of the heat fluxes of the electrolysis cells and the cooling means which make it possible to obtain this control.
  • Aluminum metal is produced industrially by igneous electrolysis, namely by electrolysis of alumina in solution in a bath based on molten cryolite, called electrolyte bath, in particular according to the well-known Hall-Héroult process.
  • the electrolyte bath is contained in cells, called “electrolysis cells”, comprising a steel box, which is coated internally with refractory and / or insulating materials, and a cathode assembly located at the bottom of the cell. Anodes are partially immersed in the electrolyte bath.
  • electrolysis cell normally designates the assembly comprising an electrolysis cell and one or more anodes.
  • the electrolysis current which circulates in the electrolyte bath and the liquid aluminum sheet via the anodes and cathode elements and which can reach intensities higher than 500 kA, operates the reduction reactions of the alumina and also makes it possible to maintain the electrolyte bath at a temperature of the order of 950 ° C. by the Joule effect.
  • the electrolysis cell is regularly supplied with alumina so as to compensate for the consumption of alumina resulting from the electrolysis reactions.
  • the electrolysis cell is generally controlled in such a way that it is in thermal equilibrium, that is to say that the heat dissipated by the electrolysis cell is generally compensated by the heat produced in the cell, which comes essentially electrolysis current.
  • the point of thermal equilibrium is generally chosen so as to achieve the most favorable operating conditions from a point of view not only technical, but also economic.
  • the possibility of maintaining a set temperature. optimal constitutes an appreciable saving in the cost of producing aluminum due to the maintenance of the current efficiency (or Faraday efficiency) at a very high value, which reaches values greater than 95% in the most efficient factories.
  • the conditions of thermal equilibrium depend on the physical parameters of the cell (such as the dimensions and the nature of the constituent materials or the electrical resistance of the cell) and on the operating conditions of the cell (such as the temperature of the bath or the intensity of the electrolysis current).
  • the cell is often formed and conducted so as to cause the formation of a solid embankment on the side walls of the tank, which in particular makes it possible to inhibit the attack of the coatings of said walls by the liquid cryolite.
  • electrolytic cells In order to be able to achieve very high electrolytic current intensities in small electrolytic cell volumes, it is known to provide electrolytic cells with specific means for evacuating and dissipating, possibly in a controlled manner, the heat produced by electrolysis cells.
  • French patent application FR 2 777 574 (corresponding to American patent US 6 251 237), in the name of Aluminum Pechiney, describes a device for cooling the electrolysis cells by blowing air with localized jets distributed around the box .
  • the very high efficiency of this device is however limited by the intrinsic thermal capacity of the cooling fluid.
  • the applicant has set itself the objective of finding means, effective and adaptable, for removing and dissipating the heat produced by the electrolysis cell, which can easily be put in place and which do not require major modifications to the cell, and in particular the box, nor significant infrastructure, nor prohibitive additional operating costs.
  • the applicant has particularly sought means which make it possible to modify the power of the cells, which easily adapt to different types of cell or to different modes of operation of the same type of cell, and which lend themselves to industrial installations comprising a large number of cells in series.
  • the subject of the invention is a method of cooling an igneous electrolysis cell for the production of aluminum in which a heat transfer fluid absorbs heat from said cell by a phase change of all or part of said fluid in contact with the cell of the cell. More specifically, in the method according to the invention, a “divided heat transfer fluid” is produced, such as droplets of a heat transfer fluid, and all or part of said droplets are brought into contact with the tank casing, so as to cause all or part of them to be vaporized.
  • the heat transfer fluid vapor formed by the vaporization of all or part of said droplets in contact with the box can be evacuated by natural ventilation (such as convection), by blowing or by suction.
  • the vaporization takes heat from the cell and this heat can then be removed with the heat transfer fluid vapor.
  • the divided form of the heat transfer fluid allows the latent heat of evaporation of the fluid to be preserved until it comes into contact with the tank casing.
  • the droplets heat up and vaporize, at least partially, in contact with the box and the vapor thus produced carries away a quantity of thermal energy, a large part of which corresponds to the latent heat of evaporation of the fluid.
  • the Applicant therefore had the idea of benefiting from the high heat absorption capacity linked to the vaporization of the droplets to considerably increase the cooling power of the heat transfer fluid.
  • the formation of a heat transfer fluid in divided form in a gas makes it possible to obtain a thermal conductivity, a specific heat and a higher latent heat than the gas alone.
  • the Applicant has also had the idea that dividing or dividing the fluid into separate droplets also makes it possible to produce a substantially homogeneous, but discontinuous heat transfer fluid, which breaks, in particular, the electrical continuity of the heat transfer fluid, while preserving a high thermal capacity for the heat transfer fluid.
  • the electrolysis cell is provided with at least one confinement means forming a confined space near a determined surface of at least one of the walls of the cell of the cell and droplets of a heat transfer fluid are produced in said space.
  • the means of containment can possibly be in contact with the box. It can possibly be attached to or attached to the box or integral with it.
  • the invention also relates to a system for cooling an igneous electrolysis cell for the production of aluminum which is characterized in that it comprises at least one means for producing droplets of a heat-transfer fluid, advantageously at near the tank box, and a means for bringing said droplets into contact with the box, so as to cause all or part of the latter to vaporize.
  • the cooling system according to the invention may also include means for removing the vaporized heat transfer fluid.
  • the cooling system further comprises at least one containment box, at least one means for supplying coolant and at least one means for producing droplets of said fluid in said box.
  • the containment boxes which are typically placed at a determined distance from the surface of the tank casing, favor the contact of the droplets with a determined surface of the casing. They are preferably placed near the side walls of the box. They can optionally be attached to or fixed to the walls of the box or be integral with it.
  • Said cooling system is capable of implementing the cooling method according to the invention.
  • the invention also relates to a method of regulating an electrolysis cell intended for the production of aluminum by igneous electrolysis including a method of cooling the cell according to the invention.
  • the invention also relates to an electrolysis cell intended for the production of aluminum by igneous electrolysis comprising a cooling system according to the invention.
  • Another subject of the invention is the use of the cooling method according to the invention for cooling an aluminum production cell by igneous electrolysis.
  • the invention also relates to the use of the cooling system according to the invention for cooling an aluminum production cell by igneous electrolysis.
  • the invention applies in particular to the production of aluminum by the Hall-Héroult process.
  • the invention makes it possible to reduce the thickness of the internal refractory linings (or “crucible”) of the cells of electrolysis cells, in particular the side walls, and to increase by the same amount the internal volume of the crucible capable of containing the bath. 'electrolysis.
  • Figure 1 shows, in cross section, an electrolysis cell for the production of typical aluminum using prebaked anodes of carbonaceous material.
  • Figure 2 illustrates, schematically and in cross section, an electrolysis cell comprising a cooling system according to a preferred embodiment of the invention.
  • FIG. 3 illustrates, schematically and in cross section, a part of the cooling system according to a preferred embodiment of the invention.
  • FIG. 4 illustrates, schematically and in side view, an electrolytic cell tank provided with a cooling system according to a preferred embodiment of the invention.
  • Figure 5 illustrates, schematically and according to section A A of Figure 3, an electrolysis cell provided with a cooling system according to a preferred embodiment of the invention.
  • an electrolysis cell (1) for the production of aluminum by igneous electrolysis typically comprises a tank (20), anodes (7) and means for supplying alumina (11) .
  • the anodes are connected to an anode frame (10) by means of support and fixing means (8, 9).
  • the tank (20) comprises a metal box (2), typically made of steel, interior cladding elements (3, 4) and cathode elements (5).
  • the interior cladding elements (3, 4) are generally blocks of refractory materials, which may be, in whole or in part, thermal insulators.
  • the cathode elements (5) incorporate connection bars (or cathode bars) (6), typically made of steel, to which are fixed the electrical conductors serving for the routing of the electrolysis current.
  • the . coating elements (3, 4) and the cathode elements (5) form, inside the tank, a crucible intended to contain the electrolyte bath (13) and a sheet of liquid metal (12) when the cell is in operation, during which the anodes (7) are partially immersed in the electrolyte bath (13).
  • the electrolyte bath contains dissolved alumina and, in general, an alumina-based cover (or crust) (14) covers the electrolyte bath.
  • the internal side walls (3) can be covered with a solidified bath layer (15).
  • the covering elements (3, 4) often consist of border tiles made of carbonaceous material or based on carbonaceous compounds, such as a refractory based on SiC, and pot lining.
  • the electrolysis current flows through the electrolyte bath (13) via the anode frame (10), support and fixing means (8, 9), anodes (7), cathode elements (5 ) and cathode bars (6).
  • the aluminum metal which is produced during electrolysis normally accumulates at the bottom of the tank and a fairly clear interface (19) is established between the liquid metal (12) and the bath based on molten cryolite ( 13).
  • the position of this bath-metal interface can vary over time: it rises as the liquid metal accumulates at the bottom of the tank and it drops when liquid metal is extracted from the tank .
  • electrolysis cells are generally arranged in line, in buildings called electrolysis halls, and electrically connected in series using connecting conductors. More specifically, the cathode bars (6) of a so-called “upstream” tank are electrically connected to the anodes (7) of a so-called “downstream” tank, typically by means of connecting conductors (16, 17, 18) and means for supporting and connecting (8, 9, 10) the anodes (7).
  • the cells are typically arranged so as to form two or more parallel rows. The electrolysis current thus cascades from one cell to the next.
  • the anodes (7) are typically made of carbonaceous material, even if they can also be made, in whole or in part, of a non-consumable material, called "inert", such as a metallic material or ceramic / metal composite (or “Cermet").
  • the method for cooling an electrolysis cell (1) intended for the production of aluminum by igneous electrolysis said cell (1) comprising a tank (20) comprising a metal box (2) having side walls (21, 22) and at least one bottom wall (23), said tank (20) being intended to contain an electrolyte bath (13) and a sheet of liquid metal (12), is characterized in that 'He understands : - the production of droplets of a heat transfer fluid,
  • the vaporization of all or part of the droplets of heat transfer fluid causes a transfer of heat from the box to the heat transfer fluid, which makes it possible to take heat from the box and to cool it.
  • said droplets are brought into contact with a determined surface (107) of the box (2), which makes it possible to select the most thermally advantageous surfaces and thus to increase the cooling efficiency of the tank in certain conditions.
  • the contact with the box (2) is a thermal contact, in the sense that it makes it possible to take thermal energy from the box by the vaporization of all or part of the droplets of coolant.
  • the droplets can be brought into contact with the box, and more precisely the outside surface of the box, in different ways, such as by confinement near the box, by pipeline, by projection, or a combination of these means.
  • the method of cooling an electrolysis cell (1) intended for the production of aluminum by igneous electrolysis is characterized in that, in addition, the cell is provided with electrolysis (1) of at least one means (101), called “confinement means”, to form a confined space (102) close to (or possibly in contact with) a determined surface (107) of at least one walls (21, 22, 23) of the box (2), preferably at least one of the side walls (21, 22) of the box (2), and in that it comprises the production of droplets of a heat-transfer fluid in said space (102), so as to bring all or part of said droplets into contact with said surface (107).
  • the expression "near” means at a distance typically less than 20 cm, or even less than 10 cm.
  • the droplets are typically produced at a determined distance D from one of the walls (21, 22, 23) of the box (2), that is to say that the zone (s) producing the heat-transfer fluid divided is located at a determined distance D from said wall.
  • the heat transfer fluid is then routed, typically in the liquid state, up to said determined distance D.
  • the droplets are preferably formed near the casing of the tank in order to avoid coalescence (or agglomeration) of these before their vaporization in contact with said wall, that is to say that the determined distance is preferably small (preferably less than about 20 cm, and more preferably less than 10 cm).
  • Said production zones are typically located in one or more containment boxes (101).
  • the droplets can be produced continuously or discontinuously.
  • the production rate of said droplets can be variable.
  • the cooling process advantageously comprises controlling the rate of production of said droplets.
  • the volume proportion of droplets of heat transfer fluid can then be varied in a controlled manner. This variant of the invention makes it possible to finely control the extraction of heat from the cell.
  • Said droplets typically have a size between 0.1 and 5 mm, and preferably between 1 and 5 mm. Droplets smaller than about 0.1 mm have the disadvantage of being easily entrained by the movements of the ambient air, or by the possible evacuation flow of the vaporized droplets, before coming into contact with the caisson.
  • the droplets form a mist, preferably a dense mist, in order to promote the vaporization of the droplets and to increase the cooling efficiency.
  • said droplets are produced by spraying said heat transfer fluid, typically from the liquid phase.
  • This spraying can be carried out using at least one nozzle.
  • the heat transfer fluid is advantageously water because this substance has a very high latent heat of vaporization.
  • Said water is preferably purified, in order to reduce its electrical conductivity and to limit deposits on the wall of the box which could, in the long term, reduce the cooling efficiency.
  • This purification is advantageously carried out, upstream, using a treatment column (113). It typically includes a water deionization operation.
  • the purified water contains in total a quantity of ions (anions and cations) less than 10 ⁇ g per liter of water, and more preferably still less than 1 ⁇ g per liter of water.
  • the confinement means (101) comprises at least one housing, that is to say that the heat transfer fluid is confined using at least one housing ( 101).
  • This box is placed at a determined distance from the wall of the box. This embodiment makes it possible to increase the probability of physical contact between said droplets and the surface of the box (and preferably a determined surface (107) of the box), and to prevent their dispersion in the space surrounding the tank. (20).
  • the containment box (101) typically has a determined internal space or volume (102), but it is advantageously open, typically on the side of the box. It is optionally possible to individually control the rate of droplet formation in each containment box (101).
  • the confinement means (101) can be attached to or fixed to the box (2) or integral with the latter. It is advantageous to place said housing (101) so that it overlaps the average level of the interface (19) between the electrolyte bath (13) and the sheet of liquid metal (12), this is that is to say so as to be situated on either side of the average level of said interface.
  • the cooling method according to the invention may further comprise an evacuation of all or part of the heat transfer fluid vapor formed by the vaporization of all or part of said droplets in contact with the box (2) (and in particular in contact with said determined surface (107)).
  • This evacuation can be carried out by natural ventilation, by suction or by blowing, or a combination of these means.
  • the heat transfer fluid vapor is typically discharged continuously.
  • the vaporized heat transfer fluid is channeled (typically by suction or blowing) to a place remote from the tanks, which can be located in the same hall or outside of it, or the heat transfer fluid can optionally be cooled, so as to condense the heat transfer fluid vapor, and reintroduced into the cooling circuit.
  • the droplets are mixed with a carrier gas in order to facilitate the evacuation of the vaporized heat transfer fluid and to favor the evaporation of any condensates of heat transfer fluid.
  • the carrier gas can be added to said droplets.
  • the carrier gas can advantageously be used to produce the droplets of heat transfer fluid by spraying.
  • the carrier gas can be conveyed in compressed form.
  • the carrier gas is typically air, but it is possible, within the framework of the invention, to use other gases or mixtures of gases.
  • the method comprises circulating a heat transfer fluid, in a circuit, open or closed, comprising: - A first part for the supply of heat transfer fluid, that is to say for the supply and delivery of the heat transfer fluid, typically in the liquid state, to the droplet production zone or zones;
  • the evacuated heat transfer fluid typically comprises steam and some fine non-vaporized droplets. It may optionally contain a liquid condensate of said heat transfer fluid recovered at a certain distance from the box.
  • the cooling system (100) of an electrolysis cell (1) intended for the production of aluminum by igneous electrolysis said cell (1) comprising a tank (20) comprising a metal box (2 ) having side walls (21, 22) and at least one bottom wall (23), said tank (20) being intended to contain an electrolyte bath (13) and a sheet of liquid metal (12), is characterized in that it comprises at least one means (103) for producing droplets of a heat-transfer fluid, typically near the box (2) of the cell (1), and a means (101) for placing all or part of said cells droplets in contact with the box (2), so as to cause the vaporization of all or part thereof.
  • the cooling system (100) of an electrolysis cell (1) intended for the production of aluminum by igneous electrolysis is characterized in that it further comprises:
  • At least one containment box (101) at a determined distance from at least one of the walls (21, 22, 23) of the box (2), - supply means (105, 111, 112, 113, 114 ) in a heat transfer fluid, - At least one means (103) for producing droplets of heat transfer fluid in said housing, so as to bring all or part of said droplets into contact with the box (2).
  • the containment boxes (101) are typically close to the walls (21, 22, 23) of the box (2) or, possibly, in contact with the box (2). They are advantageously placed close to, or in contact with, at least one of the side walls (21, 22) of said box (2).
  • the expression “near” means at a determined distance typically less than 20 cm, or even less than 10 cm.
  • the containment boxes (101) can be attached to or fixed to the box (2) or integral with the latter.
  • Each containment box (101) forms a confined space (102) typically corresponding to a determined internal volume.
  • the containment box (101) is advantageously open, typically on the side of the box (2), so as to promote heat exchanges between the box and the droplets.
  • the containment box (101) can possibly be opened, in particular, in its upper part (101a) and / or in its lower part (101b).
  • Said system advantageously comprises a plurality of containment boxes (101) distributed around the box (2) and, preferably, on the side walls (21, 22) of the box (2).
  • Each containment box (101) is advantageously placed so as to overlap the average level of the interface (19) between the electrolyte bath (13) and the sheet of liquid metal (12).
  • each box is typically placed in a substantially symmetrical manner relative to the average level of the interface (the height Hl above the average level (19) and the height H2 below the average level (19) are then substantially equal).
  • the average depth P of the containment boxes (101) is typically less than 20 cm.
  • the height H of the housings, on the side of the surface (107), is typically between 20 cm and 100 cm, or even between 20 cm and 80 cm.
  • the width L of the containment boxes (101) may be less than or equal to the spacing E between the stiffeners (25); they can also be integrated into, or integrate, said stiffeners.
  • the determined surface (107) covered by the boxes is typically between 0.2 and 1 m 2 , and more typically between 0, 3 and 0.5 m 2 .
  • the means (103) for producing droplets is advantageously a spraying means.
  • This means typically comprises at least one nozzle, such as a mist nozzle.
  • the containment boxes may include one or more means (103) for producing droplets.
  • the offset ⁇ H between the spraying means or means (103) and the average level (19) of the metal bath interface can be positive, zero or negative, that is to say that the nozzle can be located above or below the level of the interface or at the same level as said interface.
  • the means for supplying (105, 111, 112, 113, 114) with a heat transfer fluid typically comprise conveying means (105, 111, 112, 114), such as conduits, and a treatment column (113) .
  • the conveying means typically comprise a distribution conduit (111), an electrical insulating conduit (112) and a conduit for supplying heat transfer fluid (114).
  • the system according to the invention further comprises at least one means (104, 110), such as a conduit, for supplying each containment box (101) with carrier gas, possibly under pressure.
  • at least one means (104, 110) such as a conduit, for supplying each containment box (101) with carrier gas, possibly under pressure.
  • it further comprises means (108), such as a mixer, for producing said droplets using said carrier gas.
  • the cooling system according to the invention advantageously comprises at least one means (109) for controlling the rate of production of the droplets of heat transfer fluid.
  • the cooling system according to the invention advantageously comprises means (106, 120, 121, 122, 123, 124) for discharging all or part of the heat transfer fluid vaporized in contact with the box (2).
  • the evacuation means make it possible to evacuate the heat transfer fluid vapor formed by the vaporization of all or part of said droplets in contact with said surface (107).
  • said evacuation means typically comprise evacuation conduits (106, 120, 121, 124) and a suction or blowing means (123).
  • Exhaust ducts typically include a manifold duct (120), an electrical insulating duct (121) and an outlet duct (124).
  • the suction or blowing means (123) is typically a fan.
  • These means may also include a condenser (122) for condensing the droplets of suspended heat transfer fluid.
  • the condenser can advantageously include means for cooling the condensed heat transfer fluid so as to be able to reintroduce it into the cooling circuit at a determined temperature, which is generally significantly lower than the vaporization temperature. It is advantageous to provide means for promoting the flow and evacuation of any heat-transfer fluid condensates, such as a slope in certain evacuation conduits (in particular in the collecting conduit (120)).
  • the exhaust ducts can include a manifold (106), which can be placed in the upper (101a) or lower (101b) parts of the housings.
  • the applicant estimates' the number of containment boxes necessary for a 350 kA tank is typically between 30 and 60 approximately.
  • the quantity of liquid heat transfer fluid to be supplied to each housing is typically between 25 and 125 1 h.
  • the fraction of droplets of heat transfer fluid actually evaporated in contact with the box is between 20 and 60%.
  • the evacuated thermal power is typically between 5 and 25 kW / m 2 .
  • the flow rate of carrier gas per box advantageously is typically between 25 Nm / h and 150 Nm / h.
  • Anode 8 Means for supporting an anode (typically a multipod)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

L'invention a pour objet un procédé de refroidissement d'une cellule d'électrolyse ignée (1) pour la production d'aluminium dans lequel on produit des gouttelettes d'un fluide caloporteur (ou « fluide caloporteur divisé »), de préférence dans un volume confiné en contact avec une surface déterminée d'au moins une paroi du caisson (2) de la cuve de la cellule d'électrolyse (1), de manière à provoquer l'évaporation de tout ou partie desdites gouttelettes par contact avec ladite surface et à prélever de la chaleur de ladite surface. L'invention a aussi pour objet un système de refroidissement (100) apte à mettre en oeuvre le procédé de refroidissement. L'invention permet d'obtenir une efficacité du refroidissement élevée grâce à la chaleur latente de vaporisation du fluide caloporteur.

Description

PROCEDE ET SYSTEME DE REFROIDISSEMENT D'UNE CUVE D'ELECTROLYSE POUR LA PRODUCTION D'ALUMINIUM
Domaine de l'invention
L'invention concerne la production d'aluminium par électrolyse ignée, notamment par le procédé d'électrolyse Hall-Héroult, et les installations destinées à la mise en œuvre industrielle de cette production. L'invention concerne plus spécifiquement le contrôle des flux thermiques des cellules d'électrolyse et les moyens de refroidissement qui permettent d'obtenir ce contrôle.
Etat de la technique
L'aluminium métal est produit industriellement par électrolyse ignée, à savoir par électrolyse de l'alumine en solution dans un bain à base de cryolithe fondue, appelé bain d'électrolyte, notamment selon le procédé bien connu de Hall-Héroult. Le bain d'électrolyte est contenu dans des cuves, dites « cuves d'électrolyse », comprenant un caisson en acier, qui est revêtu intérieurement de matériaux réfractaires et/ou isolants, et un ensemble cathodique situé au fond de la cuve. Des anodes sont partiellement immergées dans le bain d'électrolyte. L'expression « cellule d'électrolyse » désigne normalement l'ensemble comprenant une cuve d'électrolyse et une ou plusieurs anodes.
Le courant d'électrolyse, qui circule dans le bain d'électrolyte et la nappe d'aluminium liquides par l'intermédiaire des anodes et des éléments cathodiques et qui peut atteindre des intensités supérieures à 500 kA, opère les réactions de réduction de l'alumine et permet également de maintenir le bain d'électrolyte à une température de l'ordre de 950 °C par effet Joule. La cellule d'électrolyse est régulièrement alimentée en alumine de manière à compenser la consommation en alumine résultant des réactions d'électrolyse. La cellule d'électrolyse est généralement pilotée de telle manière qu'elle se trouve en équilibre thermique, c'est-à-dire que la chaleur dissipée par la cellule d'électrolyse est globalement compensée par la chaleur produite dans la cellule, qui provient essentiellement du courant d'électrolyse. Le point d'équilibre thermique est généralement choisi de manière à atteindre les conditions de fonctionnement les plus favorables d'un point de vue non seulement technique, mais également économique. En particulier, la possibilité de maintenir une température de consigne . optimale constitue une économie appréciable du coût de production de l'aluminium du fait du maintien du rendement de courant (ou rendement Faraday) à une valeur très élevée, qui atteint des valeurs supérieures à 95 % dans les usines les plus performantes.
Les conditions d'équilibre thermique dépendent des paramètres physiques de la cellule (tels que les. dimensions et la nature des matériaux constitutifs ou la résistance électrique de la cellule) et des conditions de fonctionnement de la cellule (telles que la température du bain ou l'intensité du courant d'électrolyse). La cellule est souvent constituée et conduite de façon à entraîner la formation d'un talus de bain solidifié sur les parois latérales de la cuve, ce qui permet notamment d'inhiber l'attaque des revêtements desdites parois par la cryolithe liquide.
Afin de pouvoir atteindre des intensités de courant d'électrolyse très élevées dans des volumes de cuve d'électrolyse restreints, il est connu de munir les cellules d'électrolyse de moyens spécifiques pour évacuer et dissiper, éventuellement de manière contrôlée, la chaleur produite par les cellules d'électrolyse.
En particulier, afin de favoriser plus spécifiquement la formation d'un talus de bain solidifié, il est connu, par le brevet américain US 4 087 345, d'utiliser un caisson muni de raidisseurs et d'un cadre de renforcement constitués de manière à favoriser le refroidissement des côtés de cuve par convection naturelle d'air ambiant. Ces dispositifs statiques ne se prêtent pas aisément à un contrôle précis des flux thermiques. Il a par ailleurs été proposé, par la demande de brevet EP 0 047 227, de renforcer l'isolation thermique de la cuve et de la munir de caloducs équipés d'échangeurs thermiques. Les caloducs traversent le caisson et l'isolant thermique et sont incorporés dans les parties carbonées, telles que les dalles de bordure. Cette solution est de mise en œuvre assez complexe et coûteuse, et entraîne de surcroît des modifications assez importantes de la cuve.
La demande de brevet français FR 2 777 574 (correspondant au brevet américain US 6 251 237), au nom d'Aluminium Pechiney, décrit un dispositif de refroidissement des cellules d'électrolyse par soufflage d'air à jets localisés et répartis autour du caisson. L'efficacité très élevée de ce dispositif est toutefois limitée par la capacité thermique intrinsèque du fluide de refroidissement.
Ayant constaté l'absence de solutions connues suffisamment satisfaisantes, la demanderesse s'est fixé pour objectif de trouver des moyens, efficaces et adaptables, pour évacuer et dissiper la chaleur produite par la cellule d'électrolyse, qui puissent aisément être mis en place et qui ne nécessitent ni des modifications importantes de la cellule, et notamment du caisson, ni une infrastructure importante, ni des coûts de fonctionnement supplémentaires rédhibitoires. En vue d'une utilisation aussi bien dans les usines existantes que dans les nouvelles usines, la demanderesse a recherché tout particulièrement des moyens qui permettent de modifier la puissance des cellules, qui s'adaptent aisément à différents types de cellule ou à différents modes de fonctionnement d'un même type de cellule, et qui se prêtent à des installations industrielles comportant un grand nombre de cellules en série.
Description de l'invention
L'invention a pour objet un procédé de refroidissement d'une cellule d'électrolyse ignée pour la production d'aluminium dans lequel un fluide caloporteur absorbe de la chaleur de ladite cellule par un changement de phase de tout ou partie dudit fluide au contact de la cuve de la cellule. Plus précisément, dans le procédé selon l'invention, on produit un « fluide caloporteur divisé », tel que des gouttelettes d'un fluide caloporteur, et on met tout ou partie desdites gouttelettes en contact avec le caisson de la cuve, de manière à entraîner la vaporisation de tout ou partie de celles-ci.
La vapeur de fluide caloporteur formée par la vaporisation de tout ou partie desdites gouttelettes au contact du caisson peut être évacuée par ventilation naturelle (telle que la convection), par soufflage ou par aspiration.
La vaporisation prélève de la chaleur de la cellule et cette chaleur peut être évacuée ensuite avec la vapeur de fluide caloporteur. La forme divisée du fluide caloporteur permet de préserver la chaleur latente d' evaporation du fluide jusqu'à son contact avec le caisson de la cuve. Les gouttelettes s'échauffent et se vaporisent, au moins partiellement, au contact du caisson et la vapeur ainsi produite emporte une quantité d'énergie thermique dont une part importante correspond à la chaleur latente d' evaporation du fluide.
La demanderesse a donc eu l'idée de bénéficier de la forte capacité d'absorption de chaleur liée à la vaporisation des gouttelettes pour augmenter considérablement le pouvoir de refroidissement du fluide caloporteur. En particulier, la formation d'un fluide caloporteur sous forme divisée dans un gaz permet d'obtenir une conductibilité thermique, une chaleur massique et une chaleur latente plus élevée que le gaz seul. La demanderesse a également eu l'idée que la division ou le fractionnement du fluide en gouttelettes distinctes permet, en outre, de produire un fluide caloporteur sensiblement homogène, mais discontinu, qui rompt, en particulier, la continuité électrique du fluide caloporteur, tout en préservant une capacité thermique élevée au fluide caloporteur.
Dans un mode de réalisation préféré de l'invention, on munit la cellule d'électrolyse d'au moins un moyen de confinement formant un espace confiné à proximité d'une surface déterminée d'au moins une des parois du caisson de la cuve et on produit des gouttelettes d'un fluide caloporteur dans ledit espace. Le moyen de confinement peut éventuellement être en contact avec le caisson. Il peut éventuellement être accolé ou fixé au caisson ou solidaire de celui-ci.
L'invention a également pour objet un système de refroidissement d'une cellule d'électrolyse ignée pour la production d'aluminium qui est caractérisé en ce qu'il comprend au moins un moyen pour produire des gouttelettes d'un fluide caloporteur, avantageusement à proximité du caisson de la cuve, et un moyen pour mettre lesdites gouttelettes en contact avec le caisson, de manière à entraîner la vaporisation de tout ou partie ce celles-ci.
Le système de refroidissement selon l'invention peut également comprendre des moyens pour évacuer le fluide caloporteur vaporisé.
Dans un mode de réalisation préféré de l'invention, le système de refroidissement comprend en outre au moins un boîtier de confinement, au moins un moyen d'alimentation en fluide caloporteur et au moins un moyen pour produire des gouttelettes dudit fluide dans ledit boîtier.
Les boîtiers de confinement, qui sont typiquement placés à une distance déterminée de la surface du caisson de la cuve, favorisent le contact des gouttelettes avec une surface déterminée du caisson. Ils sont de préférence placés à proximité des parois latérales du caisson. Ils peuvent éventuellement être accolés ou fixés aux parois du caisson ou être solidaires de celui-ci.
Ledit système de refroidissement est apte à mettre en œuvre le procédé de refroidissement selon l'invention.
L'invention a aussi pour objet un procédé de régulation d'une cellule d'électrolyse destinée à la production d'aluminium par électrolyse ignée incluant un procédé de refroidissement de la cellule selon l'invention. L'invention a aussi pour objet une cellule d'électrolyse destinée à la production d'aluminium par électrolyse ignée comprenant un système de refroidissement selon l'invention.
L'invention a encore pour objet l'utilisation du procédé de refroidissement selon l'invention pour le refroidissement d'une cellule production d'aluminium par électrolyse ignée.
L'invention a encore pour objet l'utilisation du système de refroidissement selon l'invention pour le refroidissement d'une cellule production d'aluminium par électrolyse ignée.
L'invention s'applique notamment à la production d'aluminium par le procédé Hall- Héroult.
L'invention permet de réduire l'épaisseur des revêtements réfractaires intérieurs (ou « creuset ») des cuves de cellules d'électrolyse, notamment les parois latérales, et d'augmenter d'autant le volume interne du creuset apte à contenir le bain d'électrolyse.
Figures
La figure 1 représente, en coupe transversale, une cellule d'électrolyse pour la production d'aluminium typique utilisant des anodes précuites en matériau carboné.
La figure 2 illustre, de manière schématisée et en coupe transversale, une cellule d'électrolyse comprenant un système de refroidissement selon un mode de réalisation préféré de l'invention.
La figure 3 illustre, de manière schématisée et en coupe transversale, une partie du système de refroidissement selon un mode de réalisation préféré de l'invention. La figure 4 illustre, de manière schématisée et en vue de côté, une cuve de cellule d'électrolyse munie d'un système de refroidissement selon un mode de réalisation préféré de l'invention.
La figure 5 illustre, de manière schématisée et selon la section A A de la figure 3, une cellule d'électrolyse munie d'un système de refroidissement selon un mode de réalisation préféré l'invention.
Description détaillée de l'invention
Tel qu'illustré à la figure 1, une cellule d'électrolyse (1) pour la production d'aluminium par électrolyse ignée comprend typiquement une cuve (20), des anodes (7) et des moyens d'alimentation en alumine (11). Les anodes sont raccordées à un cadre anodique (10) par l'intermédiaire de moyens de support et de fixation (8, 9). La cuve (20) comprend un caisson métallique (2), typiquement en acier, des éléments de revêtement intérieur (3, 4) et des éléments cathodiques (5). Les éléments de revêtement intérieur (3, 4) sont généralement des blocs en matériaux réfractaires, qui peuvent être, en tout ou partie, des isolants thermiques. Les éléments cathodiques (5) intègrent des barres de raccordement (ou barres cathodiques) (6), typiquement en acier, auxquelles sont fixés les conducteurs électriques servant à l'acheminement du courant d'électrolyse.
Les . éléments de revêtement (3, 4) et les éléments cathodiques (5) forment, à l'intérieur de la cuve, un creuset destiné à contenir le bain d'électrolyte (13) et une nappe de métal liquide (12) lorsque la cellule est en fonctionnement, au cours duquel les anodes (7) sont partiellement immergées dans le bain d'électrolyte (13). Le bain d'électrolyte contient de l'alumine dissoute et, en général, une couverture (ou croûte) à base d'alumine (14) recouvre le bain d'électrolyte. Dans certains modes de fonctionnement, les parois latérales internes (3) peuvent être recouvertes d'une couche de bain solidifié (15). Les éléments de revêtement (3, 4) sont souvent constitués de dalles de bordure en matériau carboné ou à base de composés carbonés, tels qu'un réfractaire à base de SiC, et de pâtes de brasque. Le courant d'électrolyse transite dans le bain d'électrolyte (13) par l'intermédiaire du cadre anodique (10), des moyens de support et de fixation (8, 9), des anodes (7), des éléments cathodiques (5) et des barres cathodiques (6).
L'aluminium métal qui est produit au cours de l'électrolyse s'accumule normalement au fond de la cuve et il s'établit une interface (19) assez nette entre le métal liquide (12) et le bain à base de cryolithe fondue (13). La position de cette interface bain- métal peut varier au cours du temps : elle s'élève au fur et à mesure que le métal liquide s'accumule au fond de la cuve et elle s'abaisse lorsque du métal liquide est extrait de la cuve.
Plusieurs cellules d'électrolyse sont généralement disposées en ligne, dans des bâtiments appelés halls d'électrolyse, et raccordées électriquement en série à l'aide de conducteurs de liaison. Plus précisément, les barres cathodiques (6) d'une cuve dite « amont » sont raccordées électriquement aux anodes (7) d'une cuve dite « aval », typiquement par l'intermédiaire de conducteurs de liaison (16, 17, 18) et des moyens de supports et de raccordement (8, 9, 10) des anodes (7). Les cellules sont typiquement disposées de manière à former deux ou plusieurs files parallèles. Le courant d'électrolyse passe ainsi en cascade d'une cellule à la suivante.
Les anodes (7) sont typiquement en matériau carboné, même si elles peuvent également être constituées, en tout ou partie, d'un matériau non-consommable, dit « inerte », tel qu'un matériau métallique ou composite céramique/métal (ou « cermet »).
Selon l'invention, le procédé de refroidissement d'une cellule d'électrolyse (1) destinée à la production d'aluminium par électrolyse ignée, ladite cellule (1) comprenant une cuve (20) comportant un caisson métallique (2) ayant des parois latérales (21, 22) et au moins une paroi de fond (23), ladite cuve (20) étant destinée à contenir un bain d'électrolyte (13) et une nappe de métal liquide (12), est caractérisé en ce qu'il comprend : - la production de gouttelettes d'un fluide caloporteur,
- la mise en contact de tout ou partie desdites gouttelettes avec le caisson (2), de manière à entraîner la vaporisation de tout ou partie de celles-ci.
La vaporisation de tout ou partie des gouttelettes de fluide caloporteur entraîne un transfert de chaleur du caisson vers le fluide caloporteur, ce qui permet de prélever de la chaleur du caisson et de le refroidir.
De préférence, on met lesdites gouttelettes en contact avec une surface déterminée (107) du caisson (2), ce qui permet de sélectionner les surfaces les plus avantageuses sur le plan thermique et d'augmenter ainsi l'efficacité du refroidissement de la cuve dans certaines conditions.
Le contact avec le caisson (2) (ou une surface déterminée (107) du caisson) est un contact thermique, en ce sens qu'il permet de prélever de l'énergie thermique du caisson par la vaporisation de tout ou partie des gouttelettes de fluide caloporteur.
Les gouttelettes peuvent être mises en contact avec le caisson, et plus précisément la surface extérieure du caisson, de différentes façons, telles que par confinement à proximité du caisson, par canalisation, par projection, ou une combinaison de ces moyens.
Selon un mode de réalisation préféré de l'invention, le procédé de refroidissement d'une cellule d'électrolyse (1) destinée à la production d'aluminium par électrolyse ignée est caractérisé en ce que, en outre, on munit la cellule d'électrolyse (1) d'au moins un moyen (101), dénommé « moyen de confinement », pour former un espace confiné (102) à proximité de (ou éventuellement en contact avec) une surface déterminée (107) d'au moins une des parois (21, 22, 23) du caisson (2), de préférence au moins une des parois latérales (21, 22) du caisson (2), et en ce qu'il comprend la production de gouttelettes d'un fluide caloporteur dans ledit espace (102), de manière à mettre tout ou partie desdites gouttelettes en contact avec ladite surface (107). L'expression « à proximité » signifie à une distance typiquement inférieure à 20 cm, voire inférieure à 10 cm.
Le confinement des gouttelettes dans un volume déterminé à proximité d'une partie du caisson, ou en contact avec ce dernier, permet de limiter et de contrôler la diffusion desdites gouttelettes.
Les gouttelettes sont typiquement produites à une distance D déterminée d'une des parois (21, 22, 23) du caisson (2), c'est-à-dire que la (ou les) zone(s) de production du fluide caloporteur divisé se situe(nt) à une distance D déterminée de ladite paroi. Le fluide caloporteur est alors acheminé, typiquement à l'état liquide, jusqu'à ladite distance D déterminée. Les gouttelettes sont de préférence formées à proximité du caisson de la cuve afin d'éviter la coalescence (ou l'agglomération) de celles-ci avant leur vaporisation au contact de ladite paroi, c'est-à-dire que la distance déterminée est de préférence faible (de préférence inférieure à environ 20 cm, et de préférence encore inférieure à 10 cm). Lesdites zones de production sont typiquement localisées dans un ou des boîtiers de confinement (101).
Les gouttelettes peuvent être produites de manière continue ou discontinue. Le taux de production desdites gouttelettes peut être variable. Le procédé de refroidissement comprend avantageusement le contrôle du taux de production desdites gouttelettes. La proportion volumique de gouttelettes de fluide caloporteur peut alors être variée de manière contrôlée. Cette variante de l'invention permet de contrôler finement l'extraction de chaleur de la cellule.
Lesdites gouttelettes ont typiquement une taille comprise entre 0,1 et 5 mm, et de préférence comprise entre 1 et 5 mm. Des gouttelettes de taille inférieure à 0,1 mm environ présentent l'inconvénient d'être facilement entraînées par les mouvements de l'air ambiant, ou par l'éventuel flux d'évacuation des gouttelettes vaporisées, avant d'entrer en contact avec le caisson. Dans un mode de réalisation avantageux de l'invention, les gouttelettes forment un brouillard, de préférence un brouillard dense, afin de favoriser la vaporisation des gouttelettes et d'augmenter l'efficacité du refroidissement.
On produit avantageusement lesdites gouttelettes par pulvérisation dudit fluide caloporteur, typiquement à partir de la phase liquide. Cette pulvérisation peut être effectuée en utilisant au moins une buse.
Le fluide caloporteur est avantageusement de l'eau car cette substance possède une chaleur latente de vaporisation très élevée. Ladite eau est de préférence purifiée, afin de réduire sa conductivité électrique et de limiter les dépôts sur la paroi du caisson qui pourraient, à terme, réduire l'efficacité du refroidissement. Cette purification est avantageusement effectuée, en amont, à l'aide d'une colonne de traitement (113). Elle comprend typiquement une opération de désionisation de l'eau. De préférence, l'eau purifiée contient au total une quantité d'ions (anions et cations) inférieure à 10 μg par litre d'eau, et de préférence encore inférieure à 1 μg par litre d'eau.
Dans un mode de réalisation préféré de l'invention, le moyen de confinement (101) comporte au moins un boîtier, c'est-à-dire que l'on confine le fluide caloporteur à l'aide d'au moins un boîtier (101). Ce boîtier est placé à une distance déterminée de la paroi du caisson. Ce mode de réalisation permet d'augmenter la probabilité d'un contact physique entre lesdites gouttelettes et la surface du caisson (et de préférence une surface déterminée (107) du caisson), et d'empêcher leur dispersion dans l'espace environnant la cuve (20). Le boîtier de confinement (101) a typiquement un espace ou volume interne (102) déterminé, mais il est avantageusement ouvert, typiquement du côté du caisson. Il est éventuellement possible de contrôler individuellement de taux de formation des gouttelettes dans chaque boîtier de confinement (101).
Le moyen de confinement (101) peut être accolé ou fixé au caisson (2) ou solidaire de celui-ci. Il est avantageux de placer ledit boîtier (101) de manière à ce qu'il chevauche le niveau moyen de l'interface (19) entre le bain d'électrolyte (13) et la nappe de métal liquide (12), c'est-à-dire de manière à se situer de part et d'autre du niveau moyen de ladite interface.
Le procédé de refroidissement selon l'invention peut comprendre, en outre, une évacuation de tout ou partie de la vapeur de fluide caloporteur formée par la vaporisation de tout ou partie desdites gouttelettes au contact du caisson (2) (et en particulier au contact de ladite surface déterminée (107)). Cette évacuation peut être effectuée par ventilation naturelle, par aspiration ou par soufflage, ou une combinaison de ces moyens. La vapeur de fluide caloporteur est typiquement évacuée de manière continue.
De préférence, le fluide caloporteur vaporisé est canalisé (typiquement par aspiration ou soufflage) vers un lieu éloigné des cuves, qui peut se situer dans le même hall ou à l'extérieur de celui-ci, ou le fluide caloporteur peut éventuellement être refroidi, de manière à condenser la vapeur de fluide caloporteur, et réintroduit dans le circuit de refroidissement.
De manière avantageuse, lorsque le procédé comprend une évacuation de la vapeur de fluide caloporteur, les gouttelettes sont mélangées à un gaz porteur afin de faciliter l'évacuation du fluide caloporteur vaporisé et de favoriser l' evaporation des éventuels condensats de fluide caloporteur. Le gaz porteur peut être ajouté aux dites gouttelettes. Le gaz porteur peut avantageusement être utilisé pour produire les gouttelettes de fluide caloporteur par pulvérisation. Dans ce but, le gaz porteur peut être acheminé sous forme comprimée. Le gaz porteur est typiquement de l'air, mais il est possible, dans le cadre de l'invention, d'utiliser d'autres gaz ou mélanges de gaz.
Dans un mode de réalisation préféré de l'invention, le procédé comprend la mise en circulation d'un fluide caloporteur, dans un circuit, ouvert ou fermé, comportant : - une première partie pour l'alimentation en fluide caloporteur, c'est-à-dire pour la fourniture et l'acheminement du fluide caloporteur, typiquement à l'état liquide, vers le ou les zones de production des gouttelettes ;
- une deuxième partie pour la formation de gouttelettes de fluide caloporteur, typiquement dans ledit espace confiné, et pour la mise en contact du fluide caloporteur divisé avec le caisson, de manière à provoquer sa vaporisation totale ou partielle ;
- une troisième partie pour l'évacuation du fluide caloporteur vaporisé.
En pratique, le fluide caloporteur évacué comprend typiquement de la vapeur et quelques gouttelettes fines non-vaporisées. Il peut éventuellement contenir un condensât liquide dudit fluide caloporteur récupéré à une certaine distance du caisson.
Selon l'invention, le système de refroidissement (100) d'une cellule d'électrolyse (1) destinée à la production d'aluminium par électrolyse ignée, ladite cellule (1) comprenant une cuve (20) comportant un caisson métallique (2) ayant des parois latérales (21, 22) et au moins une paroi de fond (23), ladite cuve (20) étant destinée à contenir un bain d'électrolyte (13) et une nappe de métal liquide (12), est caractérisé en ce qu'il comprend au moins un moyen (103) pour produire des gouttelettes d'un fluide caloporteur, typiquement à proximité du caisson (2) de la cellule (1), et un moyen (101) pour mettre tout ou partie desdites gouttelettes en contact avec le caisson (2), de manière à entraîner la vaporisation de tout ou partie ce celles-ci.
Dans un mode de réalisation préféré de l'invention, le système de refroidissement (100) d'une cellule d'électrolyse (1) destinée à la production d'aluminium par électrolyse ignée est caractérisé en ce qu'il comprend en outre :
- au moins un boîtier de confinement (101) à une distance déterminée d'au moins une des parois (21, 22, 23) du caisson (2), - des moyens d'alimentation (105, 111, 112, 113, 114) en un fluide caloporteur, - au moins un moyen (103) pour produire des gouttelettes de fluide caloporteur dans ledit boîtier, de manière à mettre tout ou partie desdites gouttelettes en contact avec le caisson (2).
Les boîtiers de confinement (101) sont typiquement à une proximité des parois (21, 22, 23) du caisson (2) ou, éventuellement, en contact avec le caisson (2). Ils sont placés avantageusement à une proximité de, ou en contact avec, au moins une des parois latérales (21, 22) dudit caisson (2). L'expression « à proximité » signifie à une distance déterminée typiquement inférieure à 20 cm, voire inférieure à 10 cm.
Les boîtiers de confinement (101) peuvent être accolés ou fixés au caisson (2) ou solidaire de celui-ci.
Chaque boîtier de confinement (101) forme un espace confiné (102) correspondant typiquement à un volume interne déterminé. Le boîtier de confinement (101) est avantageusement ouvert, typiquement du côté du caisson (2), de manière à favoriser les échanges thermiques entre le caisson et les gouttelettes. Le boîtier de confinement (101) peut éventuellement être ouvert, en particulier, dans sa partie supérieure (101a) et/ou dans sa partie inférieure (101b).
Ledit système comporte avantageusement une pluralité de boîtiers de confinement (101) répartis autour du caisson (2) et, de préférence, sur les parois latérales (21, 22) du caisson (2). Chaque boîtier de confinement (101) est avantageusement placé de manière à chevaucher le niveau moyen de l'interface (19) entre le bain d'électrolyte (13) et la nappe de métal liquide (12). Dans ce cas, chaque boîtier est typiquement placé de manière sensiblement symétrique par rapport au niveau moyen de l'interface (la hauteur Hl au-dessus du niveau moyen (19) et la hauteur H2 au-dessous du niveau moyen (19) sont alors sensiblement égales).
La profondeur moyenne P des boîtiers de confinement (101) est typiquement inférieure à 20 cm. La hauteur H des boîtiers, du côté de la surface (107), est typiquement comprise entre 20 cm et 100 cm, voire entre 20 cm et 80 cm. La largeur L des boîtiers de confinement (101) peut être inférieure ou égale à l'espacement E entre les raidisseurs (25) ; ils peuvent également s'intégrer aux, ou intégrer, lesdits raidisseurs. La surface déterminée (107) couverte par les boîtiers est typiquement comprise entre 0,2 et 1 m2, et plus typiquement comprise entre 0, 3 et 0,5 m2.
Le moyen (103) pour produire des gouttelettes est avantageusement un moyen de pulvérisation. Ce moyen comporte typiquement au moins une buse, telle qu'une buse à brouillard.
Les boîtiers de confinement peuvent comprendre un ou plusieurs moyens (103) pour produire des gouttelettes.
Le décalage ΔH entre le ou les moyens de pulvérisation (103) et le niveau moyen (19) de l'interface bain métal peut être positif, nul ou négatif, c'est-à-dire que la buse peut se situer au-dessus ou au-dessous du niveau de l'interface ou au même niveau que ladite interface.
Les moyens d'alimentation (105, 111, 112, 113, 114) en un fluide caloporteur comprennent typiquement des moyens d'acheminement (105, 111, 112, 114), tels que des conduits, et une colonne de traitement (113). Les moyens d'acheminement comprennent typiquement un conduit de distribution (111), un conduit isolant électrique (112) et un conduit d'alimentation en fluide caloporteur (114).
Avantageusement, le système selon l'invention comprend en outre au moins un moyen (104, 110), tel qu'un conduit, pour alimenter chaque boîtier de confinement (101) en gaz porteur, éventuellement sous pression. De préférence, il comporte en outre un moyen (108), tel qu'un mélangeur, pour produire lesdites gouttelettes à l'aide dudit gaz porteur.
Le système de refroidissement selon l'invention comporte avantageusement au moins un moyen (109) pour contrôler le taux de production des gouttelettes de fluide caloporteur. Le système de refroidissement selon l'invention comprend avantageusement des moyens (106, 120, 121, 122, 123, 124) pour évacuer tout ou partie du fluide caloporteur vaporisé au contact du caisson (2). Les moyens d'évacuation permettent d'évacuer la vapeur de fluide caloporteur formée par la vaporisation de tout ou partie desdites gouttelettes au contact de ladite surface (107).
Les moyens d'évacuation (106, 120, 121, 122, 123, 124), qui comprennent typiquement des moyens de canalisation, sont aptes à évacuer tout ou partie de la vapeur de fluide caloporteur après evaporation ou vaporisation de tout ou partie desdites gouttelettes au contact du caisson (2). En particulier, lesdits moyens d'évacuation comprennent typiquement des conduits d'évacuation (106, 120, 121, 124) et un moyen d'aspiration ou de soufflage (123). Les conduits d'évacuation incluent typiquement un conduit collecteur (120), un conduit isolant électrique (121) et un conduit de sortie (124). Le moyen d'aspiration ou de soufflage (123) est typiquement un ventilateur. Ces moyens peuvent également comprendre un condenseur (122) pour condenser les gouttelettes de fluide caloporteur en suspension. Cette condensation permet, notamment, de récupérer le fluide caloporteur et de le réintroduire dans le circuit de refroidissement. Le condenseur peut avantageusement comprendre des moyens de refroidissement du fluide caloporteur condensé afin de pouvoir le réintroduire dans le circuit de refroidissement à une température déterminée, qui est généralement nettement plus faible que la température de vaporisation. Il est avantageux de prévoir des moyens pour favoriser l'écoulement et l'évacuation des éventuels condensats de fluide caloporteur, tels qu'une pente dans certains conduits d'évacuation (notamment dans le conduit collecteur (120)). Les conduits d'évacuation peuvent comprendre un collecteur (106), qui peut être placé dans la partie supérieure (101a) ou inférieure (101b) des boîtiers.
La demanderesse estime' le nombre de boîtiers de confinement nécessaires pour une cuve de 350 kA est typiquement compris entre 30 et 60 environ. La quantité de fluide caloporteur liquide à fournir à chaque boîtier se situe typiquement entre 25 et 125 1 h.
Elle estime aussi que la fraction des gouttelettes de fluide caloporteur effectivement évaporée au contact du caisson se situe entre 20 et 60 %. La puissance thermique évacuée se situe typiquement entre 5 et 25 kW/m2. La demanderesse estime également que, si un gaz porteur est utilisé, le débit de gaz porteur par boîtier avantageusement est typiquement compris entre 25 Nm /h et 150 Nm /h.
Liste des repères numériques
1 Cellule d'électrolyse
2 Caisson 3 Revêtement intérieur latéral
4 Revêtement intérieur de la sole
5 Elément cathodique
6 Barre de raccordement ou barre cathodique
7 Anode 8 Moyen de support d'une anode (typiquement un multipode)
9 Moyen de support et de fixation d'une anode (tige)
10 Cadre anodique
11 ' Moyen d'alimentation en alumine
12 Nappe de métal liquide 13 Bain d'électrolyte
14 Couverture (ou croûte) d'alumine
15 Couche de bain solidifié
16 Conducteur de liaison (montée)
17 Conducteur de liaison (collecteur) 18 Conducteur de liaison
19 Interface entre la nappe de métal liquide et le bain d'électrolyte 0 Cuve 1 Paroi latérale du caisson 2 Paroi latérale d'extrémité du caisson 3 Paroi de fond du caisson 5 Raidisseur de caisson
100 Système de refroidissement 101 Boîtier de confinement
101a Partie supérieure du boîtier de confinement 101b Partie inférieure du boîtier de confinement
102 Espace confiné 103 Moyen pour produire des gouttelettes de fluide caloporteur
10Φ Conduit
105 Conduit
106 Collecteur
107 Surface de refroidissement 108 Mélangeur
109 Moyen de contrôle du taux de production des gouttelettes de fluide caloporteur
110 Conduit d' alimentation en gaz porteur
111 Conduit de distribution
112 Conduit isolant 113 Colonne de traitement
114 Conduit d' alimentation en fluide caloporteur
120 Conduit collecteur
121 Conduit isolant
122 Condenseur 123 Moyen d'aspiration ou de soufflage 124 Conduit de sortie

Claims

REVENDICATIONS
1. Procédé de refroidissement d'une cellule d'électrolyse (1) destinée à la production d'aluminium par électrolyse ignée, ladite cellule (1) comprenant une cuve (20) comportant un caisson métallique (2) ayant des parois latérales (21,
22) et au moins une paroi de fond (23), ladite cuve (20) étant destinée à contenir un bain d'électrolyte (13) et une nappe de métal liquide (12), ledit procédé étant caractérisé en ce qu'il comprend : - la production de gouttelettes d'un fluide caloporteur, - la mise en contact de tout ou partie desdites gouttelettes avec le caisson (2), de manière à entraîner la vaporisation de tout ou partie ce celles-ci.
2. Procédé de refroidissement selon la revendication 1, caractérisé en ce qu'on met lesdites gouttelettes en contact avec le caisson (2) par confinement à proximité du caisson, par canalisation, par projection, ou une combinaison de ces moyens.
3. Procédé de refroidissement selon la revendication 1 ou 2, caractérisé en ce qu'on met lesdites gouttelettes en contact avec une surface déterminée (107) du caisson (2).
4. Procédé de refroidissement selon l'une quelconque des revendications 1 à 3, caractérisé en ce que, en outre, on munit la cellule d'électrolyse (1) d'au moins un moyen de confinement (101) pour former un espace confiné (102) à proximité de, ou en contact avec, une surface déterminée (107) d'au moins une des parois (21, 22, 23) du caisson (2), et en ce qu'il comprend la production de gouttelettes d'un fluide caloporteur dans ledit espace (102), de manière à mettre tout ou partie desdites gouttelettes en contact avec ladite surface (107).
5. Procédé de refroidissement selon la revendication 4, caractérisé en ce que le moyen de confinement (101) forme un espace confiné (102) à proximité de, ou en contact avec, une surface déterminée (107) d'au moins une des parois latérales (21, 22) du caisson (2).
6. Procédé de refroidissement selon la revendication 4 ou 5, caractérisé en ce que le moyen de confinement (101) est accolé ou fixé au caisson (2) ou solidaire de celui-ci.
7. Procédé de refroidissement selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'on produit lesdites gouttelettes par pulvérisation dudit fluide caloporteur.
8. Procédé de refroidissement selon la revendication 7, caractérisé en ce qu'on utilise au moins une buse pour effectuer ladite pulvérisation.
9. Procédé de refroidissement selon l'une quelconque des revendications 1 à 8, caractérisé en ce que ledit fluide caloporteur est de l'eau.
10. Procédé de refroidissement selon la revendication 9, caractérisé en ce que l'eau est purifiée.
11. Procédé de refroidissement selon l'une quelconque des revendications 1 à 10, caractérisé en ce qu'on mélange lesdites gouttelettes à un gaz porteur.
12. Procédé de refroidissement selon la revendication 11, caractérisé en ce qu'on utilise ledit gaz porteur pour produire lesdites gouttelettes par pulvérisation.
13. Procédé de refroidissement selon la revendication 11 ou 12, caractérisé en ce que ledit gaz porteur est de l'air.
14. Procédé de refroidissement selon l'une quelconque des revendications 1 à 13, caractérisé en ce qu'il comprend le contrôle du taux de production des gouttelettes de fluide caloporteur.
15. Procédé de refroidissement selon l'une quelconque des revendications 1 à 14, caractérisé en ce que lesdites gouttelettes ont une taille comprise entre 0,1 et 5 mm, et de préférence entre 1 et 5 mm.
16. Procédé de refroidissement selon l'une quelconque des revendications 1 à 15, caractérisé en ce que les gouttelettes forment un brouillard.
17. Procédé de refroidissement selon l'une quelconque des revendications 1 à 16, caractérisé en ce qu'on produit les gouttelettes de fluide caloporteur à une distance déterminée D d'une des parois (21, 22, 23) du caisson (2) inférieure à
20 cm, de manière à limiter la coalescence desdites gouttelettes avant leur vaporisation au contact avec ladite paroi.
18. Procédé de refroidissement selon l'une quelconque des revendications 1 à 17, caractérisé en ce que le moyen de confinement (101) comporte au moins un boîtier.
19. Procédé de refroidissement selon la revendication 18, caractérisé en ce qu'on place ledit boîtier (101) de manière à ce qu'il chevauche le niveau moyen de l'interface (19) entre le bain d'électrolyte (13) et la nappe de métal liquide (12).
20. Procédé de refroidissement selon l'une quelconque des revendications 1 à 19, caractérisé en ce qu'il comprend en outre l'évacuation de tout ou partie de la vapeur de fluide caloporteur formée par la vaporisation de tout ou partie desdites gouttelettes au contact du caisson (2).
21. Procédé de refroidissement selon la revendication 20, caractérisé en ce qu'on évacue ladite Vapeur par ventilation naturelle, par aspiration ou par soufflage, ou une combinaison de ces moyens.
22. Système de refroidissement (100) d'une cellule d'électrolyse (1) destinée à la production d'aluminium par électrolyse ignée, ladite cellule (1) comprenant une cuve (20) comportant un caisson n étallique (2) ayant des parois latérales (21, 22) et une paroi de fond (23)* ladite cuve (20) étant destinée à contenir un bain d'électrolyte (13) et une nappe de métal liquide (12), ledit système étant caractérisé en ce qu'il comprend au moins un moyen (103) pour produire des gouttelettes d'un fluide caloporteur et un moyen (101) pour mettre tout ou partie desdites gouttelettes en contact avec le caisson (2), de manière à entraîner la vaporisation de tout ou partie ce celles-ci.
23. Système de refroidissement (100) selon la revendication 22, caractérisé en ce caractérisé en ce qu'il comprend en outre :
- au moins un boîtier de confinement (101) à une distance déterminée d'au moins une des parois (21 , 22, 23) dû caisson (2),
- des moyens d'alimentation (105, 11,1, 112, 113, 114) en un fluide caloporteur, '
- au moins un moyen (103) pour produire des gouttelettes de fluide caloporteur dans ledit boîtier, de manière à. mettre tout ou partie desdites gouttelettes en contact avec le caisson (2).
24. Système de refroidissement (100) selon la revendication 23, caractérisé en ce le ou chaque boîtier de confinement (101) est à une distance déterminée d'au moins une des parois latérales (21, 22) du caisson (2) inférieure à 20 cm.
25. Système de refroidissement (100) selon la revendication 23 ou 24, caractérisé en ce que chaque boîtier de confinement (101); est placé de manière à chevaucher le niveau moyen de l'interface (19) entre le bain d'électrolyte (13) et la nappe de métal liquide (12).
26. Système de refroidissement (100) selon l'une quelconque des revendications 23 à 25, caractérisé en ce qu'il comporte une pluralité de boîtiers de confinement (lθl) répartis autour du caisson (2).
27. Système. de refroidissement (100) selon l'une quelconque des revendications 23 à 26, caractérisé en ce que les moyens d'alimentation (105, 111, 112, 113, 114) en fluide caloporteur comprennent des moyens d'acheminement (105, 111, 112, 114) et une colonne de traitement (113).
28. Système de refroidissement (100) selon l'une quelconque des revendications 22 à 27, caractérisé en ce que ledit moyen (103) pour produire des gouttelettes est un moyen de pulvérisation.
29. Système de refroidissement (100) selon la revendication 28, caractérisé en ce que le moyen de pulvérisation (103) comporte au moins une buse.
30. Système de refroidissement (100) selon la revendication 29, caractérisé en ce que ladite buse est une buse à brouillard.
31. Système de refroidissement (100) selon l'une quelconque des revendications 22 à 30, caractérisé en ce qu'il comprend en outre au moins un moyen (104, 110) pour alimenter chaque boîtier de confinement (101) en gaz porteur.
32. Système de refroidissement (100) selon la revendication 31, caractérisé en ce qu'il comporte en outre un moyen (108) pour produire lesdites gouttelettes à l'aide dudit gaz porteur.
33. Système de refroidissement (100) selon l'une quelconque des revendications 22 à 32, caractérisé en ce qu'il comporte au moins un moyen (109) pour contrôler le taux de production desdites gouttelettes.
34. Système de refroidissement (100) selon l'une quelconque des revendications 22 à 33, caractérisé en ce qu'il comprend des moyens (106, 120, 121, 122, 123, 124) pour évacuer tout ou partie du fluide caloporteur vaporisé.
35. Système de refroidissement (100) selon la revendication 34, caractérisé en ce que les moyens d'évacuation (106, 120, 121, 122, 123, 124) comprennent des conduits d'évacuation (106, 120, 121, 124) et un moyen d'aspiration ou de soufflage (123).
36. Système de refroidissement (100) selon la revendication 34 à 35, caractérisé en ce que les moyens d'évacuation (106, 120, 121, 122, 123, 124) comprennent un condenseur (122) pour condenser les gouttelettes de fluide caloporteur en suspension.
37. Utilisation du procédé de refroidissement selon l'une quelconque des revendications 1 à 21 pour le refroidissement d'une cellule de production d'aluminium par électrolyse ignée.
38. Utilisation du système de refroidissement selon l'une quelconque des revendications 22 à 36 pour le refroidissement d'une cellule de production ' d'aluminium par électrolyse ignée.
39. Procédé de régulation d'une cellule d'électrolyse destinée à la production d'aluminium par électrolyse ignée incluant un procédé de refroidissement de ladite cellule selon l'une quelconque des revendications 1 à 21.
40. Cellule d'électrolyse destinée à la production d'aluminium par électrolyse ignée comprenant un système de refroidissement selon l'une quelconque des revendications 22 à 36.
EP03763932A 2002-07-09 2003-07-07 Procede et systeme de refroidissement d une cuve d electrolyse pour la production d aluminium Revoked EP1527213B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI200331233T SI1527213T1 (sl) 2002-07-09 2003-07-07 Postopki in sistem za hlajenje elektrolizne celice za izdelovanje aluminija

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0208629 2002-07-09
FR0208629A FR2842215B1 (fr) 2002-07-09 2002-07-09 Procede et systeme de refroidissement d'une cuve d'electrolyse pour la production d'aluminium
PCT/FR2003/002098 WO2004007806A2 (fr) 2002-07-09 2003-07-07 Procede et systeme de refroidissement d'une cuve d'electrolyse pour la production d'aluminium

Publications (2)

Publication Number Publication Date
EP1527213A2 true EP1527213A2 (fr) 2005-05-04
EP1527213B1 EP1527213B1 (fr) 2008-03-05

Family

ID=29763681

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03763932A Revoked EP1527213B1 (fr) 2002-07-09 2003-07-07 Procede et systeme de refroidissement d une cuve d electrolyse pour la production d aluminium

Country Status (20)

Country Link
US (1) US7527715B2 (fr)
EP (1) EP1527213B1 (fr)
CN (1) CN100406617C (fr)
AR (1) AR040391A1 (fr)
AT (1) ATE388254T1 (fr)
AU (1) AU2003263266B2 (fr)
BR (1) BR0312376A (fr)
CA (1) CA2489146C (fr)
DE (1) DE60319539T2 (fr)
EG (1) EG24759A (fr)
ES (1) ES2301827T3 (fr)
FR (1) FR2842215B1 (fr)
IS (1) IS7683A (fr)
NO (1) NO20050624L (fr)
NZ (1) NZ537406A (fr)
OA (1) OA12872A (fr)
RU (1) RU2324008C2 (fr)
SI (1) SI1527213T1 (fr)
WO (1) WO2004007806A2 (fr)
ZA (1) ZA200500161B (fr)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA85764C2 (ru) * 2004-10-21 2009-02-25 БиЭйчПи БИЛЛИТОН ИННОВЕЙШН ПТИ ЛТД Электролизер для производства металла
AU2005306566B2 (en) * 2004-10-21 2010-11-18 Bhp Billiton Innovation Pty Ltd Internal cooling of electrolytic smelting cell
US20080017504A1 (en) * 2006-07-24 2008-01-24 Alcoa Inc. Sidewall temperature control systems and methods and improved electrolysis cells relating to same
CN101376991B (zh) * 2007-08-31 2011-08-31 沈阳铝镁设计研究院有限公司 铝电解槽的强制冷却系统
US8123928B2 (en) * 2009-12-22 2012-02-28 Rio Tinto Alcan International Limited Shut-down and start-up procedures of an electrolytic cell
EP2431498B1 (fr) 2010-09-17 2016-12-28 General Electric Technology GmbH Échangeur thermique de cuve d'électrolyse pour la réduction d'aluminium
AR083049A1 (es) * 2010-09-22 2013-01-30 Goodtech Recovery Technology As Revestimiento lateral
EA201490507A1 (ru) * 2011-10-10 2014-09-30 Гудтек Рекавери Текнолоджи Ас Способ и устройство для регулирования образования слоя в электролизной ванне для получения алюминия
EA201490508A1 (ru) * 2011-10-10 2014-09-30 Гудтек Рекавери Текнолоджи Ас Система и устройство для регулирования образования слоя в электролизной ванне для получения алюминия
CN103184473A (zh) * 2011-12-27 2013-07-03 贵阳铝镁设计研究院有限公司 铝电解厂核心区车间的布置方法及核心区车间
CN102703934B (zh) * 2012-06-08 2015-05-20 云南铝业股份有限公司 一种提高铝电解槽焙烧温度均匀性的方法
CN104513903A (zh) * 2013-10-01 2015-04-15 奥克兰联合服务有限公司 热交换器和金属生产系统和方法
CN105220177B (zh) * 2014-06-30 2017-12-08 沈阳铝镁设计研究院有限公司 铝电解槽强制通风余热利用装置及利用方法
CN109417036B (zh) 2016-06-30 2024-03-15 株式会社Flosfia p-型氧化物半导体及其制造方法
CN106591887B (zh) * 2016-10-27 2018-09-11 武汉光谷环保科技股份有限公司 一种基于有机闪蒸循环的铝电解槽侧壁余热发电装置
CN107090588A (zh) * 2017-06-26 2017-08-25 河南工程学院 一种铝电解槽保温调节及余热利用系统
WO2019066890A1 (fr) 2017-09-29 2019-04-04 Bechtel Mining & Metals, Inc. Systèmes et procédés de régulation de perte de chaleur d'une cellule électrolytique
CN113432439B (zh) * 2021-07-29 2022-09-06 东北大学 一种铝电解槽停止运作后的冷却方法
RU2770602C1 (ru) * 2021-09-16 2022-04-18 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Катодное устройство алюминиевого электролизера
CN115468377B (zh) * 2022-09-15 2023-08-29 洛阳大生新能源开发有限公司 一种电解液制备用冷却装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1534322A (en) 1922-12-21 1925-04-21 Aluminum Co Of America Electrolytic cell and method of lining the same
GB225494A (en) 1923-11-30 1925-02-26 Aluminum Co Of America Improvements in or relating to methods of operating and lining electrolytic cells for electrolytic refining
US4087345A (en) * 1977-07-19 1978-05-02 Ardal Og Sunndal Verk A.S. Potshell for electrolytic aluminum reduction cell
DE3027465C1 (de) 1980-07-19 1982-03-18 Korf-Stahl Ag, 7570 Baden-Baden Verfahren und Vorrichtung zum Kuehlen von Gefaessteilen eines metallurgischen Ofens,insbesondere eines Lichtbogenofens
DE3033710A1 (de) 1980-09-02 1982-04-01 Schweizerische Aluminium AG, 3965 Chippis Vorrichtung zum regulieren des waermeflusses einer aluminiumschmelzflusselektrolysezelle und verfahren zum betrieb dieser zelle
SU1254769A1 (ru) 1983-12-15 1999-06-27 Л.Е. Ивановский Электролизер для получения сплавов в расплавах солей
FR2582677B1 (fr) * 1985-05-30 1990-08-17 Pechiney Aluminium Superstructure de cuve d'electrolyse avec portique intermediaire, pour la production d'aluminium
NO158511C (no) * 1985-07-09 1988-09-21 Invendt A S H Anordning ved ovn l, saerliga luminium-elektrolyse.
GB8722354D0 (en) 1987-09-23 1987-10-28 Davy Mckee Stockton Metallurgical furnace
GB9322696D0 (en) * 1993-11-03 1993-12-22 Davy Mckee Stockton Cooling of hot bodies
RU2058432C1 (ru) 1994-06-17 1996-04-20 Российский научно-исследовательский и проектный институт титана и магния Электролизер для получения магния и хлора
US5488642A (en) * 1994-08-22 1996-01-30 Consolidated Edison Company Of New York, Inc. Cooling system for spent fuel pool
FR2777574B1 (fr) * 1998-04-16 2000-05-19 Pechiney Aluminium Cuve d'electrolyse ignee pour la production d'aluminium par le procede hall-heroult comprenant des moyens de refroidissement
NO313462B1 (no) * 2000-06-07 2002-10-07 Elkem Materials Elektrolysecelle for fremstilling av aluminium, en rekke elektrolyseceller i en elektrolysehall, fremgangsmåte for åopprettholde en kruste på en sidevegg i en elektrolysecelle samtfremgangsmåte for gjenvinning av elektrisk energi fra en elektr
FR2874934B1 (fr) * 2004-09-08 2007-09-07 Ecl Soc Par Actions Simplifiee Procede de changement d'anode dans une cellule de production d'aluminium par electrolyse incluant un ajustement de la position de l'anode et dispositif pour le mettre en oeuvre
FR2876713B1 (fr) * 2004-10-14 2007-07-20 Ecl Soc Par Actions Simplifiee Procede de changement d'anode dans une cellule de production d'aluminium par electrolyse incluant un ajustement de la position de l'anode et machine de service pour le mettre en oeuvre

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004007806A2 *

Also Published As

Publication number Publication date
FR2842215B1 (fr) 2004-08-13
NO20050624L (no) 2005-02-04
FR2842215A1 (fr) 2004-01-16
RU2005103232A (ru) 2005-08-10
CN100406617C (zh) 2008-07-30
AR040391A1 (es) 2005-03-30
AU2003263266A1 (en) 2004-02-02
CN1665963A (zh) 2005-09-07
US20060118410A1 (en) 2006-06-08
ES2301827T3 (es) 2008-07-01
RU2324008C2 (ru) 2008-05-10
OA12872A (fr) 2006-09-15
IS7683A (is) 2005-02-03
SI1527213T1 (sl) 2008-08-31
ZA200500161B (en) 2006-07-26
BR0312376A (pt) 2005-04-12
US7527715B2 (en) 2009-05-05
CA2489146C (fr) 2011-10-18
DE60319539T2 (de) 2009-03-26
NZ537406A (en) 2007-05-31
DE60319539D1 (de) 2008-04-17
WO2004007806A3 (fr) 2004-04-08
ATE388254T1 (de) 2008-03-15
CA2489146A1 (fr) 2004-01-22
EP1527213B1 (fr) 2008-03-05
AU2003263266B2 (en) 2008-10-30
WO2004007806A2 (fr) 2004-01-22
EG24759A (en) 2010-08-01

Similar Documents

Publication Publication Date Title
EP1527213B1 (fr) Procede et systeme de refroidissement d une cuve d electrolyse pour la production d aluminium
RU2438083C2 (ru) Крышка для печи для приема расплавленного материала, в частности металла, и печь для приема расплавленного материала
EP1070158B1 (fr) Cuve d'electrolyse ignee pour la production d'aluminium par le procede hall-heroult comprenant des moyens de refroidissement
FR2893329A1 (fr) Cuve d'electrolyse avec echangeur thermique.
JPH08189768A (ja) 蒸気乾燥装置、それを組込んだ洗浄装置および蒸気乾燥方法
AU2001264422B2 (en) Electrolytic cell for the production of aluminium and a method for maintaining a crust on a sidewall and for recovering electricity
JPS5817267B2 (ja) 溶融塩浴を含有する室から熱を取り出す方法
CN1030220A (zh) 加热容器的盖结构
EP0947573B1 (fr) Appareil de recyclage pour la récupération d'huile à partir de déchets de matières plastiques
US5951826A (en) Recycling apparatus for obtaining oil from plastic waste
RU2270887C2 (ru) Способ монтажа боковой футеровки катодного устройства алюминиевого электролизера
JPH102539A (ja) 灰溶融炉
EP0685571A1 (fr) Procédé et dispositif pour la formation d'un revêtement sur un substrat par pulvérisation cathodique
FR2800394A1 (fr) Dispositif pour obtenir de l'aluminium extra-pur a partir de metal liquide
KR20000036295A (ko) 천연염의 제조장치 및 그를 이용한 천연염의 제조방법
KR100577623B1 (ko) 증착 장치
RU226379U1 (ru) Газоэлектрическая электролизная ванна для получения алюминия из глинозема
EP0966413A1 (fr) Procede de densification d'une structure poreuse avec circulation du precurseur et dispositif associe
FR3011748A1 (fr) Procede et dispositif de pretraitement de vapeurs d'hydrocarbures lourds en amont d'une unite de traitement final
BE629765A (fr)
JP2004155972A (ja) 乾留ガスにおける水及び可燃性ガス回収装置
BE716651A (fr)
BE471161A (fr)
JPH05295523A (ja) 真空蒸着装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050113

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17Q First examination report despatched

Effective date: 20050603

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 60319539

Country of ref document: DE

Date of ref document: 20080417

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2301827

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20080401449

Country of ref document: GR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080805

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: ALCOA INC.

Effective date: 20080503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLR1 Nl: opposition has been filed with the epo

Opponent name: ALCOA INC.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080605

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20090727

Year of fee payment: 7

Ref country code: FR

Payment date: 20090717

Year of fee payment: 7

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090729

Year of fee payment: 7

Ref country code: GB

Payment date: 20090727

Year of fee payment: 7

Ref country code: NL

Payment date: 20090724

Year of fee payment: 7

Ref country code: RO

Payment date: 20090701

Year of fee payment: 7

Ref country code: SE

Payment date: 20090729

Year of fee payment: 7

Ref country code: SI

Payment date: 20090622

Year of fee payment: 7

27W Patent revoked

Effective date: 20090805

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20090805

NLR2 Nl: decision of opposition

Effective date: 20090805

REG Reference to a national code

Ref country code: SE

Ref legal event code: ECNC

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20090730

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080707

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080906

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20110222