EP1523223A2 - Systemstrahlungselement und dessen Verwendung - Google Patents

Systemstrahlungselement und dessen Verwendung Download PDF

Info

Publication number
EP1523223A2
EP1523223A2 EP04090372A EP04090372A EP1523223A2 EP 1523223 A2 EP1523223 A2 EP 1523223A2 EP 04090372 A EP04090372 A EP 04090372A EP 04090372 A EP04090372 A EP 04090372A EP 1523223 A2 EP1523223 A2 EP 1523223A2
Authority
EP
European Patent Office
Prior art keywords
radiator
heat
element according
structures
radiating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04090372A
Other languages
English (en)
French (fr)
Other versions
EP1523223A3 (de
EP1523223B1 (de
Inventor
Dietmar Löwe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osterwitz Karl-Heinz
Original Assignee
Osterwitz Karl-Heinz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE2003143860 external-priority patent/DE10343860A1/de
Priority claimed from DE2003143859 external-priority patent/DE10343859A1/de
Priority claimed from DE20314654U external-priority patent/DE20314654U1/de
Priority claimed from DE20314653U external-priority patent/DE20314653U1/de
Application filed by Osterwitz Karl-Heinz filed Critical Osterwitz Karl-Heinz
Publication of EP1523223A2 publication Critical patent/EP1523223A2/de
Publication of EP1523223A3 publication Critical patent/EP1523223A3/de
Application granted granted Critical
Publication of EP1523223B1 publication Critical patent/EP1523223B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy
    • F24C7/04Stoves or ranges heated by electric energy with heat radiated directly from the heating element
    • F24C7/043Stoves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0033Heating devices using lamps
    • H05B3/009Heating devices using lamps heating devices not specially adapted for a particular application
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/28Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/009Heaters using conductive material in contact with opposing surfaces of the resistive element or resistive layer
    • H05B2203/01Heaters comprising a particular structure with multiple layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/032Heaters specially adapted for heating by radiation heating

Definitions

  • the invention relates to a system radiation element with heat radiating film and its use for stationary and mobile use in private and commercial Area according to the features of claim 1.
  • a device for heating frozen soil by means of rod-shaped Electron tubes that use magnetic energy are designed according to US 4,590,348 A used in the soil. Microwaves are radiated into the ground and cause thus a thawing of frozen ground.
  • the invention is based on the object, a compact, both stationary as also to propose mobile deployable system radiation element, which serves as a heat source for the Heating of rooms, land, water and air vehicles, technical devices, commercial and industrial plants, can be used in agriculture and horticulture.
  • a high efficiency for the electrical Energy can be achieved.
  • the system radiation element should, if necessary be combined with the heat transport option, the convection. The most diverse Uses of a proposed system radiation element to be with of this invention.
  • a system radiation element is proposed with heat-radiating films, wherein at least two heat radiating sheets at least in a part of their heat radiating Region are arranged opposite each other. These opposite at least a part arranged films form a heat source in a housing or suitable Device arranged with openings for the emission of radiant heat and convection heat are.
  • the heat source consists of at least two radiator structures.
  • the heat radiating Foils in the radiator structures are in a frame with corresponding spacers each other at a distance of at least 3 mm or in a larger, respectively by arranged three separable distance and attached to the housing via brackets.
  • a radiator assembly consists of one or more carrier plates, one or more Insulations or laminations and at least one heat-radiating film. Opposite or alternatively parallel to this radiator structure is at least one other such Emitter assembly arranged, which also consists of one or more carrier plates, one or more Insulations or laminations and at least one heat-radiating film.
  • At least one of the radiator assemblies over the entire surface or partially to arrange a reflector is within the scope of the invention.
  • a reflector mounted in the outer region of a radiator assembly to a reflection of the Foils emitted heat radiation in one direction.
  • a heat source of the reflector between a radiator foil and a layer of insulation or lamination or between a layer of insulation or lamination and a support plate may be arranged.
  • At this changed arrangement of the reflector is between the layers one or both sides on the Reflector apply an adhesive layer.
  • an insulation or lamination by a corresponding reflector with adhesive layer to be applied replace.
  • the heat source which consists of at least two radiator assemblies with therein heat radiating foils, forms with a housing or a suitable support structure, in which the heat source is arranged, the system radiation element according to the invention.
  • the heat radiation emitted by the films is arranged over a large area Opened openings from the housing or the appropriate support structure. Because the heat radiating foils are arranged opposite each other and thus at least partially irradiate each other, also generates a self-heating of the heat source within the Housing or towards carrying structure. This heat generated by self-heating is discharged as convective heat in the surrounding space.
  • the support plates of the radiation structures are preferably metal plates, the can consist of steel or aluminum sheet.
  • the carrier plates can be one or both sides be provided with a ceramic coating.
  • This film consists of a graphite-carbon black film structure or other commercially available heat-radiating films and has an upper and lower or right and left or central and peripheral good conductive contact for the Power on. These contacts are preferably striped band-shaped large area placed over the heat radiating sheets.
  • At least a radiator assembly consisting of support plate, insulation or lamination and heat radiating Film provided with a reflector.
  • Suitable reflectors are aluminum foils, Mirror films, glass, glass granules proven.
  • the insulation or laminations can also omitted if appropriate good insulating adhesive between the layers of the radiator structures be used.
  • the advantage of the constructive Construction in the system radiation element consists in a considerable energy saving by increasing the efficiency compared to conventional electric heaters.
  • the device according to the invention enables a mobile and stationary use. It saves the large-area application of foils on ceilings, walls and other Room linings and also uses over large-area film heaters in particular also the heat radiation, which in large-area foil heaters not in the desired Room, but is radiated in back walls.
  • radiator assemblies and so that the heat sources dimension differently in their areal extent and to make them different in their geometry. So it is obvious, the radiator constructions also cylindrical arranged in a spaced and defined spaced arrangement or the radiator structures planar and concave opposite each other and defined spaced or each other plan and convex opposite and arranged spaced to arrange. It is also conceivable individual emitter assemblies mutually convex or concave opposite each other and to arrange spaced apart.
  • radiator structures From the many possible uses of the heat source according to the invention Arrangements of the radiator structures also result with the radiator structures arranged therein each other in concave / convex or convex / concave shape. Also cruciform Diagonally spaced and defined spaced radiator structures are in the range the invention.
  • System radiation element as space heating for private and commercial use for heating solid, liquid and gaseous bodies and media, for thawing frozen substances and media and for the ice-free structure, structures and surfaces used.
  • These applications result in numerous combinations, in particular from the geometric design of the heat sources, the energy supply or Power consumption, the surface design and layer arrangement within the radiator structures and the locking of variously shaped heat sources to known per se Support structures for the construction of a system radiation element.
  • FIG. 1 shows a system radiation element with predominantly unilateral heat radiation, comprising a housing 1 with heat source 3 arranged therein, an emission opening 10 , as well as an upper convection opening 11 and a lower convection opening 12 .
  • the arranged in the housing 1 heat source 3 consists of at least two radiator assemblies 15; 16.
  • Such a system radiation element with predominantly unilateral heat radiation is shown schematically in simplified form in FIG. 2 in vertical section.
  • a frame 2 is arranged, which receives in its upper and lower region via corresponding spacers a first radiator assembly 15 and a second radiator assembly 16 as a heat source 3 .
  • the frame 2 with mutually parallel radiator structures 15; 16 is attached via brackets 4 on the housing 1 .
  • the housing 1 has on one side a large area an emission opening 10 .
  • a lower convection opening 12 and in the upper part of the housing 1, an upper convection opening 11 is inserted.
  • the heat source 3 carried by the holders 4 receives in its frame 2 the first radiator assembly 15 and the second radiator assembly 16 .
  • the first radiator assembly 15 is spaced from the second radiator assembly 16 by a gap 14 of 3 mm, 6 mm or 9 mm, the gap 14 - as already mentioned - of spacers, which are arranged on the frame 2 is formed.
  • the second radiator structure 16 differs from the first radiator structure 15 in that a reflector 13 is arranged on the side of the second radiator structure 16 on the side facing the housing wall.
  • the reflector 13 extends over the entire surface over the outwardly directed surface of the second radiator assembly 16 .
  • the schematic layer structure is shown in simplified form in FIG.
  • the emission opening 10 is visible as a section.
  • Behind the first radiator assembly 15 consisting of a first support plate 6 , a first insulation or lamination 9 and a first radiator film 8 is arranged.
  • the gap 14 connects. This spaces the first antenna assembly 15 from the second radiator 16.
  • the second structure Strahl somehowtbau 16 consists of a second radiator foil 17, a second insulation or lamination 18, a second supporting plate 19 and a reflector. 13
  • the reflector 13 between the second radiator film 17 and second insulation or lamination 18 or between the second insulation or lamination 18 and the second support plate 19 may be arranged.
  • this modified arrangement of the reflector 13 is switched between the layers or applied to both sides of the reflector 13, an adhesive layer. It is also within the scope of the invention to replace the second insulation or lamination 18 with a corresponding reflector with an adhesive layer to be applied.
  • the first radiator foil 8 and the second radiator foil 17 are supplied with electrical current via contacts 7 .
  • the contacts 7 are strip-band, in each case over the entire width or height of the radiator sheets 8 and 17 above and below or left and right.
  • the housing 1 may according to this embodiment have the size and shape of conventional electric radiator and is preferably made of metal.
  • the emission opening 10 as well as the upper convection opening 11 and the lower convection opening 12 are customary radiant heat or ready-to-use heat well-conducting grid openings.
  • the arranged in the housing 1 frame 2 is surrounded with insulation.
  • the first support plate 6 is a metal plate, preferably made of steel or aluminum sheet and may additionally be provided on the side facing the emission opening 10 with a ceramic coating.
  • the space 14 facing side of the first support plate 6 is coated with a first insulation or lamination 9 .
  • This consists of a heat resistant for the required temperature range alkyd resin or an oil-containing paint or an epoxy resin coating or heat-resistant insulating coatings. In this embodiment, it is assumed that heating of the heat source 3 in a temperature range of 80 ° C to 130 ° C.
  • the first insulation or lamination 9 may also consist of a heat-resistant adhesive. On the first insulation or lamination 9 , the first radiator film 8 is applied over the entire surface. This consists of a graphite-soot film structure with an upper and lower contact 7 ( Figure 3) for the power supply.
  • the graphite-soot film structure may already be provided with a commercial insulation or lamination, so that an additional insulation or lamination 9 can be omitted.
  • the adjoining the first radiator film 8 intermediate space 14 is in this embodiment, a closed space, which is formed by the first radiator film 8 and the second radiator film 17 and the frame 2 arranged spacers.
  • the spacers (not shown in the figures) consist either of electrically non-conductive parts of the frame 2 or are components of the metallic frame 2 , in which case the horizontally and vertically encircling spacers to the first radiator foil 8 and the second radiator foil 17 or to their contacts. 7 are well insulated.
  • the second radiator assembly 16 consisting of a second radiator film 17 , a second insulation or lamination 18 , a second support plate 19 and a reflector 13 connects.
  • the individual elements of the radiator assembly 16 made of the same materials as described in the first radiator assembly 15 .
  • the reflector 13 is made of a reflective material. Suitable reflectors are aluminum foils, mirror foils, glass, glass granules and the like.
  • a second insulation or lamination 18 of alkyd resin or an oil-containing paint or an epoxy resin coating instead of a second insulation or lamination 18 of alkyd resin or an oil-containing paint or an epoxy resin coating to use a second support plate 19 with a correspondingly insulating adhesive.
  • a second support plate can then be used, for example, a knobbed aluminum plate. In this case, can be dispensed with the reflector 13 .
  • the first radiator assembly 15 and the second radiator assembly 16 are connected via the respective contacts 7 to an electrical power supply, via the two radiator sheets 8; 17 a very strong heat radiation in the intermediate space 14 and through the first radiator assembly 15 in the direction of the radiating 10th Since the system radiation element described in this exemplary embodiment has a reflector 13 as the outer component of the second radiator structure 16 , the heat radiation is predominantly carried out by the one radiating openings 10 .
  • the heat radiation of the first and second radiator assemblies 15; 16 also leads to a self-heating of the entire system radiation element. This resulting heat is delivered as convective heat with appropriate air circulation through the lower convection opening 12 via the upper convection 11 in the room to be heated.
  • the advantage of the structural design of the system radiation element described in this example consists in a considerable energy saving by increasing the efficiency compared to conventional electric heaters.
  • the device according to the invention enables a mobile and stationary use. It saves the large-scale installation of films on ceilings, walls and floors and uses over large-area film heaters in particular, the heat radiation, which does not radiate in large areas of film heaters in the desired room, but in the back walls.
  • Example 1 For the structure of a system radiation element described in Example 1, it is proposed according to this exemplary embodiment to provide the housing 1 according to FIG. 2a on the inside opposite the emission opening 10 with a reflector 13 . Such a system radiation element is likewise provided-as described in Example 1-for a heat dissipation to be emitted predominantly in one direction.
  • the heat source 3 consists of a first radiator assembly 15 and a mirror-like arranged further radiator assembly 15 a .
  • the rest of the design and construction of the system radiation element is substantially similar to the description of Example 1.
  • Example 1 For the structure of a system radiation element described in Example 1, it is proposed, as shown in FIG. 4, according to this exemplary embodiment, to provide the housing 1 with emission openings 10 on both sides, ie in the front and rear faces. Such a system radiation element is then provided for installation in a room in which a heat radiation to at least two sides is desired.
  • a reflector 13 - as it is arranged according to Example 1 in the second radiator assembly 16 - is omitted according to this embodiment.
  • the first support plate 6 and / or the second support plate 19 are provided with a ceramic coating.
  • a further radiator structure 15 a is arranged inside the heat source 3 mirror-like to the first radiator structure 15 . The heat radiation takes place over the two radiating openings 10 over a large area over the longest sides of the housing first
  • a system radiation element with a heat radiation to at least two sides is proposed.
  • the heat source 3 arranged therein consists of a first radiator assembly 15 and a smaller radiator assembly 15b .
  • This smaller radiator assembly 15b may have a smaller surface area than the radiator assembly 15 in both its vertical and horizontal dimensions.
  • a different heat radiation takes place.
  • the smaller radiator assembly 15b heats up approximately twice compared to the first radiator assembly 15.
  • a system radiating element according to this embodiment can also be provided with a reflector 13 on the first radiator assembly 15 and / or on the smaller radiator assembly 15b .
  • the system radiation element according to the invention is a column heater.
  • a plurality of individual system radiation elements 22 are arranged around an existing structure, for example a column 23 , as shown in FIG. 6 in a schematic horizontal section. These each have, in a defined geometric arrangement, a first radiator assembly 15 and a further radiator assembly 15a .
  • the arrangement of the radiator structures 15; 15a is shown at an acute angle to each other in FIG.
  • Other geometrical arrangements are conceivable and are within the scope of the invention.
  • the described radiator assemblies 15b and 16 may find application within the single system radiating element 22 .
  • FIG 7 is simplified a partial plan view and a partial section through a system radiation element 24 of cubic shape shown.
  • a radiation opening 10 can be seen.
  • the cubic system radiation element 24 are each a second radiator assembly 16 with reflector 13 - as described in Example 1 - arranged on the four vertical sides.
  • This type of space heating with a radiation predominantly on the emission opening 10 upwards can alternatively depending on the desired use with first radiator assemblies 15 , ie without reflector 13 , are equipped so that a predominant heat radiation is horizontal and up mainly convection in the heated Room is delivered.
  • radiator structures 15 can be combined with radiator structures 16, radiator structures 15a and 15b smaller radiator structures.
  • the reflectors 13 can be mounted externally or internally, depending on the intended use.
  • FIG. 1 Another application of the system radiation element according to the invention is seen in refrigeration.
  • a section through a rectifier 47 with a jacket of a system radiation element is shown in FIG.
  • B. water and ammonia from a reservoir via a control device in a rectifier 47 and brought to boil by supplying heat.
  • the resulting expelled NH 3 vapor is deposited in the condenser and the resulting liquid is strongly cooled by relaxing in an evaporator to produce the desired cooling effect.
  • the basic idea of the use according to the invention of the system radiation element in refrigeration technology is that radiation of electromagnetic waves takes place via a radiator structure 48 and a radiator structure 49 on or around the rectifier 47 .
  • the radiator assembly 48 is surrounded by an outer jacket in the form of a reflector 50 .
  • the radiator structures 48 and 49 are supplied with electrical energy via the supply lines 51 , ie the system radiating element is activated and the radiated electromagnetic waves boil water and ammonia by deliberately using electrical energy.
  • the demand for electrical energy can be significantly reduced.
  • FIG. 9 shows a plano-concave basic element of a heat source for a system radiation element in vertical section.
  • a frame 35 is attached and this frame 35 takes, as in the previous examples, radiator assemblies 33b; 33c of the type of radiator assembly 15 .
  • the radiator structure 33b is arranged in a planar manner in the frame 35
  • the radiator structure 33c is arranged concavely in the frame 35 .
  • the radiator structures 33b; 33c are in turn spaced at the frame 35 locked so that a gap 52 is formed.
  • a reflector 53 is arranged on the frame 35 or on a housing.
  • the heat radiation takes place accordingly - as can be seen in FIG. 9 - predominantly in the direction of the arrow.
  • a device is used for small-area irradiation of surfaces and objects, such as thawing of frozen water pipes or frozen soil layers application.
  • a heat source - as already described in the preceding examples - connected via the brackets 44 with a power supply and installed in a housing to a system radiation element.
  • cross-shaped basic elements of a system radiation element are shown in horizontal section.
  • the cross-shaped arranged basic elements or heat sources consist of emitter assemblies 33 of type 15 , but can also accommodate depending on the desired use emitter assemblies 16 with a reflector.
  • This application form is superficially used as Jardinheizelement, wherein from the housing 54 in the emission of the radiator 33 radiant heat in the surrounding space through corresponding openings in the housing 54 and upper openings in the housing 54 convection heat is discharged into the ambient space.
  • FIGS 11 and 12 are each a partial section through the front area represented an aircraft wing.
  • FIG 11 is in the front region of a wing a plano-convex heat source with reflector as a system radiating element and in the figure 12, a cylindrical heat source with reflector is arranged as a system radiating element.
  • Example 1 the construction of a heat source with and without a reflector was explained with reference to two design variants of heat sources. If one transfers this layer structure correspondingly modified to FIG. 11, the radiator structure 55 corresponds to the radiator structure 15 from Example 1 and the radiator structure 56 corresponds to the radiator structure 16 from Example 1, the reflector 57 being connected directly to the radiator structure 56 or separately in conjunction with FIG the wing construction can be arranged.
  • the heat radiation takes place, as can be seen from FIG. 11, into the particularly icing-prone front sections of the hollow or shell body constructions of an airfoil.
  • FIG. 1 Another embodiment provides a cylindrical heat source.
  • FIG. 1 are cylindrical intermeshed radiator structures 58; 59 arranged.
  • the radiator structures 58; 59 correspond to the radiator assembly 15 of Example 1.
  • the heat radiating sheets can optionally in the outer or inner region of the respective cylindrical radiator structures 58; 59 may be arranged so that a heat radiation with different intensity can be done.
  • the reflector 60 prevents heat radiation in the wing construction and thus causes a higher concentration of heat radiation in the particularly icing prone fronts.
  • FIG Plankonvexen heat source or cylindrical in Figure 12 heat source and flat elements to use, as described in the previous examples.
  • a Combination of differently shaped geometric shapes of the radiator superstructures or heat sources to a system radiation element is particularly advantageous for aircraft use, because the shell body of a wing or a slat only a very small space for the additional attachment of system radiation elements allows.
  • the individual Exterior structures differently endangered icing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Heating Systems (AREA)
  • Electrotherapy Devices (AREA)
  • Greenhouses (AREA)

Abstract

Die Erfindung betrifft ein Systemstrahlungselement mit wärmeabstrahlender Folie und dessen Verwendung für den stationären und mobilen Einsatz im privaten und gewerblichen Bereich. Der Erfindung liegt die Aufgabe zugrunde, ein kompaktes sowohl stationär als auch mobil einsetzbares Systemstrahlungselement vorzuschlagen, das als Wärmequelle für die Erwärmung von Räumen, Land-, Wasser- und Luftfahrzeugen, technischen Vorrichtungen, Gewerbe- und Industrieanlagen, in der Landwirtschaft und im Gartenbau einsetzbar ist. Mit der vorgeschlagenen Lösung wird ein hoher Wirkungsgrad für die eingesetzte elektrische Energie erzielt. Gemäß der Erfindung wird ein Systemstrahlungselement mit wärmeabstrahlenden Folien vorgeschlagen, wobei mindestens zwei wärmeabstrahlende Folien mindestens in einem Teil ihres wärmestrahlenden Bereiches gegenüberliegend angeordnet sind. Diese gegenüberliegend angeordneten Folien bilden eine Wärmequelle, die in einer geeigneten Vorrichtung angeordnet ist. Die Wärmequelle besteht aus mindestens zwei Strahleraufbauten. <IMAGE>

Description

Die Erfindung betrifft ein Systemstrahlungselement mit wärmeabstrahlender Folie und dessen Verwendung für den stationären und mobilen Einsatz im privaten und gewerblichen Bereich nach den Merkmalen des Anspruches 1.
Es sind zahlreiche Verfahren und Vorrichtungen zur Erwärmung von Körpern und Medien über Wärmeleitung, Konvektion und über Temperaturstrahlung bekannt. So wird in der DE 44 30 582 C2 eine Vorrichtung zur Erwärmung eines Materials, das eine molekulare Eigenfrequenz aufweist, beschrieben. Mit einem Strahler, mit dem eine elektromagnetische Strahlung mit einer Frequenz abstrahlbar ist, die in der Größenordnung der molekularen Eigenfrequenz des für eine Erwärmung in den Strahlungsbereich des Strahlers einbringbaren Materials ist, erfolgt eine Raumerwärmung. Der Strahler ist großflächig ausgebildet, mit elektrischen Zuleitungen versehen, die beabstandet parallel zueinander angeordnet sind. Das Verfahren soll auf dem Prinzip beruhen, dass in dem angestrahlten und zu erwärmenden Material eine Resonanz der molekularen Eigenschwingungen erzeugt wird.
Weiterhin ist eine Heizung mittels Parabolstrahler aus der US 4,434,345 A bekannt, die als Frostschutzeinrichtung insbesondere für Pflanzen Verwendung findet, wobei ein solcher Parabolstrahler direkt auf die Pflanzen gerichtet wird.
Eine Vorrichtung zur Aufheizung von gefrorenem Boden mittels stabförmiger Elektronenröhren, die magnetische Energie verwenden (Magnetronsonden), wird gemäß US 4,590,348 A in den Boden eingesetzt. Mikrowellen werden in den Boden abgestrahlt und bewirken somit ein Auftauen von gefrorenem Boden.
Der Erfindung liegt die Aufgabe zugrunde, ein kompaktes, sowohl stationär als auch mobil einsetzbares Systemstrahlungselement vorzuschlagen, das als Wärmequelle für die Erwärmung von Räumen, Land-, Wasser- und Luftfahrzeugen, technischen Vorrichtungen, Gewerbe- und Industrieanlagen, in der Landwirtschaft und im Gartenbau einsetzbar ist. Mit der erfindungsgemäß vorzuschlagenden Lösung soll ein hoher Wirkungsgrad für die eingesetzte elektrische Energie erzielt werden. Darüber hinaus soll das Systemstrahlungselement im Bedarfsfall mit der Wärmetransportmöglichkeit, der Konvektion, kombinierbar sein. Die verschiedenartigsten Verwendungsmöglichkeiten eines vorzuschlagenden Systemstrahlungselementes sollen mit dieser Erfindung verdeutlicht werden.
Bei der nachstehend zu erläuternden Erfindung wurde von der verschieden starken Reflexion, Absorption und Durchlässigkeit elektromagnetischer Strahlung des Materials als Trägermaterial und/oder Beschichtungsmaterial, wie z. B. Stahlblech, Aluminiumblech, Keramik, Kunststoff, Glas und Glasgranulate, Epoxydharze, Alkydharze, ölhaltige Lacke und Spiegelfolien ausgegangen und eine entsprechende Konstruktion und Beschaffenheit des erfindungsgemäßen Systemsstrahlungselementes entwickelt.
Gemäß der Erfindung wird die vorstehend genannte Aufgabenstellung dadurch gelöst, dass ein Systemstrahlungselement mit wärmeabstrahlenden Folien vorgeschlagen wird, wobei mindestens zwei wärmeabstrahlende Folien mindestens in einem Teil ihres wärmestrahlenden Bereiches gegenüberliegend angeordnet sind. Diese mindestens zu einem Teil gegenüberliegend angeordneten Folien bilden eine Wärmequelle, die in einem Gehäuse oder geeigneten Vorrichtung mit Öffnungen für die Abgabe von Strahlungswärme und Konvektionswärme angeordnet sind. Die Wärmequelle besteht aus mindestens zwei Strahleraufbauten. Die wärmeabstrahlenden Folien in den Strahleraufbauten sind in einem Rahmen mit entsprechenden Abstandhaltern zueinander in einem Abstand von mindestens 3 mm oder in einem größeren, jeweils durch drei teilbaren Abstand angeordnet und über Halterungen an dem Gehäuse befestigt.
Ein Strahleraufbau besteht aus einer oder mehreren Trägerplatten, einer oder mehreren Isolierungen oder Kaschierungen und mindestens einer wärmeabstrahlenden Folie. Gegenüberliegend oder alternativ parallel zu diesem Strahleraufbau ist mindestens ein weiterer solcher Strahleraufbau angeordnet, der ebenfalls aus einer oder mehreren Trägerplatten, einer oder mehreren Isolierungen oder Kaschierungen und mindestens einer wärmeabstrahlenden Folie besteht.
Es liegt im Bereich der Erfindung, an mindestens einem der Strahleraufbauten ganzflächig oder teilweise einen Reflektor anzuordnen. Zweckmäßiger Weise wird ein solcher Reflektor im äußeren Bereich eines Strahleraufbaus angebracht, um eine Reflexion der von den Folien abgegebenen Wärmestrahlung in eine Richtung zu erzielen. Alternativ kann je nach gewünschtem Verwendungszweck und damit verändertem Aufbau einer Wärmequelle der Reflektor zwischen einer Strahlerfolie und einer Schicht aus Isolierung oder Kaschierung oder zwischen einer Schicht aus Isolierung oder Kaschierung und einer Trägerplatte angeordnet sein. Bei dieser veränderten Anordnung des Reflektors ist zwischen den Schichten ein- bzw. beidseitig auf dem Reflektor eine Kleberschicht aufzutragen. Es liegt auch im Bereich der Erfindung, eine Isolierung oder Kaschierung durch einen entsprechenden Reflektor mit aufzutragender Kleberschicht zu ersetzen.
Die Wärmequelle, die aus mindestens zwei Strahleraufbauten mit darin angeordneten wärmeabstrahlenden Folien besteht, bildet mit einem Gehäuse oder einer geeigneten Tragekonstruktion, in welcher die Wärmequelle angeordnet wird, das erfindungsgemäße Systemstrahlungselement. Die von den Folien abgegebene Wärmestrahlung wird über großflächig angeordnete Öffnungen aus dem Gehäuse bzw. der geeigneten Tragekonstruktion abgegeben. Da die wärmeabstrahlenden Folien gegenüberliegend angeordnet sind und sich damit zumindest teilweise gegenseitig bestrahlen, entsteht auch eine Eigenerwärmung der Wärmequelle innerhalb des Gehäuses bzw. in Richtung Tragekonstruktion. Diese durch Eigenerwärmung entstandene Wärme wird als Konvektionswärme in den Umgebungsraum abgegeben.
Die Trägerplatten der Strahlungsaufbauten sind vorzugsweise Metallplatten, die aus Stahl- oder Aluminiumblech bestehen können. Die Trägerplatten können ein- oder beidseitig mit einer Keramikbeschichtung versehen sein. Auf einer Trägerplatte ist eine Isolierung oder Kaschierung, die aus hitzebeständigem Alkydharz oder einem ölhaltigen Lack oder einer Epoxidharzbeschichtung oder aus hitzebeständigen sonstigen Isolieranstrichen besteht und ganzflächig eine wärmeabstrahlende Folie aufnimmt. Diese Folie besteht aus einem Graphit-Ruß-Folienaufbau oder sonstigen handelsüblichen wärmeabstrahlenden Folien und weist eine obere und untere oder rechte und linke oder zentrale und periphere gut leitende Kontaktierung für die Stromversorgung auf. Diese Kontaktierungen sind vorzugsweise streifbandförmig großflächig über die wärmeabstrahlenden Folien angeordnet.
Um eine Wärmeabstrahlung in eine bestimmte Richtung zu erzielen, wird mindestens ein Strahleraufbau, bestehend aus Trägerplatte, Isolierung oder Kaschierung und wärmeabstrahlender Folie mit einem Reflektor versehen. Als geeignete Reflektoren haben sich Aluminiumfolien, Spiegelfolien, Glas, Glasgranulate bewährt. Die Isolierungen oder Kaschierungen können auch entfallen, wenn entsprechende gut isolierende Kleber zwischen den Schichten der Strahleraufbauten verwendet werden.
Wird ein erfindungsgemäßes Systemstrahlungselement mit einer oder mehreren darin angeordneter Wärmequellen und diese wiederum bestehend aus mindestens zwei Strahleraufbauten an eine elektrische Stromversorgung angeschlossen, so wird über die wärmeabstrahlenden Folien Elektroenergie in Strahlungsenergie umgewandelt. Der Vorteil des konstruktiven Aufbaus im Systemstrahlungselement besteht in einer erheblichen Energieeinsparung durch Erhöhung des Wirkungsgrades gegenüber konventionellen elektrischen Heizungen.
Die erfindungsgemäße Vorrichtung ermöglicht einen mobilen und stationären Einsatz. Sie erspart das großflächige Anbringen von Folien auf Decken, Wänden und sonstigen Raumumkleidungen und nutzt darüber hinaus gegenüber großflächigen Folienheizungen insbesondere auch die Wärmeabstrahlung, die bei großflächigen Folienheizungen nicht in den gewünschten Raum, sondern in rückseitige Wände abgestrahlt wird.
Diese Vorteile nutzend liegt es im Bereich der Erfindung, Strahleraufbauten und damit die Wärmequellen in ihrer flächenmäßigen Ausdehnung unterschiedlich zu dimensionieren und in ihrer Geometrie unterschiedlich zu gestalten. So liegt es nahe, die Strahleraufbauten auch zylinderförmig ineinanderliegend und definiert beabstandet anzuordnen oder die Strahleraufbauten zueinander plan- und konkav gegenüberliegend und definiert beabstandet oder zueinander plan- und konvex gegenüberliegend und definiert beabstandet anzuordnen. Es ist auch denkbar, einzelne Strahleraufbauten zueinander konvex oder zueinander konkav gegenüberliegend und definiert beabstandet anzuordnen.
Aus den vielfältigen Verwendungsmöglichkeiten der erfindungsgemäßen Wärmequelle mit den darin angeordneten Strahleraufbauten ergeben sich auch Anordnungen der Strahleraufbauten zueinander in konkaver/konvexer oder konvexer/konkaver Form. Auch kreuzförmig zueinander diagonal und definiert beabstandet angeordnete Strahleraufbauten liegen im Bereich der Erfindung.
Wie in den anschließenden Ausführungsbeispielen näher zu erläutern ist, ist erfindungsgemäßes Systemstrahlungselement als Raumheizung für die private und gewerbliche Nutzung zur Erwärmung von festen, flüssigen und gasförmigen Körpern und Medien, zum Auftauen gefrorener Stoffe und Medien und zur Eisfreihaltung von Strukturen, Konstruktionen und Oberflächen einsetzbar. Aus diesen Einsatzmöglichkeiten ergeben sich zahlreiche Kombinationen, insbesondere aus der geometrischen Gestaltung der Wärmequellen, der Energieeinspeisung bzw. Leistungsaufnahme, der Oberflächengestaltung und Schichtanordnung innerhalb der Strahleraufbauten sowie der Arretierung verschiedenartig gestalteter Wärmequellen an an sich bekannten Tragkonstruktionen zum Aufbau eines Systemstrahlungselementes.
Die Erfindung wird im Folgenden anhand der in den Zeichnungen dargestellten Ausführungsbeispiele näher erläutert und beschrieben. Die den Zeichnungen und der Beschreibung zu entnehmenden Merkmale können bei anderen Ausführungsformen der Erfindung einzeln für sich oder zu mehreren in beliebigen Kombinationen Anwendung finden.
Die Zeichnungen zeigen in
Fig. 1
eine Vorderansicht eines Heizkörpers mit integriertem Systemstrahlungs-element,
Fig. 2 und 2a
einen vereinfachten schematischen Vertikalschnitt durch ein Systemstrahlungselement mit vorwiegend einseitiger Wärmeabstrahlung,
Fig. 3
einen vereinfachten schematischen Schichtaufbau durch ein Systemstrahlungselement mit vorwiegend einseitiger Wärmeabstrahlung in Vorderansicht mit aufgeklappten Einzelschichten,
Fig. 4
einen vereinfachten Vertikalschnitt durch ein Systemstrahlungselement mit zweiseitiger Wärmeabstrahlung,
Fig. 5
einen vereinfachten schematischen Vertikalschnitt durch ein Systemstrahlungselement mit unterschiedlich großen Strahleraufbau,
Fig. 6 und 7
Gestaltungsvarianten eines Systemstrahlungselementes,
Fig. 8
einen Schnitt durch eine Rektifikator einer Kühlanlage mit Ummantelung durch ein Systemstrahlungselement,
Fig. 9
ein plankonkaves Grundelement einer Wärmequelle eines Systemstrahlungselementes im Vertikalschnitt,
Fig. 10
kreuzförmig angeordnete Grundelemente eines Systemstrahlungselementes im Horizontalschnitt,
Fig. 11
ein plankonkaves Grundelement einer Wärmequelle eines Systemstrahlungselementes mit Reflektor,
Fig. 12
ein zylinderförmiges Grundelement einer Wärmequelle eines Systemstrahlungselementes mit Reflektor.
Beispiel 1
Figur 1 zeigt ein Systemstrahlungselement mit vorwiegend einseitiger Wärmeabstrahlung, bestehend aus einem Gehäuse 1 mit darin angeordneter Wärmequelle 3, einer Abstrahlöffnung 10, sowie einer oberen Konvektionsöffnung 11 und einer unteren Konvektionsöffnung 12. Die im Gehäuse 1 angeordnete Wärmequelle 3 besteht aus mindestens zwei Strahleraufbauten 15; 16. Ein solches Systemstrahlungselement mit vorwiegend einseitiger Wärmeabstrahlung ist in Figur 2 vereinfacht im Vertikalschnitt schematisch dargestellt.
In dem Gehäuse 1 ist ein Rahmen 2 angeordnet, der in seinem oberen und unteren Bereich über entsprechende Abstandhalter einen ersten Strahleraufbau 15 und einen zweiten Strahleraufbau 16 als Wärmequelle 3 aufnimmt. Der Rahmen 2 mit darin parallel zueinander angeordneten Strahleraufbauten 15; 16 ist über Halterungen 4 am Gehäuse 1 befestigt. Das Gehäuse 1 weist nach einer Seite großflächig eine Abstrahlöffnung 10 auf. Im unteren Teil des Gehäuses 1 ist eine untere Konvektionsöffnung 12 und im oberen Teil des Gehäuses 1 eine obere Konvektionsöffnung 11 eingelassen. Die von den Halterungen 4 getragene Wärmequelle 3 nimmt in ihrem Rahmen 2 den ersten Strahleraufbau 15 und den zweiten Strahleraufbau 16 auf. Der erste Strahleraufbau 15 ist vom zweiten Strahleraufbau 16 durch einen Zwischenraum 14 von 3 mm, 6 mm oder 9 mm beabstandet, wobei der Zwischenraum 14 - wie bereits erwähnt - von Abstandhaltern, die am Rahmen 2 angeordnet sind, gebildet wird.
In diesem Beispiel unterscheidet sich der zweite Strahleraufbau 16 von dem ersten Strahleraufbau 15 dadurch, dass an der der Gehäusewandung zugewandten Seite am zweiten Strahleraufbau 16 ein Reflektor 13 angeordnet ist. Der Reflektor 13 erstreckt sich ganzflächig über die nach außen gerichtete Fläche des zweiten Strahleraufbaus 16.
Um den Aufbau eines Systemstrahlungselementes nach diesem Ausführungsbeispiel zu verdeutlichen, ist in Figur 3 in vereinfachter Form der schematische Schichtaufbau dargestellt. In dem Gehäuse 1 ist als Ausschnitt die Abstrahlöffnung 10 sichtbar. Dahinter ist der erste Strahleraufbau 15, bestehend aus einer ersten Trägerplatte 6, einer ersten Isolierung oder Kaschierung 9 und einer ersten Strahlerfolie 8 angeordnet. An diesen ersten Strahleraufbau 15 schließt sich der Zwischenraum 14 an. Dieser beabstandet den ersten Strahleraufbau 15 vom zweiten Strahleraufbau 16. Der zweite Strahlerautbau 16 besteht aus einer zweiten Strahlerfolie 17, einer zweiten Isolierung oder Kaschierung 18, einer zweiten Trägerplatte 19 und einem Reflektor 13.
Alternativ kann je nach gewünschtem Verwendungszweck und Aufbau der einzelnen Strahleraufbauten 15; 16 der Reflektor 13 zwischen der zweiten Strahlerfolie 17 und zweiten Isolierung oder Kaschierung 18 oder zwischen der zweiten Isolierung oder Kaschierung 18 und der zweiten Trägerplatte 19 angeordnet sein. Bei dieser veränderten Anordnung des Reflektors 13 ist zwischen den Schichten ein- bzw. beidseitig auf dem Reflektor 13 eine Kleberschicht aufzutragen. Auch liegt es im Bereich der Erfindung, die zweite Isolierung oder Kaschierung 18 durch einen entsprechenden Reflektor mit aufzutragender Kleberschicht zu ersetzen.
Die erste Strahlerfolie 8 und die zweite Strahlerfolie 17 werden über Kontaktierungen 7 mit elektrischem Strom versorgt. Die Kontaktierungen 7 sind streifbandförmig, jeweils über die gesamte Breite bzw. Höhe der Strahlerfolien 8 und 17 oben und unten oder links und rechts angeordnet.
Das Gehäuse 1 kann nach dieser Ausführungsform die Größe und Gestalt konventioneller elektrischer Heizkörper aufweisen und ist vorzugsweise aus Metall gefertigt. Die Abstrahlöffnung 10 sowie die obere Konvektionsöffnung 11 und die untere Konvektionsöffnung 12 sind übliche Strahlungswärme bzw. Konfektionswärme gut durchlassende Gitteröffnungen. Der im Gehäuse 1 angeordnete Rahmen 2 ist mit einer Isolierung umgeben.
Die erste Trägerplatte 6 ist eine Metallplatte, vorzugsweise aus Stahl- oder Aluminiumblech und kann zusätzlich auf der der Abstrahlöffnung 10 zugewandten Seite mit einer Keramikbeschichtung versehen sein. Die dem Zwischenraum 14 zugewandte Seite der ersten Trägerplatte 6 ist mit einer ersten Isolierung oder Kaschierung 9 beschichtet. Diese besteht aus einem für den jeweils erforderlichen Temperaturbereich hitzebeständigen Alkydharz oder einem ölhaltigen Lack oder einer Epoxydharzbeschichtung oder aus hitzebeständigen Isolieranstrichen. In diesem Ausführungsbeispiel wird von einer Erhitzung der Wärmequelle 3 in einem Temperaturbereich von 80° C bis 130°C ausgegangen.
Die erste Isolierung oder Kaschierung 9 kann auch aus einem hitzebeständigen Klebstoff bestehen. Auf der ersten Isolierung oder Kaschierung 9 ist ganzflächig die erste Strahlerfolie 8 aufgebracht. Diese besteht aus einem Graphit-Ruß-Folienaufbau mit einer oberen und unteren Kontaktierung 7 (Figur 3) für die Stromversorgung. Der Graphit-Ruß-Folienaufbau kann bereits mit einer handelsüblichen Isolierung oder Kaschierung versehen sein, so dass eine zusätzliche Isolierung oder Kaschierung 9 entfallen kann.
Der sich an die erste Strahlerfolie 8 anschließende Zwischenraum 14 ist bei dieser Ausführungsform ein geschlossener Raum, der von der ersten Strahlerfolie 8 und der zweiten Strahlerfolie 17 sowie den am Rahmen 2 angeordneten Abstandhaltern gebildet wird. Die Abstandhalter (in den Figuren nicht dargestellt) bestehen entweder aus elektrisch nicht leitenden Teilen des Rahmens 2 oder sind Bestandteile des metallischen Rahmens 2, wobei dann die horizontal und vertikal umlaufenden Abstandhalter zur ersten Strahlerfolie 8 und zur zweiten Strahlerfolie 17 bzw. zu deren Kontaktierungen 7 gut isoliert sind.
An den Zwischenraum 14 schließt sich der zweite Strahleraufbau 16, bestehend aus einer zweiten Strahlerfolie 17, einer zweiten Isolierung oder Kaschierung 18, einer zweiten Trägerplatte 19 und einem Reflektor 13 an. In diesem Ausführungsbeispiel bestehen die einzelnen Elemente des Strahleraufbaus 16 aus den gleichen Materialen, wie sie im ersten Strahleraufbau 15 beschrieben wurden. Der Reflektor 13 besteht aus einem reflektierenden Material. Als geeignete Reflektoren finden Aluminiumfolien, Spiegelfolien, Glas, Glasgranulate und dergleichen Anwendung.
Es liegt im Bereich der Erfindung, anstelle einer zweiten Isolierung oder Kaschierung 18 aus Alkydharz oder einem ölhaltigen Lack oder einer Epoxydharzbeschichtung eine zweite Trägerplatte 19 mit entsprechend isolierendem Kleber zu verwenden. Als zweite Trägerplatte kann dann beispielsweise eine genoppte Aluminiumplatte Verwendung finden. In diesem Fall kann auf den Reflektor 13 verzichtet werden.
Werden nun der erste Strahleraufbau 15 und der zweite Strahleraufbau 16 über die jeweiligen Kontaktierungen 7 an eine elektrische Stromversorgung angeschlossen, erfolgt über die beiden Strahlerfolien 8; 17 eine sehr starke Wärmeabstrahlung in den Zwischenraum 14 und durch den ersten Strahleraufbau 15 hindurch in Richtung Abstrahlöffnung 10. Da das in diesem Ausführungsbeispiel beschriebene Systemstrahlungselement als äußeren Bestandteil des zweiten Strahleraufbau 16 einen Reflektor 13 aufweist, erfolgt die Wärmeabstrahlung vorwiegend durch die eine Abstrahlöffnungen 10. Die Wärmeabstrahlung des ersten und zweiten Strahleraufbaus 15; 16 führt auch zu einer Eigenerwärmung des gesamten Systemstrahlungselementes. Diese entstehende Wärme wird als Konvektionswärme mit entsprechender Luftzirkulation durch die untere Konvektionsöffnung 12 über die obere Konvektionsöffnung 11 in den zu beheizenden Raum abgegeben.
Auf den beiden Strahlerfolien 8; 17 wird Elektroenergie in Strahlungsenergie umgewandelt. Der Vorteil des in diesem Beispiel geschilderten konstruktiven Aufbaus des Systemstrahlungselementes besteht in einer erheblichen Energieeinsparung durch Erhöhung des Wirkungsgrades gegenüber konventionellen elektrischen Heizungen. Die erfindungsgemäße Vorrichtung ermöglicht einen mobilen und stationären Einsatz. Sie erspart das großflächige Anbringen von Folien auf Decken, Wänden und in Fußböden und nutzt gegenüber großflächigen Folienheizungen insbesondere auch die Wärmeabstrahlung, die bei großflächigen Folienheizungen nicht in den gewünschten Raum, sondern in rückseitige Wände abstrahlt.
Beispiel 2
Zu dem im Beispiel 1 geschilderten Aufbau eines Systemstrahlungselementes wird nach diesem Ausführungsbeispiel vorgeschlagen, das Gehäuse 1 gemäß der Figur 2a auf der der Abstrahlöffnung 10 entgegengesetzten Innenseite mit einem Reflektor 13 zu versehen. Ein solches Systemstrahlungselement ist ebenfalls - wie im Beispiel 1 beschrieben - für eine vorwiegend in einer Richtung abzugebende Wärmeabstrahlung vorgesehen. Die Wärmequelle 3 besteht aus einem ersten Strahleraufbau 15 und einem spiegelgleich angeordneten weiteren Strahleraufbau 15a. Die übrige Gestaltung und der Aufbau des Systemstrahlungselementes gleicht im Wesentlichen der Beschreibung nach Beispiel 1.
Beispiel 3
Zu dem im Beispiel 1 geschilderten Aufbau eines Systemstrahlungselementes wird, wie in Figur 4 dargestellt, nach diesem Ausführungsbeispiel vorgeschlagen, das Gehäuse 1 beidseitig, d. h. in der Vorder- und Rückfront mit Abstrahlöffnungen 10 zu versehen. Ein solches Systemstrahlungselement ist dann für das Aufstellen in einen Raum vorgesehen, in welchem eine Wärmeabstrahlung nach mindestens zwei Seiten gewünscht ist. Ein Reflektor 13 - wie er nach Beispiel 1 in dem zweiten Strahleraufbau 16 angeordnet ist - entfällt nach dieser Ausführungsform. Statt dessen sind die erste Trägerplatte 6 und/oder die zweite Trägerplatte 19 mit einer Keramikbeschichtung versehen. Wie aus der Figur 4 ersichtlich, ist spiegelgleich zu dem ersten Strahleraufbau 15 ein weiterer Strahleraufbau 15 a innerhalb der Wärmequelle 3 angeordnet. Die Wärmeabstrahlung erfolgt über die beiden Abstrahlöffnungen 10 großflächig über die längsten Seiten des Gehäuses 1.
Beispiel 4
Gemäß dem beschriebenen Aufbau nach Beispiel 1 und Beispiel 3 wird ein Systemstrahlungselement mit einer Wärmeabstrahlung nach mindestens zwei Seiten vorgeschlagen. Ein solches Element ist in Figur 5 dargestellt. Die darin angeordnete Wärmequelle 3 besteht aus einem ersten Strahleraufbau 15 und einem kleineren Strahleraufbau 15b. Dieser kleinere Strahleraufbau 15b kann sowohl in seiner vertikalen als auch in seiner horizontalen Ausdehnung ein geringeres Flächenmaß als der Strahleraufbau 15 aufweisen. Es versteht sich dabei von selbst, dass nach dieser Ausführungsform eine unterschiedliche Wärmeabstrahlung erfolgt. Nach dieser Ausführungsform erhitzt sich der kleinere Strahleraufbau 15b annähernd um das Doppelte gegenüber dem ersten Strahleraufbau 15. Alternativ kann ein Systemstrahlungselement nach diesem Ausführungsbeispiel auch mit einem Reflektor 13 an dem ersten Strahleraufbau 15 und/oder an dem kleineren Strahleraufbau 15b versehen werden.
Beispiel 5
Nach dem in den vorangegangenen Beispielen beschriebenen Prinzip mit einem Folienaufbau von mindestens zwei gegenüber angeordneten Heizfolien ist es denkbar, das erfindungsgemäße Systemstrahlungselement als eine Säulenheizung zu konzipieren. Dazu sind um ein vorhandenes Bauwerk, beispielsweise eine Säule 23, wie in Figur 6 im schematischen Horizontalschnitt gezeigt, mehrere Einzelsystemstrahlungselemente 22 angeordnet. Diese weisen jeweils in definierter geometrischer Anordnung einen ersten Strahleraufbau 15 und einen weiteren Strahleraufbau 15a auf. Die Anordnung der Strahleraufbauten 15; 15a ist in der Figur 6 spitzwinklig zueinander dargestellt. Andere geometrische Anordnungen sind denkbar und liegen im Bereich der Erfindung. Auch können die beschriebenen Strahleraufbauten 15b und 16 innerhalb des Einzelsystemstrahlungselementes 22 Anwendung finden.
Beispiel 6
In der Figur 7 ist vereinfacht eine Teildraufsicht und ein Teilschnitt durch ein Systemstrahlungselement 24 von kubischer Gestalt dargestellt. In Draufsicht ist eine Abstrahlöffnung 10 zu sehen. In dem kubischen Systemstrahlungselement 24 sind an den vier Vertikalseiten je ein zweiter Strahleraufbau 16 mit Reflektor 13 - wie im Beispiel 1 beschrieben - angeordnet. Diese Art der Raumheizung mit einer Abstrahlung vorwiegend über die Abstrahlöffnung 10 nach oben kann alternativ je nach gewünschtem Verwendungszweck auch mit ersten Strahleraufbauten 15, also ohne Reflektor 13, ausgestattet werden, so dass eine vorwiegende Wärmeabstrahlung horizontal erfolgt und nach oben vorwiegend Konvektionswärme in den zu beheizenden Raum abgegeben wird.
Es ist auch denkbar, innerhalb eines solchen kubischen Systemstrahlungselementes 24 Strahleraufbauten 15 mit Strahleraufbauten 16, Strahleraufbauten 15a und kleineren Strahleraufbauten 15b zu kombinieren. Bei Anwendung von zweiten Strahleraufbauten 16 - wie in der Figur 7 dargestellt - können je nach dem gewünschten Verwendungszweck die Reflektoren 13 außen oder innen angebracht werden.
Beispiel 7
Eine weitere Anwendungsmöglichkeit des erfindungsgemäßen Systemstrahlungselementes wird in der Kältetechnik gesehen. Anhand einer einfachen, einstufigen Absorptionsanlage wird in Figur 8 ein Schnitt durch einen Rektifikator 47 mit einer Ummantelung von einem Systemstrahlungselement dargestellt. Im Betrieb eines Kühlsystems werden in bekannter Weise z. B. Wasser und Ammoniak aus einem Reservoir über eine Steuereinrichtung in einen Rektifikator 47 eingespeist und durch Wärmezufuhr zum Sieden gebracht. Der dadurch ausgetriebene NH3-Dampf wird im Kondensator niedergeschlagen und die entstehende Flüssigkeit durch Entspannen in einem Verdampfer stark abgekühlt, um den gewünschten Kühleffekt hervorzurufen.
Der Grundgedanke der erfindungsgemäßen Verwendung des Systemstrahlungselementes in der Kältetechnik besteht darin, dass eine Abstrahlung elektromagnetischer Wellen über einen Strahleraufbau 48 und einen Strahleraufbau 49 auf bzw. um den Rektifikator 47 erfolgt. Dazu ist der Strahleraufbau 48 mit einer äußeren Ummantelung in Form eines Reflektors 50 umgeben. Bei Inbetriebnahme des Systemstrahlungselementes werden die Strahleraufbauten 48 und 49 über die Zuleitungen 51 mit Elektroenergie versorgt, d. h. das Systemstrahlungselement ist aktiviert und die abgestrahlten elektromagnetischen Wellen bringen Wasser und Ammoniak zum Sieden, indem gezielt elektrische Energie eingesetzt wird. Mit dieser erfindungsgemäßen Vorrichtung kann der Bedarf an Elektroenergie wesentlich gesenkt werden.
Beispiel 8
Mit einem Schichtaufbau, wie schon beschrieben, zeigt Figur 9 ein plankonkaves Grundelement einer Wärmequelle für ein Systemstrahlungselement im Vertikalschnitt. An Halterungen 44 ist ein Rahmen 35 befestigt und dieser Rahmen 35 nimmt, wie in den vorangegangenen Beispielen, Strahleraufbauten 33b; 33c vom Typ des Strahleraufbaus 15 auf. Während der Strahleraufbau 33b planflächig im Rahmen 35 angeordnet ist, ist der Strahleraufbau 33c konkav im Rahmen 35 angeordnet. Die Strahleraufbauten 33b; 33c sind wiederum beabstandet am Rahmen 35 arretiert, so dass ein Zwischenraum 52 entsteht. Auf der dem Zwischenraum 52 abgewandten Seite - also auf der Rückseite des Strahleraufbaus 33b - ist am Rahmen 35 oder an einem Gehäuse ein Reflektor 53 angeordnet.
Die Wärmeabstrahlung erfolgt demzufolge - wie aus Figur 9 ersichtlich - vorwiegend in Pfeilrichtung. Eine derartige Vorrichtung findet zur kleinflächigen Bestrahlung von Flächen und Gegenständen, wie zum Beispiel zum Auftauen gefrorener Wasserleitungen oder gefrorener Bodenschichten, Anwendung. Dazu wird eine derartige Wärmequelle - wie in den vorangegangenen Beispielen bereits beschrieben - über die Halterungen 44 mit einer Stromversorgung verbunden und in einem Gehäuse zu einem Systemstrahlungselement installiert.
Beispiel 9
In Figur 10 sind kreuzförmig angeordnete Grundelemente eines Systemstrahlungselementes im Horizontalschnitt dargestellt. Die kreuzförmig angeordneten Grundelemente bzw. Wärmequellen bestehen aus Strahleraufbauten 33 vom Typ 15, können aber auch je nach gewünschtem Verwendungszweck Strahleraufbauten 16 mit einem Reflektor aufnehmen. Diese Anwendungsform findet vordergründig Verwendung als Raumheizelement, wobei aus dem Gehäuse 54 in Abstrahlrichtung von den Strahleraufbauten 33 Strahlungswärme in den umgebenden Raum über entsprechende Öffnungen im Gehäuse 54 und über obere Öffnungen im Gehäuse 54 Konvektionswärme in den Umgebungsraum abgegeben wird.
Beispiel 10
Es ist bekannt, dass vereisungsgefährdete Fronten an Vorflügeln und Tragflächen und anderen Strukturen von Flugzeugen mit unterschiedlichsten Vorrichtungen und Verfahren vor einer Eisbildung bewahrt werden bzw. schon gebildete Eisflächen entfernt werden können. Im Nachfolgenden soll anhand der Figuren 11 und 12 der Einsatz des erfindungsgemäßen Systemstrahlungselementes im Bereich der Vorderkante einer Tragfläche erläutert werden.
In den Figuren 11 und 12 ist jeweils ein Teilschnitt durch den vorderen Bereich einer Flugzeugtragfläche dargestellt. In der Figur 11 ist im vorderen Bereich einer Tragfläche eine plankonvexe Wärmequelle mit Reflektor als ein Systemstrahlungselement und in der Figur 12 ist eine zylinderförmige Wärmequelle mit Reflektor als ein Systemstrahlungselement angeordnet.
Im Beispiel 1 wurde anhand zweier Gestaltungsvarianten von Wärmequellen der Aufbau einer Wärmequelle mit und ohne Reflektor erläutert. Überträgt man entsprechend modifiziert diesen Schichtaufbau auf die Figur 11, so entspricht der Strahleraufbau 55 dem Strahleraufbau 15 aus dem Beispiel 1 und der Strahleraufbau 56 dem Strahleraufbau 16 aus Beispiel 1, wobei der Reflektor 57 unmittelbar mit dem Strahleraufbau 56 verbunden ist oder separat in Verbindung mit der Tragflächenkonstruktion angeordnet sein kann. Die Wärmeabstrahlung erfolgt, wie aus Figur 11 ersichtlich, in die besonders vereisungsgefährdeten Frontabschnitte der Hohl- bzw. Schalenkörperkonstruktionen einer Tragfläche.
Eine andere Ausführungsform sieht eine zylinderförmige Wärmequelle vor. Hier sind zylinderförmig ineinander geschobene Strahleraufbauten 58; 59 angeordnet. Die Strahleraufbauten 58; 59 entsprechen dem Strahleraufbau 15 aus dem Beispiel 1. Die wärmeabstrahlenden Folien können wahlweise im äußeren oder inneren Bereich der jeweiligen zylinderförmigen Strahleraufbauten 58; 59 angeordnet sein, so dass eine Wärmestrahlung mit unterschiedlicher Intensität erfolgen kann. Der Reflektor 60 verhindert eine Wärmeabstrahlung in die Tragflächenkonstruktion und bewirkt damit eine höhere Konzentration der Wärmestrahlung in die besonders vereisungsgefährdeten Fronten.
Es liegt im Bereich der Erfindung, anstelle einer wie in Figur 11 dargestellten plankonvexen Wärmequelle oder der in Figur 12 zylinderförmigen Wärmequelle auch Flachelemente zu verwenden, wie sie in den vorangegangenen Beispielen beschrieben wurden. Eine Kombination verschieden gestalteter geometrischer Formen der Strahleraufbauten oder Wärmequellen zu einem Systemstrahlungselement ist insbesondere für den Flugzeugeinsatz von Vorteil, weil der Schalenkörper einer Tragfläche oder eines Vorflügels nur einen sehr geringen Platz für die zusätzliche Anbringung von Systemstrahlungselementen zulässt. Außerdem sind die einzelnen Außenstrukturen unterschiedlich vereisungsgefährdet.

Claims (16)

  1. Systemstrahlungselement mit wärmeabstrahlenden Folien und an diesen angeordneten elektrischen Zuleitungen, wobei mindestens zwei wärmeabstrahlende Folien mindestens mit einem Teil ihres wärmeabstrahlenden Bereiches gegenüberliegend in einem Gehäuse (1; 45; 54) und/oder an einer Tragkonstruktion angeordnet sind, wobei ein Strahleraufbau (15; 15a; 15b; 16; 33; 33a; 33b; 33c; 48; 49; 55; 56; 58; 59) mindestens eine wärmeabstrahlende Folie aufweist.
  2. Systemstrahlungselement nach Anspruch 1, dadurch gekennzeichnet, dass mindestens zwei ganz oder teilweise gegenüberliegend in einem Abstand von mindestens 3 mm oder in einem größeren, aber jeweils durch drei teilbaren Abstand angeordnete, wärmeabstrahlende Folien eine Wärmequelle bilden und diese vorwiegend Strahlungswärme abgibt.
  3. Systemstrahlungselement nach Anspruch 1, dadurch gekennzeichnet, dass ein erster Strahleraufbau (15; 15a; 15b; 33; 33c; 49; 55; 59) aus einer Trägerplatte (6), einer Isolierung oder Kaschierung (9) und einer Strahlerfolie (8) als wärmeabstrahlende Folie und ein zweiter Strahleraufbau (16; 33b; 48; 56; 58) aus einer Strahlerfolie (17) als wärmeabstrahlende Folie, einer Isolierung oder Kaschierung (18), einer Trägerplatte (19) und einem Reflektor (13; 50; 53; 57; 60) besteht.
  4. Systemstrahlungselement nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der erste Strahleraufbau (15; 15a; 15b; 33; 33c; 49; 55; 59) und der zweite Strahleraufbau (16; 33b; 48; 56; 58) in ihrer flächenmäßigen Ausdehnung und/oder Geometrie gleich groß dimensioniert sind.
  5. Systemstrahlungselement nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die wärmeabstrahlende Folie des ersten Strahleraufbaus (15; 15a; 15b; 33; 33c; 49; 55; 59) eine unterschiedliche Leistungsaufnahme für Elektroenergie und/oder im Betrieb eine unterschiedliche Oberflächentemperatur aufweist als die wärmeabstrahlende Folie des zweiten Strahleraufbaus (16; 33b; 48; 56; 58).
  6. Systemstrahlungselement nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Strahleraufbauten (15; 15a; 15b; 33; 33c; 49; 55; 59) und die Strahleraufbauten (16; 33b; 48; 56; 58) in ihrer flächenmäßigen Ausdehnung zueinander parallel und definiert beabstandet angeordnet sind.
  7. Systemstrahlungselement nach einem oder mehreren der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Strahleraufbauten (15; 15a; 15b; 33; 33c; 49; 55; 59) und die Strahleraufbauten (16; 33b; 48; 56; 58) in ihrer flächenmäßigen Ausdehnung zueinander zylinderförmig ineinanderliegend und definiert beabstandet angeordnet sind.
  8. Systemstrahlungselement nach einem oder mehreren der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Strahleraufbauten (15; 15a; 15b; 33; 33c; 49; 55; 59) und die Strahleraufbauten (16; 33b; 48; 56; 58) in ihrer flächenmäßigen Ausdehnung zueinander plan und konkav gegenüberliegend und definiert beabstandet angeordnet sind.
  9. Systemstrahlungselement nach einem oder mehreren der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Strahleraufbauten (15; 15a; 15b; 33; 33c; 49; 55; 59) und die Strahleraufbauten (16; 33b; 48; 56; 58) in ihrer flächenmäßigen Ausdehnung zueinander plan und konvex gegenüberliegend und definiert beabstandet angeordnet sind.
  10. Systemstrahlungselement nach einem oder mehreren der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Strahleraufbauten (15; 15a; 15b; 33; 33c; 49; 55; 59) und die Strahleraufbauten (16; 33b; 48; 56; 58) in ihrer flächenmäßigen Ausdehnung zueinander konvex oder zueinander konkav gegenüberliegend und definiert beabstandet angeordnet sind.
  11. Systemstrahlungselement nach einem oder mehreren der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Strahleraufbauten (15; 15a; 15b; 33; 33c; 49; 55; 59) und die Strahleraufbauten (16; 33b; 48; 56; 58) in ihrer flächenmäßigen Ausdehnung zueinander konkav/konvex oder konvex/konkav gegenüberliegend und definiert beabstandet angeordnet sind.
  12. Systemstrahlungselement nach einem oder mehreren der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Strahleraufbauten (15; 15a; 15b; 33; 33c; 49; 55; 59) und die Strahleraufbauten (16; 33b; 48; 56; 58) in ihrer flächenmäßigen Ausdehnung zueinander kreuzförmig oder zueinander diagonal und definiert beabstandet angeordnet sind.
  13. Verwendung des Systemstrahlungselementes nach der in Anspruch 1 offenbarten Art in einem Gehäuse (45; 54) als Raumheizung für die private und gewerbliche Nutzung.
  14. Verwendung des Systemstrahlungselementes nach der in Anspruch 1 offenbarten Art zur Erwärmung von festen, flüssigen und gasförmigen Körpern bzw. Medien.
  15. Verwendung des Systemstrahlungselementes nach der in Anspruch 1 offenbarten Art zum Auftauen gefrorener Stoffe und Medien und/oder Trocknen von Stoffen und Medien.
  16. Verwendung des Systemstrahlungselementes nach der in Anspruch 1 offenbarten Art zur Eisfreihaltung von Strukturen, Konstruktionen und Oberflächen, vorzugsweise von vereisungsgefährdeten Oberflächen von Flugzeugen.
EP04090372A 2003-09-23 2004-09-22 Systemstrahlungselement und dessen Verwendung Expired - Lifetime EP1523223B1 (de)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
DE20314654U 2003-09-23
DE10343859 2003-09-23
DE20314653U 2003-09-23
DE10343860 2003-09-23
DE2003143860 DE10343860A1 (de) 2003-09-23 2003-09-23 Systemstrahlungselement und dessen Verwendung
DE2003143859 DE10343859A1 (de) 2003-09-23 2003-09-23 Systemstrahlungselement
DE20314654U DE20314654U1 (de) 2003-09-23 2003-09-23 Systemstrahlungselement
DE20314653U DE20314653U1 (de) 2003-09-23 2003-09-23 Systemstrahlungselement

Publications (3)

Publication Number Publication Date
EP1523223A2 true EP1523223A2 (de) 2005-04-13
EP1523223A3 EP1523223A3 (de) 2005-04-20
EP1523223B1 EP1523223B1 (de) 2007-09-12

Family

ID=34317536

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04090372A Expired - Lifetime EP1523223B1 (de) 2003-09-23 2004-09-22 Systemstrahlungselement und dessen Verwendung

Country Status (3)

Country Link
EP (1) EP1523223B1 (de)
AT (1) ATE373403T1 (de)
DE (1) DE502004004930D1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007044557A1 (de) 2007-09-07 2009-03-12 Österwitz, Karl-Heinz Erdwärmespeicher mit Dampfsperre, Reservoiren und Befeuchtung für eine Hausenergiezentrale
WO2009034032A1 (de) 2007-09-07 2009-03-19 Oesterwitz Karl-Heinz Erdwärmespeicher mit dampfsperre und verfahren zur verdampfungswärmenutzung im erdwärmespeicher
CN105352176A (zh) * 2015-11-10 2016-02-24 重庆金鑫智慧科技有限公司 可调角度多孔发热体便携暖风机
CN105371486A (zh) * 2015-11-10 2016-03-02 重庆金鑫智慧科技有限公司 多角度多段涡状发热体高效便携暖风机
CN105371485A (zh) * 2015-11-10 2016-03-02 重庆金鑫智慧科技有限公司 可调角度多段发热体便携暖风机
CN110081499A (zh) * 2019-04-23 2019-08-02 单县多米石墨烯科技有限公司 一种发热模块、制作工艺及采暖系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1518791A (en) * 1975-10-06 1978-07-26 Drg Uk Ltd Electric space heaters
US4469936A (en) * 1983-04-22 1984-09-04 Johnson Matthey, Inc. Heating element suitable for electric space heaters
US20030116559A1 (en) * 2000-05-22 2003-06-26 Sung-Don Park Method for producing thin film heating element and heating device using same
DE20308574U1 (de) * 2003-06-02 2003-08-21 Dienstleistungsgruppe GmbH, 99706 Sondershausen Heizkörper für Elektro-Flächenheizkörper

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1518791A (en) * 1975-10-06 1978-07-26 Drg Uk Ltd Electric space heaters
US4469936A (en) * 1983-04-22 1984-09-04 Johnson Matthey, Inc. Heating element suitable for electric space heaters
US20030116559A1 (en) * 2000-05-22 2003-06-26 Sung-Don Park Method for producing thin film heating element and heating device using same
DE20308574U1 (de) * 2003-06-02 2003-08-21 Dienstleistungsgruppe GmbH, 99706 Sondershausen Heizkörper für Elektro-Flächenheizkörper

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007044557A1 (de) 2007-09-07 2009-03-12 Österwitz, Karl-Heinz Erdwärmespeicher mit Dampfsperre, Reservoiren und Befeuchtung für eine Hausenergiezentrale
WO2009034032A1 (de) 2007-09-07 2009-03-19 Oesterwitz Karl-Heinz Erdwärmespeicher mit dampfsperre und verfahren zur verdampfungswärmenutzung im erdwärmespeicher
CN105352176A (zh) * 2015-11-10 2016-02-24 重庆金鑫智慧科技有限公司 可调角度多孔发热体便携暖风机
CN105371486A (zh) * 2015-11-10 2016-03-02 重庆金鑫智慧科技有限公司 多角度多段涡状发热体高效便携暖风机
CN105371485A (zh) * 2015-11-10 2016-03-02 重庆金鑫智慧科技有限公司 可调角度多段发热体便携暖风机
CN105352176B (zh) * 2015-11-10 2017-11-24 重庆金鑫智慧科技有限公司 可调角度多孔发热体便携暖风机
CN105371486B (zh) * 2015-11-10 2017-12-01 重庆金鑫智慧科技有限公司 多角度多段涡状发热体高效便携暖风机
CN105371485B (zh) * 2015-11-10 2017-12-08 重庆金鑫智慧科技有限公司 可调角度多段发热体便携暖风机
CN110081499A (zh) * 2019-04-23 2019-08-02 单县多米石墨烯科技有限公司 一种发热模块、制作工艺及采暖系统

Also Published As

Publication number Publication date
ATE373403T1 (de) 2007-09-15
EP1523223A3 (de) 2005-04-20
EP1523223B1 (de) 2007-09-12
DE502004004930D1 (de) 2007-10-25

Similar Documents

Publication Publication Date Title
DE10311853A1 (de) Scheinwerfer für ein Fahrzeug
EP2913580B1 (de) LED-Streifen, Lampe
EP1523223B1 (de) Systemstrahlungselement und dessen Verwendung
DE20314654U1 (de) Systemstrahlungselement
DE112016004155T5 (de) Fahrzeugstrahlungsheizung
EP2541139A2 (de) LED-Beleuchtungsmodul
DE2844128C2 (de) Mikrowellenofen
WO2014170412A1 (de) Tisch mit heizung
EP3776726B1 (de) Entwärmungsverbesserung einer mobilfunkantenne zum anschluss an zumindest eine basisstation
DE102009029874A1 (de) Beleuchtungsvorrichtung mit einer Mehrzahl von Lichtquellen
CH654159A5 (de) Infrarot-strahlungsanlage mit mehreren, auf der strahlungsseite im wesentlichen ebenen keramischen infrarotstrahlern.
DE20314653U1 (de) Systemstrahlungselement
DE4240104A1 (de) Vorrichtung zum Erwärmen/Trocknen mit Mikrowellen
DE10343859A1 (de) Systemstrahlungselement
DE10343860A1 (de) Systemstrahlungselement und dessen Verwendung
DE3525488C2 (de)
DE102009056904B4 (de) LED-Leuchte
EP2273182B1 (de) Dreidimensionales LED-Trägerelement mit thermischer Leitfähigkeit
DE202022100337U1 (de) Heizelement mit einem Infrarot-Heizmodul
DE102005056382A1 (de) Infrarot-Erwärmungssystem und seine Herstellung
EP1321731B1 (de) Energietransmitter als Bestandteil einer Beschichtungs- und/oder Trockenanlage, insbesondere für eine Lackbeschichtung
DE102017007995A1 (de) Modulares Plattenelement zum Erstellen einer Wandheizung und System zum modularen Erstellen einer Wand aus Wandheizungselementen
DE202008006432U1 (de) Mobile Energiesparheizung
WO1998026222A1 (de) Wärmestrahlendes heizpaneel
EP1699265A2 (de) Primärer Wärmestrahlungserzeuger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

RIC1 Information provided on ipc code assigned before grant

Ipc: 7H 05B 3/26 A

Ipc: 7F 24H 3/00 B

Ipc: 7H 05B 3/00 B

Ipc: 7H 05B 3/32 B

17P Request for examination filed

Effective date: 20050822

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20050922

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502004004930

Country of ref document: DE

Date of ref document: 20071025

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
BERE Be: lapsed

Owner name: OSTERWITZ, KARL-HEINZ

Effective date: 20070930

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071213

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071223

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071212

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

26N No opposition filed

Effective date: 20080613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090226

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070922

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930