EP1520100B1 - Dispositif permettant d'amortir la course de l'aiguille sur des injecteurs de carburant commandes par pression - Google Patents

Dispositif permettant d'amortir la course de l'aiguille sur des injecteurs de carburant commandes par pression Download PDF

Info

Publication number
EP1520100B1
EP1520100B1 EP03720255A EP03720255A EP1520100B1 EP 1520100 B1 EP1520100 B1 EP 1520100B1 EP 03720255 A EP03720255 A EP 03720255A EP 03720255 A EP03720255 A EP 03720255A EP 1520100 B1 EP1520100 B1 EP 1520100B1
Authority
EP
European Patent Office
Prior art keywords
space
pressure
valve member
injection valve
injecting fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03720255A
Other languages
German (de)
English (en)
Other versions
EP1520100A1 (fr
Inventor
Hans-Christoph Magel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1520100A1 publication Critical patent/EP1520100A1/fr
Application granted granted Critical
Publication of EP1520100B1 publication Critical patent/EP1520100B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/02Injectors structurally combined with fuel-injection pumps
    • F02M57/022Injectors structurally combined with fuel-injection pumps characterised by the pump drive
    • F02M57/025Injectors structurally combined with fuel-injection pumps characterised by the pump drive hydraulic, e.g. with pressure amplification
    • F02M57/026Construction details of pressure amplifiers, e.g. fuel passages or check valves arranged in the intensifier piston or head, particular diameter relationships, stop members, arrangement of ports or conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/02Injectors structurally combined with fuel-injection pumps
    • F02M57/022Injectors structurally combined with fuel-injection pumps characterised by the pump drive
    • F02M57/025Injectors structurally combined with fuel-injection pumps characterised by the pump drive hydraulic, e.g. with pressure amplification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/20Closing valves mechanically, e.g. arrangements of springs or weights or permanent magnets; Damping of valve lift
    • F02M61/205Means specially adapted for varying the spring tension or assisting the spring force to close the injection-valve, e.g. with damping of valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/30Fuel-injection apparatus having mechanical parts, the movement of which is damped
    • F02M2200/304Fuel-injection apparatus having mechanical parts, the movement of which is damped using hydraulic means

Definitions

  • both pressure-controlled and stroke-controlled injection systems can be used.
  • fuel injection systems come next pump-injector units, pump-line-nozzle units and storage injection systems are used.
  • Storage injection systems (common rail) advantageously make it possible to adapt the injection pressure to the load and speed of the internal combustion engine. In order to achieve high specific performance and to reduce the emissions of the internal combustion engine, the highest possible injection pressure is generally required.
  • EP 0 562 046 B1 discloses a control and valve arrangement with damping for an electronically controlled injection unit.
  • the actuation and valve assembly for a hydraulic unit comprises an electrically energizable electromagnet having a fixed stator and a movable armature.
  • the anchor has a first and a second surface.
  • the first and second surfaces of the armature define first and second cavities, with the first surface of the armature facing the stator.
  • the valve is capable of delivering a hydraulic actuating fluid to the injector from a sump.
  • a damping fluid can be collected there with respect to one of the cavities of the Elektromagnetanordaung or be discharged from there again.
  • DE 10218635 relates to a fuel injection device. This is used on an internal combustion engine.
  • the combustion chambers of the internal combustion engine are supplied with fuel via fuel injectors.
  • the fuel injectors are acted upon by a high pressure source;
  • the fuel injection device according to DE 10218635 comprises a pressure booster which has a movable pressure booster piston which separates a space which can be connected to the high-pressure source from a high-pressure space connected to the fuel injector.
  • the fuel pressure in the high pressure chamber can be varied by filling a back space of the pressure booster with fuel or by emptying this back space of fuel.
  • the fuel injector comprises a movable closing piston for opening or closing the injection openings facing the combustion chamber.
  • the closing piston protrudes into a closing pressure chamber, so that it can be acted upon by fuel pressure. As a result, a force acting on the closing piston in the closing direction is generated.
  • the closing pressure chamber and another space are formed by a common working space, wherein all portions of the working space are permanently interconnected to exchange fuel.
  • US 5803370 discloses injection valves with a damping element with an overflow channel.
  • EP 135872 describes an injection nozzle with a damping element whose overflow channel opens into the pressure chamber.
  • an injection valve member such as e.g. dampen a nozzle needle
  • Opening at a reduced opening speed of an injection valve member greatly improves the small-capacity capability of a fuel injector. If short injection distances can be achieved, very small quantities can also be produced in the context of multiple pilot injections into the combustion chamber of an internal combustion engine.
  • a quick closure of the injection valve member has a favorable influence on the emission values of a self-igniting internal combustion engine, since in an advanced stage of the combustion no more fuel gets into the combustion chamber of the internal combustion engine.
  • the fuel in the combustion chamber can be completely converted; Inadmissibly high HC values are suppressed as well as soot formation by a rapid closing of the injection valve member.
  • a quick needle closure also favors one flat course of the quantitative characteristics of the fuel to be injected into the combustion chamber during balistic operation of the injection valve member, ie during the lifting movement between its upper stop and its combustion chamber side seat.
  • a flat course of the set characteristic also increases the Zuticiansgenaumaschine of the fuel to be introduced into the combustion chamber considerably, since deviations in terms Actuation of the injection valve member do not have a strong change in the amount of fuel to be injected.
  • deviations with regard to the activation of the injection valve member in the case of steeply flowing quantity characteristics lead to these deviations being accompanied by a sharp increase in the quantity of fuel injected into the combustion chamber of a self-igniting internal combustion engine.
  • the formation of the proposed device for damping an injection valve member with a further filling path is advantageous.
  • the device proposed according to the invention is used on a pressure-intensified fuel injector, the result is an injection system with a high injection pressure, a good hydraulic efficiency and a greatly improved minimum quantity capability.
  • the proposed device for the stroke damping of an injection valve member is further to other pressure-controlled injection systems, such. Can be used on pump-nozzle units, pump-line-nozzle units and distributor injection pumps as well as on common-rail systems with fuel injectors without pressure booster.
  • FIG. 1 shows a device for the stroke damping of an injection valve member with a damping element, which comprises a filling path for a hydraulic damping chamber.
  • the description of the device for damping the stroke movement of an injection valve member is based on a fuel injector with pressure booster.
  • the device for damping the lifting movement in particular with regard to a reduction of its opening speed, can also be applied to other fuel injection systems such as pump-nozzle systems and to pump-line-nozzle systems, Distributor injection pumps as well as on Hoch horrpricherein injection systems (common rail) use injection systems whose fuel injector include no pressure booster.
  • the pressure-translated fuel injector 1 illustrated in FIG. 1 is supplied with high-pressure fuel via a high-pressure reservoir 2 (common rail), which is shown only schematically here.
  • a supply line 9 extends to a pressure booster 5, which is integrated into the fuel injector 1 according to the embodiment shown in Figure 1 variant.
  • the pressure booster 5 is enclosed by an injector body 3 of the fuel injector 1.
  • the fuel injector 1 further comprises a metering valve 6, which is formed in the embodiment variant of the Kraflstoffinjektors shown in Figure 1 as a 3/2-way valve. Instead of a 3/2-way valve shown here schematically, a 2/2-way valve can also be used.
  • the metering valve 6 can be designed both as a solenoid valve and actuated by a piezoelectric actuator. In addition, the metering valve 6 can also be designed as a servo valve or as a direct-switching valve.
  • a nozzle body 4 is formed, which receives an injection valve member 34, via which the fuel under high pressure is injected into the combustion chamber 7 of a self-igniting internal combustion engine.
  • the injection valve member 34 may be formed as a one-piece or as a multi-part configured nozzle needle. From the metering valve 6, a low-pressure side return, denoted by reference numeral 8, extends to a fuel reservoir (not shown in FIG. 1), such as the fuel tank of a motor vehicle.
  • the via the supply line 9, in which a pressure pulsations damping throttle body 42 may be integrated, via the high-pressure accumulator 2 (common rail) acted upon pressure booster 5 comprises a working space 10, in which the supply line 9 opens
  • the pressure booster 5 further comprises a control chamber 11. Der Working space 10 and the control chamber 11 of the pressure booster 5 are separated by a piston unit 12.
  • the piston unit 12 comprises a first partial piston 13 and a second partial piston 14.
  • the lower end side 14.1 of the second partial piston 14 acts on a compression space 15 of the pressure booster 5.
  • a return spring element 17 is accommodated.
  • the piston unit 12 of the pressure booster 5 can be designed both as a one-piece component and - as shown in Figure 1 - as a multi-part component.
  • the diameter of the first part piston 13 is designed in a larger diameter than the diameter of the second part piston 14, whose lower end face 14.1 limits the compression space 15 of the pressure booster 5.
  • a supply line 19 extends to the metering valve 6, which is in the open position shown in Figure 1, so that from the working space 10 via the supply line 19 to the metering valve 6 and a control line 20 fuel in the control chamber 11 of the pressure booster 5 flows.
  • the pressure chamber 15 of the pressure booster 5 which can be pressurized via the second partial piston 14 communicates with a nozzle chamber 22 formed in the nozzle body 4 of the fuel injector 1 via a connecting line 21.
  • the nozzle chamber 22 surrounds the injection valve member 34, which is preferably designed as a nozzle needle, in the region of a pressure shoulder 37 formed on the outer circumference of the injection valve member 34. From the nozzle chamber 22, an annular gap 38 extends in the direction of the tip 39 of the injection valve member. Along this annular gap 38, the under very high pressure fuel flows at the nozzle chamber 22 to the combustion chamber side seat 40 of the injection valve member 34.
  • injection openings 39 are formed in the combustion chamber 7 of a self-igniting internal combustion engine.
  • the injection openings 39 are preferably designed as concentric hole circles, so that a fine atomization of the introduced into the combustion chamber 7 fuel is ensured.
  • a further hydraulic chamber 23 is assigned.
  • the further hydraulic chamber 23 accommodates both a first spring element 32 and a second spring element 33.
  • the identified by reference numeral 33 second spring element acts on an end face 35 of the injection valve member.
  • the second spring element 33 is supported on the upper side of the further hydraulic space 23 within the nozzle body 4 of the fuel injector 1.
  • a damping element 29 is accommodated, which can be formed, for example, in the form of a piston.
  • the damping element 29 defines with its end face 35 of the injection valve member 34 facing away from a damping chamber 28.
  • the damping element 29 is independent of the stroke of the injection valve member 34 to this movable.
  • the damping element 29 comprises on its end facing away from the damping chamber 28, an annular surface 31.
  • the first spring element 32 is supported, which with its opposite end, analogous to the second spring element 33, on the ceiling of further hydraulic space 23 within the nozzle body 4 is supported.
  • the damping element 29 and the end face 35 rest against each other in the further hydraulic space 23 along a parting line 36.
  • the surfaces forming the parting line 36 ie the underside of the annular surface 31 and the end face 35 in the upper region of the injection valve member 34, are designed as plane surfaces.
  • a Befiillpfad 26 From the further hydraulic chamber 23 extends a Befiillpfad 26, in which a check valve 27 is arranged to the compression chamber 15 of the pressure booster 5, which can be filled by the Behellpfad 26 with fuel.
  • the additional hydraulic space 23 is connected via an overflow line 24 to the control chamber 11 of the pressure booster 5.
  • the metering valve 6 is not activated and there is no injection at the combustion chamber end of the injection valve member 34 into the combustion chamber 7 of the self-igniting internal combustion engine.
  • the pressure prevailing in the interior of the high-pressure storage chamber 2 (common rail) is present via the supply line 9 in the working space 10 of the pressure booster 5.
  • the pressure prevailing in the working chamber 10 via the supply line 19 to the metering valve 6 and via this via control line 20 in the control chamber 11 of the pressure booster 5.
  • the rail pressure Via the Beflfllpfad 26 of the therein recorded check valve 27 is the rail pressure, i.
  • the metering of the fuel is carried out by a discharge of the control chamber 11 of the pressure booster 5 via an activation, i. a control of the example designed as a 3/2-way valve metering valve 6.
  • the control chamber 11 is by an activation of the metering valve 6 in its closed position of the system pressure supply, i. separated from the high-pressure accumulator 2 and from the supply line 19 to the metering valve 6 and connected to the low-pressure side return 8.
  • the pressure in the control chamber 11, which is also referred to as the back space decreases, whereby the pressure booster 5 is activated and the pressure in the compression chamber 15 and thus due to the connecting line 21 in the pressure chamber 22 increases.
  • the injection valve member 34 opens pressure controlled and are the injection ports 39 at the combustion chamber side tip 39 of the injection valve member 34 free.
  • its end face 35 which bears against the annular surface 31 of the damping element 29 along the butt joint 36, pushes it upward, so that its front side facing away from the end face 35 of the injection valve member 34 enters the damping chamber 28.
  • the Kraflstoflkolumen contained in the damping chamber 28 flows through the overflow passage 30 containing a throttle point in the other hydraulic space 23, Due to this displacement is a counteracting too fast opening of the injection valve member 34 counteracting damping force. This results in a delay in the opening speed of the injection valve member 34.
  • the needle opening speed can be on the interpretation, ie vary the flow cross-section of the throttle point contained in the overflow 30.
  • the fuel in the compression chamber 15 of the pressure booster is compressed.
  • the compressed in the compression chamber 15 by retracting the second piston part 14 with its end face 14.1 in the compression chamber 15 fuel flows via the connecting line 21 into the pressure chamber 22 in the injector body 4 and from this the annular gap 38 along toward the open injection ports 39 and atomized into the combustion chamber 7 of the self-igniting internal combustion engine.
  • control chamber 11 of the pressure booster 5 is again separated from the low-pressure side return 8 and connected to the supply line 19 to the metering valve 6 on renewed activation of the metering valve 6 in its switching position shown in Figure 1, whereby the control chamber 11 of the pressure booster 5 again with the in the high-pressure reservoir 2 (common rail) prevailing pressure level is applied.
  • the pressure level prevailing in the interior of the high-pressure reservoir 2 builds up both in the control chamber 11 and in the further hydraulic chamber 23.
  • the retracted with its end face 14.1 in the compression chamber 15 of the pressure booster 5 second piston 14 is durckausge réelle due to the pressurization of the control chamber 11, whereby the pressure in the compression chamber 15 and thus in the pressure chamber 22 decreases.
  • the injection valve member 34 Since in the other hydraulic space 23, due to the connection of the control chamber 11 with the other hydraulic chamber 23 via the overflow 24, also the pressure prevailing in the interior of the high-pressure accumulator 2 pressure level is present, the injection valve member 34 is now hydraulically balanced and is characterized by the further hydraulic Room 23 arranged, the end face 35 of the injection valve member 34 acting spring closed and pressed into the combustion chamber side seat 40. As a result, the injection of fuel via the injection openings 39 into the combustion chamber 7 of the internal combustion engine is terminated. With a suitable hydraulic design, the spring acting on the face 35 of the injection valve member 34, i. The second spring element 33 may also be dispensed with, since then during the closing of the injection valve member 34, i. during its retraction into the combustion chamber side seat 40, a hydraulic closing force can be generated.
  • the injection valve member 35 can when retracting into the combustion chamber-side seat 40, ie when closing on the parting line 36 of the annular surface 31 of the damping element 29 separate. Thereby, a fast and muted closing of the injection valve member 34 is ensured in its the injection ports 39 to the combustion chamber 7 closing position.
  • a throttle body 25 To reduce the closing speed of the injection valve member 35th can be provided in the overflow 24 between the control chamber 11 of the pressure booster and the other hydraulic space 23, a throttle body 25.
  • the piston unit 12 of the pressure booster is returned by the return spring 17 to its original position, with a filling of the compression chamber 15 via the other hydraulic space 23 by means of the already mentioned Be Shellpfades 26 can be carried out with integrated check valve 27.
  • the preferably designed as a damping piston damping element 29 is returned by the annular surface 31 acting on first spring element 32 in its initial position, wherein a refilling of the damping chamber 28 via the overflow channel 30 with throttle point from the other hydraulic chamber 23 takes place.
  • Figure 2 shows an embodiment according to the invention of a device for stroke damping of an injection valve member with two provided in the hydraulic damping element Befiillpfaden.
  • FIG. 2 differs from the embodiment variant shown in FIG. 1 in that the damping chamber 28 in the injector of the nozzle body 4 can be filled via a further, larger-dimensioned filling channel 45.
  • the damping element 29 on its end face 35 of the injection valve member 34 comprises a sealing surface 43.
  • the sealing surface 43 can be provided with a convex contour 44 as shown in FIG.
  • the that Damping element 29 according to Figure 2 passing through flow channel 45 opens on the one hand on the end face, which limits the damping chamber 28 and the other part on the sealing surface 43 with a spherical contour 44 below the annular surface 31.
  • the damping element 29 coaxial with its line of symmetry passing overflow 45 includes a first channel section 45.1 and a second channel section 45.2.
  • the first channel section 45.1 is in a reduced diameter compared to the second further channel section 45.2 formed, whereby the first channel section 45.1 may have a throttle function. This bouncing of the damping element (29) can be prevented.
  • damping element 29 shown in Figure 2 Analogously to damping element 29 shown in Figure 1, the damping element shown in Figure 2 is acted upon by a first spring element 32, which is supported on the ceiling of the other hydraulic space 23 in the nozzle body 4 on the one hand and on the inside of the annular surface 31 on the damping element 29 on the other.
  • the injection valve member 34 When opening the injection valve member 34 by a pressure build-up in the pressure chamber 22, caused by inflow of fuel from the compression chamber 15 via the connecting line 21 into the pressure chamber 22 and acting on the pressure shoulder 37 of the injection valve member 34 compressive force, the injection valve member 34 moves in the opening direction in the other hydraulic space 23 a.
  • the sealing surface 43 is closed at the bottom of the annular surface 31.
  • the flow channel 45.1 is closed in the interior of the damping element 29.
  • the displaced from the damping chamber 28 fuel can flow only through the second channel section 45.2 and a wall 47 of the damping element 29 passing through overflow with throttle body 30 in the other hydraulic chamber 23. In this way, the opening speed of the injection valve member 34 is limited and depends on the configuration of the orifice, i.
  • the overflow 24 may be connected instead of the control chamber 11 of the pressure booster 5 with its working space 10. Furthermore, filling of the compression space 15 of the pressure booster via the filling path 26 instead of space 23 can also be realized from the control space 11 or the working space 10 of the pressure booster 5.
  • the representation and description of the device proposed according to the invention for damping the opening speed of an injection valve member 34, which is preferably configured as a nozzle needle, has been described above with reference to a pressure-intensified fuel injector 1 with pressure converter 5.
  • the inventively proposed device with two differently configured Be Glallpfaden 30 and 45 can also be used on other pressure-controlled fuel injection components such as pump-nozzle units and distributor injection systems.
  • the inventively proposed solution for damping the opening speed of an injection valve member 34 while maintaining its faster closing speed in a combustion chamber side seat 40 can also be used on such fuel injectors 1 of storage injection systems that are designed without pressure booster 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Claims (19)

  1. Dispositif pour l'injection de carburant dans une chambre de combustion (7) d'un moteur à combustion interne, dans lequel un injecteur de carburant (1) peut être alimenté en carburant se trouvant sous haute pression par une source haute pression (2) et actionné par une soupape de dosage (6), et une aiguille d'injecteur (34) entourée par une chambre de pression (22), est soumise à une force de fermeture dans la direction de fermeture, l'aiguille d'injecteur (34) étant associée à un élément d'amortissement (29) mobile indépendant de l'aiguille d'injecteur et qui délimite une chambre d'amortissement (28) en ayant au moins un canal de débordement (30) pour le raccordement de la chambre d'amortissement (28) avec une autre chambre hydraulique (23),
    caractérisé en ce que
    l'élément d'amortissement est pourvu d'un autre chemin de remplissage (45), l'élément d'amortissement (29) et l'aiguille d'injecteur (34) sont disposés de telle manière qu'ils puissent s'appliquer l'un sur l'autre pendant le fonctionnement, et l'autre chemin de remplissage est un canal d'écoulement traversant (45) qui débouche dans la chambre d'amortissement (28) et sur une face (43) de l'élément d'amortissement opposée à une face frontale de l'aiguille d'injecteur, le canal d'écoulement pouvant être fermé par la face frontale de l'aiguille d'injecteur.
  2. Dispositif pour l'injection de carburant selon la revendication 1,
    caractérisé en ce que
    l'élément d'amortissement (29) délimitant la chambre d'amortissement (28) est un piston d'amortissement entouré par l'autre chambre hydraulique (23).
  3. Dispositif pour l'injection de carburant selon la revendication 1,
    caractérisé en ce que
    l'élément d'amortissement (29) est précontraint par un premier élément de ressort (32), qui s'appuie sur une face annulaire (31) adjacente à l'aiguille d'injecteur (34).
  4. Dispositif pour l'injection de carburant selon la revendication 1,
    caractérisé en ce que
    la face de l'élément d'amortissement (29) opposée à la face frontale (35) de l'aiguille d'injecteur (34) forme une face d'étanchéité.
  5. Dispositif pour l'injection de carburant selon la revendication 1,
    caractérisé en ce que
    la face de l'élément d'amortissement (29) opposée à la face frontale (35) de l'aiguille d'injecteur (34) présente, comme face d'étanchéité (43), un contour bombé.
  6. Dispositif pour l'injection de carburant selon la revendication 1,
    caractérisé en ce que
    l'élément d'amortissement (29) présente un canal de débordement (30) comportant un point d'étranglement.
  7. Dispositif pour l'injection de carburant selon la revendication 6,
    caractérisé en ce que
    le canal de débordement (30) débouche dans l'autre chambre hydraulique (23) sur une face délimitant l'élément d'amortissement (29) dans la chambre d'amortissement (28) et sur la surface extérieure de l'élément d'amortissement (29).
  8. Dispositif pour l'injection de carburant selon la revendication 1,
    caractérisé en ce que
    l'élément d'amortissement (29) présente un canal d'écoulement (30) formé dans une paroi (47).
  9. Dispositif pour l'injection de carburant selon la revendication 1,
    caractérisé en ce que
    le canal d'écoulement traversant (45) comprend un premier et un deuxième segment de canal (45.1, 45.2) avec des sections d'écoulement différentes.
  10. Dispositif pour l'injection de carburant selon la revendication 9,
    caractérisé en ce que
    le premier segment de canal (45.1) du canal d'écoulement traversant (45) sert de point d'étranglement.
  11. Dispositif pour l'injection de carburant selon la revendication 1,
    caractérisé en ce qu'
    un deuxième élément de ressort (33) logé dans l'autre chambre hydraulique (23), sollicite l'aiguille d'injecteur (34) dans la direction de fermeture et la pousse dans son siège (40) côté chambre de combustion.
  12. Dispositif pour l'injection de carburant selon la revendication 1,
    caractérisé en ce que
    la chambre de pression (22) entourant l'aiguille d'injecteur (34) est alimentée en carburant se trouvant sous haute pression par une conduite de raccordement (21) et une chambre de compression (15) d'un convertisseur de pression (5), dans lequel la chambre de compression (5) est de son côté sollicitée par une unité de piston (12).
  13. Dispositif pour l'injection de carburant selon la revendication 12,
    caractérisé en ce que
    l'unité de piston (12) comprend un premier piston partiel (13) et un deuxième piston partiel (14) et sépare l'une de l'autre une chambre de travail (10) et une chambre de commande (11) pouvant être raccordée à un côté basse pression (8).
  14. Dispositif pour l'injection de carburant selon la revendication 13,
    caractérisé en ce qu'
    une variation de pression dans la chambre de commande (11) du convertisseur de pression (5) provoque une variation de pression dans une chambre de compression (15).
  15. Dispositif pour l'injection de carburant selon la revendication 14,
    caractérisé en ce que
    lorsque la soupape de dosage (6) est désactivée, il existe une communication d'écoulement de la chambre d'accumulation de haute pression (2) à l'autre chambre hydraulique (23).
  16. Dispositif pour l'injection de carburant selon la revendication 12,
    caractérisé en ce que
    lorsque la soupape de dosage (6) est désactivée, il existe une communication d'écoulement de la chambre d'accumulation de haute pression (2) à la chambre de pression (22).
  17. Dispositif pour l'injection de carburant selon la revendication 13,
    caractérisé en ce que
    la chambre de compression (15) peut être remplie par un chemin de remplissage (26) dérivé de l'autre chambre hydraulique (23) et l'autre chambre hydraulique (23) est raccordée à la chambre de commande (11) du convertisseur de pression (5) par une conduite de débordement (24).
  18. Dispositif pour l'injection de carburant selon la revendication 17,
    caractérisé en ce que
    le chemin de remplissage (26) vers la chambre de compression (15) comporte une soupape anti-retour (27).
  19. Dispositif pour l'injection de carburant selon la revendication 17,
    caractérisé en ce que
    la conduite de débordement (24) entre la chambre de commande (11) du convertisseur de pression (5) et l'autre chambre hydraulique (23) comporte un point d'étranglement (25).
EP03720255A 2002-06-29 2003-04-03 Dispositif permettant d'amortir la course de l'aiguille sur des injecteurs de carburant commandes par pression Expired - Lifetime EP1520100B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10229415 2002-06-29
DE10229415A DE10229415A1 (de) 2002-06-29 2002-06-29 Einrichtung zur Nadelhubdämpfung an druckgesteuerten Kraftstoffinjektoren
PCT/DE2003/001101 WO2004003377A1 (fr) 2002-06-29 2003-04-03 Dispositif permettant d'amortir la course de l'aiguille sur des injecteurs de carburant commandes par pression

Publications (2)

Publication Number Publication Date
EP1520100A1 EP1520100A1 (fr) 2005-04-06
EP1520100B1 true EP1520100B1 (fr) 2006-07-26

Family

ID=29796048

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03720255A Expired - Lifetime EP1520100B1 (fr) 2002-06-29 2003-04-03 Dispositif permettant d'amortir la course de l'aiguille sur des injecteurs de carburant commandes par pression

Country Status (5)

Country Link
US (1) US7273185B2 (fr)
EP (1) EP1520100B1 (fr)
JP (1) JP4295211B2 (fr)
DE (2) DE10229415A1 (fr)
WO (1) WO2004003377A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230007936A1 (en) * 2019-12-09 2023-01-12 Rklab Ag Injector apparatus

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10329732A1 (de) * 2003-07-02 2005-02-03 Robert Bosch Gmbh Kraftstoffeinspritzsystem für Brennkraftmaschinen
DE102004010760A1 (de) * 2004-03-05 2005-09-22 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen mit Nadelhubdämpfung
DE102004017305A1 (de) * 2004-04-08 2005-10-27 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen mit direkt ansteuerbaren Düsennadeln
DE102004028521A1 (de) 2004-06-11 2005-12-29 Robert Bosch Gmbh Kraftstoffinjektor mit mehrteiligem Einspritzventilglied und mit Druckverstärker
DE102004035293A1 (de) * 2004-07-21 2006-02-16 Robert Bosch Gmbh Kraftstoffinjektor mit Nadelhubdämpfung
DE102004048322A1 (de) 2004-10-05 2006-04-06 Robert Bosch Gmbh Kraftstoffinjektor
DE102004053274A1 (de) 2004-11-04 2006-05-11 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung
DE102004058689A1 (de) * 2004-12-06 2006-06-14 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung
DE102006009659A1 (de) * 2005-07-25 2007-02-01 Robert Bosch Gmbh Kraftstoff-Einspritzvorrichtung für eine Brennkraftmaschine mit Kraftstoff-Direkteinspritzung
DE102006026877A1 (de) * 2006-06-09 2007-12-13 Robert Bosch Gmbh Kraftstoff-Einspritzvorrichtung für eine Brennkraftmaschine
DE102007001363A1 (de) * 2007-01-09 2008-07-10 Robert Bosch Gmbh Injektor zum Einspritzen von Kraftstoff in Brennräume von Brennkraftmaschinen
JP4579997B2 (ja) * 2008-03-25 2010-11-10 株式会社日本自動車部品総合研究所 調圧逆止弁及びそれを備えた燃料噴射装置。
EP2295784B1 (fr) * 2009-08-26 2012-02-22 Delphi Technologies Holding S.à.r.l. Injecteur à carburant
GB2559598B (en) * 2017-02-10 2020-04-08 Delphi Tech Ip Ltd Fuel injector nozzle assembly
US11698043B1 (en) 2022-03-09 2023-07-11 Caterpillar Inc. Fuel injector for fuel system having damping adjustment valve

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4205637A (en) * 1976-12-13 1980-06-03 Toyota Jidosha Kogyo Kabushiki Kaisha Electronic fuel injection system for an internal combustion engine having electromagnetic valves and a fuel damper upstream thereof
DE3332808A1 (de) * 1983-09-12 1985-03-28 Robert Bosch Gmbh, 7000 Stuttgart Kraftstoff-einspritzduese fuer brennkraftmaschinen
DE19546033A1 (de) * 1995-12-09 1997-06-12 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen
US5752659A (en) * 1996-05-07 1998-05-19 Caterpillar Inc. Direct operated velocity controlled nozzle valve for a fluid injector
DE19752496A1 (de) * 1997-11-27 1999-06-02 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen
US6543706B1 (en) * 1999-02-26 2003-04-08 Diesel Technology Company Fuel injection nozzle for an internal combustion engine
DE19910970A1 (de) * 1999-03-12 2000-09-28 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung
US6793161B1 (en) * 2000-11-17 2004-09-21 Isuzu Motors Limited Needle lift damper device of injector for fuel injection and needle lift damping method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230007936A1 (en) * 2019-12-09 2023-01-12 Rklab Ag Injector apparatus

Also Published As

Publication number Publication date
DE50304372D1 (de) 2006-09-07
DE10229415A1 (de) 2004-01-29
US20060163378A1 (en) 2006-07-27
EP1520100A1 (fr) 2005-04-06
WO2004003377A1 (fr) 2004-01-08
JP2005531715A (ja) 2005-10-20
JP4295211B2 (ja) 2009-07-15
US7273185B2 (en) 2007-09-25

Similar Documents

Publication Publication Date Title
EP1520096B1 (fr) Systeme a rampe commune comprenant une buse variable et un systeme multiplicateur de pression
EP1520097B1 (fr) Dispositif d'amortissement de levee de l'aiguille d'un injecteur de carburant
EP1520100B1 (fr) Dispositif permettant d'amortir la course de l'aiguille sur des injecteurs de carburant commandes par pression
EP1520099B1 (fr) Injecteur de carburant a multiplicateur de pression a reduction de pression rapide lors de l'injection
WO2006008200A1 (fr) Injecteur de carburant a commande polyetagee directe de l'element de soupape d'injection
EP1520101B1 (fr) Injecteur de carburant a multiplicateur de pression pour injection multiple
EP1584813A2 (fr) Injecteur pour moteur à combustion avec une aiguille d'injection contrôlée directement
EP1613856A1 (fr) Injecteur de carburant comportant un transmetteur de pression commande par une soupape asservie
EP1554488B1 (fr) Dispositif d'injection de carburant a pression multipliee, pourvu d'une conduite de commande interne
EP1605157A1 (fr) Injecteur de carburant doté d'un élément de soupape d'injection en plusieurs parties et d'un amplificateur de pression
EP1520095B1 (fr) Commande d'un multiplicateur de pression par le mouvement d'un element d'injecteur
WO2005015002A1 (fr) Soupape de commande conçue pour un injecteur de carburant comprenant un dispositif multiplicateur de pression
EP2156050B1 (fr) Système d'amplification de pression pour au moins un injecteur de carburant
EP1872008B1 (fr) Injecteur de carburant s'ouvrant a deux niveaux
EP2226494A1 (fr) Injecteur de carburant doté d'un actionneur piézoélectrique et d'un coupleur hydraulique
WO2000050764A1 (fr) Mecanisme de regulation permettant de commander une augmentation de pression de carburant, destine a un injecteur de carburant
EP1334271B1 (fr) Injecteur commande par course/et pression et pourvu d'un double piston
WO2003074865A1 (fr) Systeme pour moduler en pression le comportement d'injection
DE10315489B3 (de) Kraftstoffinjektor mit Druckübersetzer und in ein Düsenmodul integriertem Dämpfungskolben
EP1338790B1 (fr) Dispositif d'injection de combustible dont le bruit est optimisé
EP1563183B1 (fr) Multiplicateur de pression dont l'amortissement depend de la course
WO2007009641A1 (fr) Injecteur de carburant
DE102008002526A1 (de) Kraftstoff-Injektor
DE102005029805A1 (de) Kraftstoffinjektor mit Verzögerungseinrichtung zur Verlängerung der Druckverstärkungsphase

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050131

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20050413

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060726

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50304372

Country of ref document: DE

Date of ref document: 20060907

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20061101

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070427

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090420

Year of fee payment: 7

Ref country code: IT

Payment date: 20090429

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090424

Year of fee payment: 7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100403

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100403

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140626

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50304372

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151103