EP1525227A2 - Nanocomposites, procede de production et utilisation desdits nanocomposites - Google Patents

Nanocomposites, procede de production et utilisation desdits nanocomposites

Info

Publication number
EP1525227A2
EP1525227A2 EP03794812A EP03794812A EP1525227A2 EP 1525227 A2 EP1525227 A2 EP 1525227A2 EP 03794812 A EP03794812 A EP 03794812A EP 03794812 A EP03794812 A EP 03794812A EP 1525227 A2 EP1525227 A2 EP 1525227A2
Authority
EP
European Patent Office
Prior art keywords
nanocomposites
nanofillers
nanocomposites according
producing
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03794812A
Other languages
German (de)
English (en)
Inventor
Andreas Hartwig
Monika Sebald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP1525227A2 publication Critical patent/EP1525227A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3081Treatment with organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3684Treatment with organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D167/06Unsaturated polyesters having carbon-to-carbon unsaturation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J167/00Adhesives based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Adhesives based on derivatives of such polymers
    • C09J167/06Unsaturated polyesters having carbon-to-carbon unsaturation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/54Inorganic substances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • Patent application nanocomposites, process for their production and their use
  • the invention relates to composites of nanoscale fillers and binders, a process for their production and their use.
  • nanocomposites are obtained either using the so-called sol-gel process or by mechanically incorporating agglomerated nanofillers.
  • alkoxysilanes are hydrolyzed and the silanols formed condense slowly to form particles with diameters of a few nanometers with the elimination of water. If tetraalkoxysilanes are used, unfunctionalized silicon dioxide nanoparticles are obtained. Particles are primarily synthesized by the Stöber process (W. Stöber, J. Coll. Interf. Sei. 26 (1968) 62). When trialkoxysilanes with another functional group are used, the resulting nanoparticles carry the corresponding functional groups. With a suitable choice, these groups are then able to react with an organic matrix.
  • composites can be made from agglomerated nanoparticles in an organic matrix.
  • the most commonly used agglomerated nanofiller is flame-pyrolytically produced silicon dioxide.
  • the flame-pyrolytically produced silicon dioxide is therefore usually used as a thixotropic agent.
  • a surface treatment with silanes in the gas phase is described in some cases.
  • solutions of the silanes in alcohols are sprayed onto the dry powder.
  • Both ways of surface modification lead to a less thixotropic effect of the treated nanofillers and to an initial breakdown of the agglomerates in the organic binder.
  • the measures are not sufficient to provide largely isolated nanoparticles in an organic binder.
  • the present invention is based on the technical problem of overcoming the disadvantages of the prior art and of providing nanocomposites which consist of nanoparticles in an organic matrix and an inexpensive process for their preparation. In particular, the use of expensive components in large quantities should be avoided.
  • commercially available agglomerated nanopowders are dispersed in an organic solvent for the production of the nanocomposites according to the invention and organically modified on the surface with a silane, chlorosilane, silazane, titanate and / or zirconate.
  • the dispersion of the modified nanoparticles in the solvent is used directly, or preferably the solvent is stripped off, and the dry nanopowder is then incorporated into the organic binder.
  • nanocomposite is understood to mean mixtures of a binder or a polymeric matrix and organically modified nanofillers.
  • the agglomerates usually formed by nanofillers are surprisingly broken up to such an extent that at least 60%, preferably at least 80%, of the agglomerates have a particle diameter of less than 300 nm. In most cases, it is even possible to achieve individual particles and agglomerates with diameters of less than 100 nm.
  • the systems according to the invention have the advantages associated with nanofillers. These are the possibility to provide transparent but still filled composites and an improvement in the mechanical and thermal properties.
  • the composites according to the invention stand out from the so-called sol-gel materials by a simplified production, more universal applicability and the possibility of providing dry nanofillers.
  • the nanoparticles according to the invention which have been organically modified in an organic solvent have the advantage that they have the theological properties of the nanocomposites produced therewith compared to the influence the unfilled binder only slightly.
  • the nanofillers according to the prior art usually have a strong thixotropic and thickening effect.
  • the nanocomposites according to the invention have the advantage of inexpensive production.
  • the fillers required for the production are made from available agglomerated nanofillers by organic surface treatment. Compared to the sol-gel process known from the prior art, this procedure has the advantage that significantly smaller amounts of the expensive organic components can be used, since they are only required for surface treatment and not for the production of the entire particles.
  • the agglomerated nanopowders to be used as the starting material are, in particular, oxidic or nitridic compounds which have been produced by flame-pyrolysis or by precipitation. But also agglomerated nanofillers on a different basis, e.g. Barium sulfate or barium titanate are suitable. Oxides are preferably used, and particularly preferably flame-pyrolytically produced silicon dioxide.
  • the organic modification of the surface in the solvent takes place by treatment with a siloxane, chlorosilane, silazane, titanate or zirconate.
  • a siloxane chlorosilane, silazane, titanate or zirconate.
  • the R 'bonded via the oxygen is any organic functional group, preferably an alkyl group and particularly preferably methyl, ethyl or isopropyl. These groups are split off in the form of the alcohol during the organic modification In the case of modification with the silazane, ammonia is split off and, in the case of chlorosilanes, hydrochloric acid The alcohol, hydrochloric acid or ammonia formed is no longer contained in the nanocomposite produced in the subsequent steps.
  • the functional group R is preferably any organic group and is bonded directly to the silicon, titanium or zirconium via a carbon atom.
  • the groups R may be the same or different. R is selected so that the group can react chemically with the monomer used to produce the nanocomposite or has a high affinity for the organic binder.
  • R preferably contains an epoxy group or an amino, carboxylic acid, thiol or alcohol group which can react with an epoxy group.
  • R is particularly preferably 2- (3,4-epoxycyclohexyl) ethyl, 3-glycidoxypropyl, 3-aminopropyl and 3-mercaptopropyl.
  • R preferably contains a reactive double bond.
  • R is particularly preferably vinyl or styryl or contains a vinyl or styryl group.
  • R preferably contains an isocyanate, amino, alcohol, thiol or carboxylic acid group.
  • R is particularly preferably 3-isocyanatopropyl, 3-aminopropyl and 3-mercaptopropyl.
  • the mixture of organically modified nanofillers and organic binder is hardened using the methods customary for the respective binder. This is typically a thermal reaction at room temperature or elevated temperature, reaction with air humidity or UV or electron beam curing.
  • the organically modified nanofillers according to the invention can be used in the manufacture of the nanocomposites on their own or as a combination of different nanofillers or different particle size distribution can be used. In order to be able to achieve particularly high fill levels, it is advisable to combine nanofillers with different particle size distributions and, if necessary, even to add microfillers. Furthermore, the nanocomposites according to the invention can contain the additives customary for polymeric materials, such as antioxidants, leveling agents, dispersing aids, dyes, pigments, further fillers or stabilizers.
  • the solvent in which the modification of the nanofillers is carried out is preferably a polar aprotic solvent and particularly preferably acetone, butanone, ethyl acetate, methyl isobutyl ketone, tetrahydrofuran and diisopropyl ether.
  • the direct modification in the organic binders to be used for the production of the nanocomposites is a particularly preferred procedure.
  • the monomers to be polymerized as individual components or as a formulation are the solvents to be used.
  • an acid e.g. Hydrochloric acid
  • a catalyst e.g. Hydrochloric acid
  • catalytic amounts of water preferably between 0.1% and 5%, must be present in order to carry out the modification. This water is often already present as an adsorbate on the surfaces of the agglomerated nanofillers used as the starting material. Additional water, e.g. can also be added in the form of a dilute acid.
  • an advantageous development of the invention is the modification of the surface of the nanofillers with dyes.
  • the group R of the siloxane, silazane, titanate or zirconate used for the modification is a dye or can react with a dye.
  • the binding of the dye to the surface of the nanofiller can take place both via a covalent bond and via an ionic bond.
  • the plastic components and lacquers which contain the nanofillers modified with dyes have a better bleaching resistance than the plastic components and lacquers which contain the same dyes without being bound to the nanofillers. In this way it is possible to provide transparent polymeric materials that are resistant to bleaching.
  • the method according to the invention is also particularly suitable for providing the filler particles which can be excited by fields for the production of thermosets according to DE 102 10 661 A1.
  • nanocomposites are available in which the agglomerated nanofillers can be excited by electrical, magnetic and / or electromagnetic fields.
  • Adhesive compositions according to DE 102 10 661 A1 can be hardened under mild conditions to form a permanent adhesive bond with high strength and can be removed again without the long-term stability of the adhesive bond having to suffer. Due to the organic modification according to the invention in a solvent, the stimulable nanoparticles can be distributed particularly homogeneously in such adhesive compositions.
  • an additional mechanical energy input by the conventional methods can take place before or during the modification. This can be done, for example, using ultrasound, a high-speed stirrer, a dissolver, a bead mill or a rotor-stator mixer.
  • this is the preferred procedure, in particular when the organic binder for the production of the nanocomposites is used directly as a solvent. If the binder is not used as a solvent, the binder to be used can be filled directly with the dispersion of the organically modified nanofiller in the organic solvent.
  • the solvent is drawn off after the mixture of binder and organically modified nanofiller has been produced or only at the later stage Application of the nanocomposite from binder and nanofiller.
  • the latter is a practicable procedure, particularly in the case of solvent-based paints based on the nanocomposites according to the invention.
  • the organically modified nanofiller is preferably freed from the solvent and further processed as a dry powder.
  • the dry, organically modified nanofiller powder is then added to the binder and incorporated with mechanical energy input.
  • the incorporation can take place, for example, using ultrasound, a high-speed stirrer, a dissolver, a bead mill, a roller mill or a rotor-stator mixer.
  • the organically modified nanofiller is preferably incorporated into the monomer on which the thermoplastic is based. These monomers are then polymerized conventionally, resulting in the nanocomposites according to the invention.
  • the organically modified nanofiller is incorporated into methyl methacrylate.
  • the subsequent polymerization results in a filled polymethyl methacrylate.
  • this is transparent and has improved mechanical properties (e.g. scratch, tensile and bending strength) compared to the unfilled material.
  • Another example is a nanocomposite based on polystyrene as a binder.
  • the organically modified nanofiller is incorporated into styrene and then polymerized conventionally. If a siloxane, chlorosilane, silazane, titanate or ziconate is used in the modification of the nanofillers, in which the group R can polymerize together with the monomer, the nanocomposite formed is crosslinked. In this case, the organically modified nanoparticles act as crosslinker particles. If the groups R cannot react with the monomer, the nanocomposite formed is thermoplastic.
  • the modified nanoparticles can also be easily incorporated into the melt of thermoplastics. This is done particularly effectively with an extruder or twin-screw extruder.
  • a polystyrene melt can be effectively modified by extruding pyrogenic silica treated with phenyltriethoxysilane in butanone. Polymer dispersions are required for many applications. So far, these could not be modified with nanoparticles.
  • polymer dispersions modified with nanofillers can be produced. This is done by incorporating the surface-modified nanofillers according to the invention into the monomer on which the polymer dispersions are based, then dispersing this monomer / nanofiller mixture in water with the addition of a surfactant and then dispersing or emulsion polymerizing.
  • the surface modification of the nanofiller is preferably carried out directly in the monomer or monomer mixture.
  • the nanofiller particles can be chemically bound to the polymer formed.
  • any gradation between silanes with reactive and non-reactive groups can be made here.
  • Manufacture modified polystyrene latex or polystyrene-co-butadiene latex with nanofiller particles by incorporating pyrogenic silica with simultaneous surface treatment with phenyltriethoxysilane in the monomer, dispersing the filled monomer in water with the addition of a surfactant and subsequent thermal polymerization using a radical initiator.
  • the nanofiller according to the invention is incorporated analogously into the polymer on which the dispersion is based and then the dispersion is produced as with the unmodified polymer.
  • the properties of the nanocomposites with the organically modified nanofillers can be further improved if, in addition, platelet-shaped or needle-shaped nanofillers are preferably added in amounts of between 0.1 and 10%.
  • Boehmite, bentonite, montmorillonite, vermicullite, hectorite and laponite are preferably used for this.
  • the platelet-shaped nanofillers are organically modified according to the prior art.
  • the Addition of the platelet-shaped or needle-shaped nanofillers to the nanocomposites according to the invention leads to a further increase in the mechanical strength.
  • the nanocomposites as an adhesive or potting compound, the further increase in thermal conductivity, the improvement in mechanical strength and the reduction in combustibility due to the addition of the platelet-shaped nanofillers should be emphasized as a further improvement in properties.
  • nanocomposites according to the invention can be used particularly advantageously in the form of adhesives, casting compounds, lacquers, coatings and molded plastic parts.
  • the particular advantage of the nanocomposites according to the invention is the improved scratch and abrasion resistance compared to the unfilled lacquers. At the same time, transparency is maintained. This combination of properties is particularly useful when using top coats e.g. in demand for automotive painting and parquet lacquers.
  • Another application is the painting of transparent plastics, in particular polymethyl methacrylate, polycarbonate and polystyrene, in order to improve the scratch resistance of the surface without impairing the transparency.
  • the modified nanoparticles according to the invention can be used to apply both surface adhesion (e.g. to contaminants or pressure sensitive adhesives) and mechanical properties (e.g. abrasion, strength) ) modify. This also has an impact on the feel of the polymer and can therefore be used on handles and other objects touched by hand.
  • surface adhesion e.g. to contaminants or pressure sensitive adhesives
  • mechanical properties e.g. abrasion, strength
  • This also has an impact on the feel of the polymer and can therefore be used on handles and other objects touched by hand.
  • the improvement of the mechanical strength and the thermal conductivity is particularly important.
  • a special form of casting compound or adhesive is required in the dental field. Both when filling and veneering teeth, as well as when making prostheses, etc. particularly abrasion-resistant and mechanically resilient polymer materials are required. These can be made available with the nanocomposites according to the invention.
  • the preferred basis of such materials are the reactive materials known from the prior art. Methacrylates and acrylates should be mentioned in particular.
  • the hardening is preferably carried out photochemically, for which purpose suitable photoinitiators (e.g. camphorquinone) are added.
  • nanocomposites according to the invention can furthermore advantageously be used in aircraft construction, in electronics, for automotive painting and for painting transparent plastics (e.g. car windows made of polycarbonate).
  • Dispersions modified with nanofillers are preferred for water-based paints, coatings and adhesives - especially contact and pressure sensitive adhesives.
  • Solvent-based polymer preparations are often used for the same applications needed. These can be made available either by incorporating the modified nanofillers or modifying the nanofillers in the finished polymer solution. On the other hand, it can also be modified in the monomer or the monomer / solvent mixture and only then polymerized.
  • Aerosil 200 40.3 g were suspended in butanone (650 g) for 5 min and 25.5 g of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (ECHTMO) and 5.6 g of 1N hydrochloric acid were added dropwise for catalysis. The mixture was stirred for 48 hours. The butanone was then removed completely on a rotary evaporator. A loose porous white powder was obtained. b) Production of a masterbatch in epoxy resin
  • a masterbatch with 50% by weight of the modified filler is produced in the epoxy resin ERL 4221 (Union Carbide).
  • 30.2 g of the filler modified according to a) and 1.5 g of Disperbyk-1 1 1 were added to 30 g of the epoxy resin in several portions while stirring with the Dispermat CA 40 C at 1-2 m / s. Dispersion was carried out at 8 m / s between the additions.
  • the mixture was dispersed for a total of 8.5 h at a peripheral speed of 8 m / s (125 ml vessel, 30 mm 0 dissolver disc).
  • the sample was then degassed on a vacuum dispenser at 2300 rpm for 2 hours. The result is a transparent resin system that is diluted to the desired filler concentration with additional resin if necessary.
  • FIG. 1 shows the examination of the polymer obtained in the transmission electron microscope.
  • the agglomerates typical of the unmodified filler are largely broken up by the modification, which is the reason for the good transparency of the sample.
  • the masterbatch produced is diluted with additional epoxy resin to a filler content of 25% by weight and 1% of the Sarcat CD 1010 photoinitiator (Sartomer) is added.
  • the mixture hardens by irradiation with UV light and is used in Example 7 to investigate the abrasion resistance.
  • titanium dioxide P25 (Degussa) was silanized with 3.94 g of ECHTMO.
  • the P25 was suspended in 400 g of butanone, the ECHTMO and 8.86 g of 1N HCl were added dropwise and the mixture was stirred for 24 hours on a magnetic stirrer. The butanone was then removed completely on a rotary evaporator.
  • the modified titanium dioxide P25 was obtained as a loose white powder.
  • FIG. 2 shows a TEM image of the nanocomposite hardened by UV radiation.
  • the filler is in the form of largely isolated particles:
  • binder as an organic solvent
  • the samples a), b) and c) based on the epoxy resin ERL 4221 were squeegee with a wire doctor knife of 60 ⁇ m on 10 X 10 cm polycarbonate disks and in two runs in the UV radiation system BK 200 (arccure technologies) (ambient atmosphere, 100% Exposure, 28% transport speed) cured.
  • the acrylate samples d) and e) were heated to approx. 50 ° C, doctored onto preheated 10 X 10 cm aluminum disks with a thickness of 60 ⁇ m and in the UV radiation system BK 200 (arccure technologies) in two runs (ambient atmosphere, 100% Exposure, 28% transport speed) cured.
  • the following abrasions were measured:
  • the abrasion of the modified coatings is less by a factor of 2 to 4 than that of the non-filled base resins.
  • a base resin is prepared from 120 GT Genomer 4302, 74 GT Genomer 1223 and 2 GT Additive 99-622 (all Rahn). 2.8 g of Aerosil 200 (Degussa) is gradually stirred in with 1 ml of Disperbyk-1 1 1 (BYK) in 61.9 g of base resin using a Dispermat. The mixture was then dispersed at 8 m / s for 3 hours. Even with the low filling level of 4.3% by weight, a non-transparent, highly viscous, thixotropic resin resulted.
  • Aerosil 200 20 g are placed in a bottle with 12.7 g of ECHTMO and mixed for one hour on a shaker. The mixture is left to react further overnight and the remaining silane and the methanol formed are removed in vacuo. The reaction product is dispersed in 100 g ERL 4221 at a peripheral speed of 8 m / s. A highly viscous white resin system is formed.

Abstract

L'invention concerne un procédé de production de nanocomposites à partir de nanopoudres sous forme agglomérée et de liants organiques. La modification de surface des nanocharges dans un milieu organique permet la dispersion durable des agglomérats et la production de nanocomposites transparents. La nanopoudre modifiée est de préférence isolée en tant que produit intermédiaire sec. La production des nanocomposites susmentionnés est plus simple que la production de nanocomposites par la technique sol-gel et le présent procédé de production présente une applicabilité plus large et plus flexible. Ces nanocomposites trouvent une application importante dans la production de peintures résistantes à l'abrasion.
EP03794812A 2002-09-07 2003-09-04 Nanocomposites, procede de production et utilisation desdits nanocomposites Withdrawn EP1525227A2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10241510 2002-09-07
DE10241510A DE10241510A1 (de) 2002-09-07 2002-09-07 Nanokomposite, Verfahren zu ihrer Herstellung und ihre Verwendung
PCT/DE2003/002933 WO2004024811A2 (fr) 2002-09-07 2003-09-04 Nanocomposites, procede de production et utilisation desdits nanocomposites

Publications (1)

Publication Number Publication Date
EP1525227A2 true EP1525227A2 (fr) 2005-04-27

Family

ID=31724496

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03794812A Withdrawn EP1525227A2 (fr) 2002-09-07 2003-09-04 Nanocomposites, procede de production et utilisation desdits nanocomposites

Country Status (6)

Country Link
US (1) US20060084723A1 (fr)
EP (1) EP1525227A2 (fr)
JP (1) JP2005538228A (fr)
AU (1) AU2003266194A1 (fr)
DE (2) DE10241510A1 (fr)
WO (1) WO2004024811A2 (fr)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10326538A1 (de) 2003-06-12 2005-01-05 Institut für Neue Materialien Gemeinnützige GmbH Abriebfeste optische Schichten und Formkörper
DE102004008202A1 (de) * 2004-02-18 2005-09-01 Basf Ag Komposites aus Thermoplasten mit monodispers verteilten Füllstoffen
DE102004010504B4 (de) * 2004-03-04 2006-05-04 Degussa Ag Hochtransparente lasermarkierbare und laserschweißbare Kunststoffmaterialien, deren Verwendung und Herstellung sowie Verwendung von Metallmischoxiden und Verfahren zur Kennzeichnung von Produktionsgütern
CN100578769C (zh) * 2004-05-20 2010-01-06 通用电气公司 含有纳米材料以增强体积导热率的有机基体
MXPA06014520A (es) * 2004-06-14 2007-03-23 Kadant Web Systems Inc Elementos planos para utilizarse en maquinas de fabricacion de papel.
ATE445671T1 (de) * 2004-10-27 2009-10-15 Du Pont Selbstbondierende beschichtungszusammensetzung
US7704586B2 (en) * 2005-03-09 2010-04-27 Degussa Ag Plastic molded bodies having two-dimensional and three-dimensional image structures produced through laser subsurface engraving
JP5107898B2 (ja) * 2005-04-19 2012-12-26 チバ ホールディング インコーポレーテッド 低残留アルデヒド含量のポリエーテルポリオール、ポリエステルポリオール及びポリウレタン
DE102005022782A1 (de) * 2005-05-12 2006-11-16 Tesa Ag Haftklebemassen und Verfahren zu deren Herstellung
CN101184803B (zh) * 2005-05-27 2013-11-06 西巴特殊化学品控股有限公司 官能化的纳米颗粒
JP5541864B2 (ja) 2005-08-25 2014-07-09 コーティングス フォーリン アイピー カンパニー, エルエルシー 変性ナノ粒子
CA2616231C (fr) 2005-08-25 2013-02-05 E. I. Dupont De Nemours And Company Procede de production d'un revetement de vehicule resistant aux rayures
KR100824545B1 (ko) 2006-04-21 2008-04-23 요업기술원 에스테르계 알칼리 가용성 화합물이 결합된 세라믹 나노입자를 포함하는 심색성이 우수한 폴리에스테르 수지조성물
US7846492B2 (en) * 2006-04-27 2010-12-07 Guardian Industries Corp. Photocatalytic window and method of making same
JP2009539603A (ja) * 2006-06-14 2009-11-19 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 向上した耐引掻き性及び耐摩耗性を有する塗装基材
DE102007021199B4 (de) * 2006-07-17 2016-02-11 Evonik Degussa Gmbh Zusammensetzungen aus organischem Polymer als Matrix und anorganischen Partikeln als Füllstoff, Verfahren zu deren Herstellung sowie deren Verwendung und damit hergestellte Formkörper
EP1884532A1 (fr) * 2006-07-31 2008-02-06 Italdry S.r.L. Procédé pour la préparation d'un matériau nanocomposite ainsi que matériau nanocomposite produit par ce procédé
DE102006039638B3 (de) * 2006-08-24 2007-11-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Nanofüllstoffe, Nanokomposite aus einem organischen Bindemittel und oberflächenmodifizierten Nanofüllstoffen, Verfahren zu ihrer Herstellung und ihre Verwendung
DE102006061057A1 (de) * 2006-12-22 2008-06-26 Wacker Chemie Ag Organofunktionelle Silikonharzschichten auf Metalloxiden
EP2144967A2 (fr) * 2007-03-05 2010-01-20 Basf Se Nanoparticules a surface modifiee comprenant un colorant cationique destinee a etre utilisee dans des filtres colores
WO2008145585A1 (fr) * 2007-05-25 2008-12-04 Basf Se Procédé permettant de repartir des silicates dans des matières de revêtement
CN101842420B (zh) * 2007-08-31 2014-04-09 卡伯特公司 制备改性金属氧化物的纳米颗粒分散体的方法
DE102007044302A1 (de) 2007-09-17 2009-03-19 Bühler PARTEC GmbH Verfahren zur Dispergierung von feinteiligen anorganischen Pulvern in flüssigen Medien unter Verwendung von reaktiven Siloxanen
GB0803784D0 (en) * 2008-02-29 2008-04-09 Pilkington Group Ltd Fire resistant glazings
GB0910295D0 (en) * 2009-06-16 2009-07-29 Pilkington Group Ltd Laminated structure
DE102010044563B4 (de) 2010-09-07 2015-04-09 Fachhochschule Lübeck Stabile Dispersionen
RU2572611C2 (ru) * 2010-11-11 2016-01-20 ДАУ ГЛОБАЛ ТЕКНОЛОДЖИЗ ЭлЭлСи Полиуретансодержащий герметик для изоляционного стеклопакета
WO2012159049A1 (fr) 2011-05-18 2012-11-22 E. I. Du Pont De Nemours And Company Composition de revêtement pulvérulente
ITMI20111273A1 (it) * 2011-07-08 2013-01-09 Fond Cariplo Polimeri ramificati di acido lattico ad alta viscosita' nel fuso e alta shear sensitivity e loro nano compositi
WO2015055280A1 (fr) * 2013-10-15 2015-04-23 Merck Patent Gmbh Particules de silice revêtues pour impression au jet d'encre de dispositifs électroniques organiques, procédé pour leur production et dispositifs produits à l'aide de ces particules
CN114657546B (zh) * 2022-04-07 2022-11-15 武汉铁路职业技术学院 一种用于铁路轨道预埋件的防腐蚀处理工艺

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0867469A2 (fr) * 1997-03-28 1998-09-30 Dsm N.V. Composition de résine liquide et durcissable
WO2003102089A1 (fr) * 2002-06-03 2003-12-11 Ppg Industries Ohio, Inc. Compositions de revetement a particules modifiees et procedes d'utilisation correspondants

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5081164A (en) * 1990-04-17 1992-01-14 Lai Laboratories, Inc. Organosilicon dental composite restorative materials
WO1993011190A1 (fr) * 1991-11-26 1993-06-10 Allied-Signal Inc. Matieres polymeres non composites formees par fusion d'un polymere et par une matiere a strates exfoliee traitee par des silanes reactifs
WO1995021220A1 (fr) * 1994-02-02 1995-08-10 Mitsubishi Rayon Co., Ltd. Composition de revetement de surface et moulage derive
EP0753549A3 (fr) * 1995-06-28 1999-04-28 Bayer Ag Matières de charge oxydiques ou silicatées modifiées en surface et leur utilisation
US6344272B1 (en) * 1997-03-12 2002-02-05 Wm. Marsh Rice University Metal nanoshells
US7144627B2 (en) * 1997-03-12 2006-12-05 William Marsh Rice University Multi-layer nanoshells comprising a metallic or conducting shell
US6852252B2 (en) * 1997-03-12 2005-02-08 William Marsh Rice University Use of metalnanoshells to impede the photo-oxidation of conjugated polymer
US6699724B1 (en) * 1998-03-11 2004-03-02 Wm. Marsh Rice University Metal nanoshells for biosensing applications
US6428811B1 (en) * 1998-03-11 2002-08-06 Wm. Marsh Rice University Temperature-sensitive polymer/nanoshell composites for photothermally modulated drug delivery
DE19846660A1 (de) * 1998-10-09 2000-04-13 Inst Oberflaechenmodifizierung Hochtemperaturbeständige polymerisierbare Metalloxidpartikel
EP1328554A2 (fr) * 2000-09-21 2003-07-23 Rohm And Haas Company Compositions nanocomposites ameliorees et procedes de preparation et d'utilisation associes
BR0113997A (pt) * 2000-09-21 2003-08-05 Rohm & Haas Métodos para preparar uma dispersão polimérica nanocompósita de argila, uma pluralidade de partìculas poliméricas nanocompósitas de argila, ocas, um colóide polimérico nanocompósito de argila, e uma argila hidrofobicamente modificada, partìcula nanocompósita, e, partìcula oca.
BR0113999A (pt) * 2000-09-21 2003-08-12 Rohm & Haas Processo para preparar uma dispersão polimérica aquosa nanocompósita de argila, dispersão nanocompósita aquosa, espessador, dispersante, aglutinante, composição de tinta flexográfica, verniz de sobre impressão, modificador de pó de cimento seco, semente polimérica nanocompósita de argila, composição polimérica nanocompósita de argila, e, método para preparar uma pluralidade de partìculas poliméricas nanocompósitas de argila ocas
DE60227518D1 (de) * 2001-05-31 2008-08-21 Gordon L Nelson Organisch/anorganische nanoverbundgegenstände erhältlich durch extrusion
JP4320258B2 (ja) * 2001-11-13 2009-08-26 エボニック デグサ ゲーエムベーハー 硬化可能でかつ再剥離可能な接着結合体
US20030148042A1 (en) * 2001-12-28 2003-08-07 Zhikai Wang Ultrasonic method for the production of inorganic/organic hybrid nanocomposite
US6833186B2 (en) * 2002-04-10 2004-12-21 Ppg Industries Ohio, Inc. Mineral-filled coatings having enhanced abrasion resistance and wear clarity and methods for using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0867469A2 (fr) * 1997-03-28 1998-09-30 Dsm N.V. Composition de résine liquide et durcissable
WO2003102089A1 (fr) * 2002-06-03 2003-12-11 Ppg Industries Ohio, Inc. Compositions de revetement a particules modifiees et procedes d'utilisation correspondants

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Filler-coupling agent-matrix interactions in siica/polymethylmethacrylate composites", JOURNAL OF BIOMEDICAL RESEARCH, PART A, vol. 57, no. 3, 5 December 2001 (2001-12-05), pages 384 - 393 *

Also Published As

Publication number Publication date
WO2004024811A2 (fr) 2004-03-25
DE10393704D2 (de) 2005-07-21
DE10241510A1 (de) 2004-03-18
JP2005538228A (ja) 2005-12-15
AU2003266194A1 (en) 2004-04-30
AU2003266194A8 (en) 2004-04-30
US20060084723A1 (en) 2006-04-20
WO2004024811A3 (fr) 2004-09-16

Similar Documents

Publication Publication Date Title
EP1525227A2 (fr) Nanocomposites, procede de production et utilisation desdits nanocomposites
DE102006039638B3 (de) Nanofüllstoffe, Nanokomposite aus einem organischen Bindemittel und oberflächenmodifizierten Nanofüllstoffen, Verfahren zu ihrer Herstellung und ihre Verwendung
EP1690902B1 (fr) particules nanométriques à surfaces modifiées, procédé de fabrication et utilisation
EP1195417B1 (fr) Nanocapsules organosiliciés
EP2279226B1 (fr) Particules de dioxyde de silicium modifiées en surface
WO2007059841A1 (fr) Nanoparticules d'oxyde de zinc
EP1249470A2 (fr) Composition fortement chargée en nano et/ou microcapsules hybrides à base de silice organique pâteuse pour des revêtements résistants aux rayures et à l'abrasion
EP1195416A2 (fr) Nanocapsules organosiliciés polymérisables
EP1897917A1 (fr) Utilisation d'émulsifiants particulaires dans des masses de revêtement anti-adhésives contenant du siloxane
EP1245627A2 (fr) Compositions pour revêtements résistantes aux rayures et à l'abrasion contenant des systèmes nano-microhybrides ou microhybrides à base de composés organiques de silice
DE102007044302A1 (de) Verfahren zur Dispergierung von feinteiligen anorganischen Pulvern in flüssigen Medien unter Verwendung von reaktiven Siloxanen
WO2007134712A1 (fr) Nanoparticules
EP2171003B1 (fr) Procédé de production d'un dioxyde de silicium nanométrique
WO2005108320A2 (fr) Particules pulverulentes enduites de maniere homogene de groupes fonctionnels, son procede de production et son utilisation
WO2008071286A2 (fr) Particules à surface modifiée redispersibles
EP1692078A1 (fr) Sulfate de baryum desagglomere
DE102013224206A1 (de) Oberflächenmodifizierte partikuläre Metalloxide
DE102013226494A1 (de) Modifizierung der Oberflächen von Metalloxiden mittels kettenartiger Strukturen
EP2125937A1 (fr) Liants
EP2110389A1 (fr) Masse polymérisable dotée de nanoparticules en réseau
WO2009141057A1 (fr) Procédé de polymérisation pour production de particules coeur-écorce
EP4076717B1 (fr) Émulsion de pickering aqueuse stabilisée par des particules finement divisée et particules produites à partir de celle-ci
DE60313983T2 (de) Reaktive und gelfreie zusammensetzungen zur herstellung von hybridverbunden
EP2102271A1 (fr) Procédé de production de dispersions
DE102006029429A1 (de) Alkoxysilylfunktionelle Oligomere und damit oberflächenmodifizierte Partikel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050115

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17Q First examination report despatched

Effective date: 20050419

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: SEBALD, MONIKA

Inventor name: HARTWIG, ANDREAS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWAN

17Q First examination report despatched

Effective date: 20050419

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080625