EP1513634A2 - Verfahren zur verringerung der korrosivität von kühl- oder prozesswasser - Google Patents

Verfahren zur verringerung der korrosivität von kühl- oder prozesswasser

Info

Publication number
EP1513634A2
EP1513634A2 EP03735588A EP03735588A EP1513634A2 EP 1513634 A2 EP1513634 A2 EP 1513634A2 EP 03735588 A EP03735588 A EP 03735588A EP 03735588 A EP03735588 A EP 03735588A EP 1513634 A2 EP1513634 A2 EP 1513634A2
Authority
EP
European Patent Office
Prior art keywords
cooling
water
process water
soluble salt
buffering effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03735588A
Other languages
English (en)
French (fr)
Other versions
EP1513634B1 (de
Inventor
Wolfgang Hater
Ulrich Kiedrowicz
Gerd Grelewitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP1513634A2 publication Critical patent/EP1513634A2/de
Application granted granted Critical
Publication of EP1513634B1 publication Critical patent/EP1513634B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • B22D11/1245Accessories for subsequent treating or working cast stock in situ for cooling using specific cooling agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/56Treatment of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/68Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous solutions with pH between 6 and 8

Definitions

  • the invention includes a method for reducing corrosion in cooling and process water, which can lead to an entry of acids into the system, e.g. B. in continuous casting plants of the steel industry.
  • the entry of silicon tetrafluoride and HF in the spray zones resulting from fluoride burn-off of the casting powder leads to a drop in the pH value in the spray water and to corrosion of system parts.
  • the object of the invention was to provide an effective method for reducing corrosion without having the disadvantages of the known methods.
  • a method should be made available which is not very critical with regard to a pH increase and at the same time allows a quick adaptation to changing operating conditions.
  • the invention relates to a method for reducing the corrosiveness of cooling or process water, in which there is a lowering of the pH due to an entry of acids, characterized in that at least one water-soluble salt with a buffering effect is added to the cooling or process water added.
  • water-soluble is understood to mean that at least 1 g of the salt dissolves in 1 liter of water at 20 ° C.
  • the water-soluble salt with a buffering effect is preferably used in the form of an aqueous solution, since this can simply be metered in via metering pumps.
  • the cooling or process water in the reservoir and in the piping system is at least 5 times as large, preferably at least 10 times as large and in particular at least 20 times as large as the amount of cooling or process water in the work area.
  • the method is particularly suitable for such a device.
  • the method can also be carried out in such a way that the cooling or process water is conducted in a continuous system which comprises a piping system and a working area.
  • the cooling or process water is not circulated, but is drained off after a single use.
  • “Working area” is understood to mean that area of the device in which the cooling or process water has its technically intended effect. This can be, for example, the area in which the cooling or process water exchanges heat or substances with the ambient air or with other substrates
  • it can be a cooling device in which the cooling or process water absorbs heat from this heat by direct or indirect contact with a medium to be cooled.An example of this is the evaporation zone of a cooling tower, but this can also be an area act by bringing the cooling or process water into contact with warm substrate surfaces in order to cool them, for example in the case of continuous casting plants in the steel industry, where the cooling or process water is sprayed onto metal surfaces to be cooled.
  • the cooling or process water In the work area, the cooling or process water usually not only comes into contact with the intended substrate, but also with the ambient air. Therefore, the cooling or process water in this area absorbs foreign matter either directly from the substrate surface or from the ambient air. These can be gaseous, solid or liquid in nature. This chemical absorption changes the chemical composition of the cooling or process water. In the example given above, the entry of acidic substances leads to a drop in the pH value in the cooling or process water. As a result, its corrosiveness to the materials of the device and possibly also to the substrate is undesirably increased.
  • the drop in pH is counteracted by metering a water-soluble salt with a buffering effect into the cooling or process water.
  • a water-soluble salt is buffered Effect metered into the pipe system at a point that is seen in the flow direction of the cooling or process water in front of the work area. Accordingly, it is not necessary to change the chemical composition of the entire cooling or process water, the main amount of which is in the reservoir, by adding the salt with a buffering effect. Rather, you only change the composition of that part of the cooling or process water that subsequently enters into a mass exchange with the environment in the work area.
  • the water-soluble salt with a buffering effect is dosed, based on experience, in proportion to the amount of water that flows through the work area. For example, per m 3 of cooling or process water that flows through the work area, a quantity of salt with a buffering effect determined by experience can be metered in. Accordingly, one embodiment of the method according to the invention is that the water-soluble salt with a buffering effect is metered in as a function of the amount of cooling or process water which flows through the working area within a predetermined time interval.
  • the dosage amount of the salt with a buffering effect can be made dependent on the currently determined need. This can apply to the entire addition of the salt with a buffering effect. However, one can also proceed in such a way that a basic amount of salt with a buffering effect is metered in proportion to the amount and additionally a fine metering is carried out on the basis of the currently determined need.
  • the procedure is preferably such that the value of at least one guide variable in the cooling or process water is measured continuously or discontinuously and the water-soluble salt with a buffering action is metered in as a function of the value of the guide variable.
  • the value of the guide variable is expediently measured either in the work area itself, in a sample of the cooling or process water taken in the work area or in that part of the line system which is located behind the work area in the direction of flow of the cooling or process water.
  • a sample can be taken in the work area by either draining off part of the cooling or process water and discarding it after measuring the guide variable or by returning it to the work area or the pipe system.
  • the guide variable can be selected, for example, from the pH value, the fluoride ion concentration and the acid capacity of the cooling or process water.
  • the water-soluble salt with a buffering effect is added when the pH value falls below a predetermined threshold value.
  • This threshold value to be determined depending on the material properties of the device and / or the substrate can be, for example, in the range from 4 to 7, in particular from 5 to 6. If the value falls below the threshold value, either salt with a buffering effect is added until the threshold value is exceeded again, or an amount of salt with a buffering effect is added, which depends on the difference between the threshold value and the pH actually measured.
  • the fluoride ion concentration can be selected as the guide variable. As mentioned in the introduction, this is the case, for example, with continuous casting plants in the steel industry.
  • the acid input is then proportional to the increase in the fluoride ion concentration.
  • the water-soluble salt with a buffering effect can be metered in if the fluoride ion concentration exceeds a predetermined threshold value, which can be, for example, in the range from 40 to 300 mg / 1, in particular in the range from 60 to 200 mg / 1. In this case, it is particularly advantageous to determine the deviation of the fluoride ion concentration from the predetermined threshold value and to add the salt with a buffering effect depending on the amount of this deviation.
  • the acid capacity of the cooling or process water is selected as the guide variable. This is defined by the amount (in millimoles) of strong monobasic acid that has to be added to one liter of the water in order to Lower the value to 4.3. It is expressed in millimoles of acid added per liter of water.
  • the water-soluble salt with a buffering effect is metered in when the acid capacity falls below a predetermined threshold. This can be, for example, in the range from 0.1 to 1 millimole / l, in particular from 0.3 to 0.7 millimole / l.
  • the proportionality factor is preferably determined empirically again.
  • any water-soluble salt (as defined above) that is known to have a buffering effect can be selected as the salt with a buffering effect.
  • the water-soluble salt with a buffering effect can be selected from hydrogen carbonates, carbonates, borates, orthophosphates and polyphosphates.
  • Such salts are preferably selected which are selected from alkali, alkaline earth and ammonium salts, preferably from sodium salts for reasons of cost and the environment.
  • preferred salts with a buffering action are, in particular, alkali or ammonium salts, especially the sodium salts, with hydrogen carbonate, carbonate, borate, orthophosphate or polyphosphate ions.
  • the method according to the invention is particularly suitable for reducing the corrosiveness of cooling or process water from continuous casting plants in the steel industry.
  • a preferred embodiment of the invention consists in additionally preventing the deposition of calcium fluoride in the cooling or process water by additionally adding to the cooling or process water at least one further water-soluble salt which contains at least one of the following ions: magnesium cations, cations trivalent metals, anions of oligo- or polyphosphate.
  • at least one further water-soluble salt which contains at least one of the following ions: magnesium cations, cations trivalent metals, anions of oligo- or polyphosphate.
  • magnesium cations cations trivalent metals
  • anions of oligo- or polyphosphate there is a water-soluble salt with magnesium cations to. More detailed information on special embodiments and preferred addition amounts can be found in the aforementioned DE 100 64412, to which reference is hereby expressly made.
  • additives known for this area of application can be added to the cooling or process water.
  • examples of these are scale inhibitors, corrosion inhibitors and dispersants.
  • examples of such additives are polymers or copolymers of unsaturated carboxylic acids, such as, for example, acrylic acid, methacrylic acid and / or maleic acid, which can additionally carry phosphonic or phosphinic acid groups.
  • polyamino acids such as polyaspartic acid are known.
  • polymeric molecules or ions such as aminoalkylenephosphonic acids, phosphonocarboxylic acids, geminal diphosphonic acids, which are not capable of forming chelate complexes are known for this purpose. Selected examples are contained in DE 10064412 already mentioned.
  • the pH value is continuously measured in the spray water of a continuous casting plant by means of a pH electrode, and the metering pump for the water-soluble, buffering salts is started when the temperature falls below a predetermined threshold. If the threshold value is exceeded, the metering is stopped again.
  • the threshold value here is usually in the pH range between 4 and 7, preferably in the pH range from 5 to 6.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)

Description

"Verfahren zur Verringerung der Korrosivität von Kühl- oder Prozeßwasser"
Die Erfindung beinhaltet ein Verfahren zur Verringerung der Korrosion in Kühl- und Prozesswässern, bei denen es zu einem Eintrag von Säuren in das System kommen kann, z. B. in Stranggussanlagen der Stahlindustrie. In diesem Fall führt der von Fluoridabbrand des Gießpulvers herrührende Eintrag von Siliciumtetrafluorid und HF in den Spritzzonen zu einem Abfall des pH-Wertes im Spritzwasser und zur Korrosion von Anlagenteilen.
Nach dem Stand der Technik werden zur Anhebung des pH-Wertes in diesen Wässern starke Laugen, vor allem Natronlauge, in das Spritzwasser dosiert. Wegen der starken Schwankungen der Betriebsbedingungen kommt es jedoch häufig zu einer starken Erhöhung des pH-Wertes im Kühlwasser, so dass starke Ablagerungen von Calciumcarbonat im System die Folge sind.
Der Erfindung lag die Aufgabe zu Grunde, ein effektives Verfahren zur Verringerung der Korrosion zur Verfügung zu stellen, ohne die Nachteile der bekannten Verfahren aufzuweisen. Insbesondere sollte ein Verfahren zur Verfügung gestellt werden, das hinsichtlich einer pH-Anhebung wenig kritisch ist, und gleichzeitig einen schnelle Anpassung an wechselnde Betriebsbedingungen erlaubt.
Die Erfindung betrifft ein Verfahren zur Verringerung der Korrosivität von Kühl- oder Prozesswasser, bei dem es aufgrund eines Eintrags von Säuren zu einer Absenkung des pH-Werts kommt, dadurch gekennzeichnet, dass man zu dem Kühl- oder Prozesswasser mindestens ein wasserlösliches Salz mit puffernder Wirkung zudosiert. Unter „wasserlöslich" wird hierbei verstanden, dass sich mindestens 1 g des Salzes bei 20 °C in 1 I Wasser lösen. Das wasserlösliche Salz mit puffernder Wirkung setzt man vorzugsweise in Form einer wässrigen Lösung ein, da diese einfach über Dosierpumpen dosiert werden kann.
In der Praxis trifft man häufig Einrichtungen, bei denen das Kühl- oder Prozesswasser in einem Kreislauf geführt wird, der ein Reservoir, ein Leitungssystem und einen Arbeitsbereich umfasst, und der Eintrag von Säure im Arbeitsbereich erfolgt, wobei die Menge des Kühl- oder Prozesswassers im Reservoir und im Leitungssystem mindestens 5 mal so groß, vorzugsweise mindestens 10 mal so groß und insbesondere mindestens 20 mal so groß ist wie die Menge des Kühl- oder Prozesswassers im Arbeitsbereich. Das Verfahren ist für eine derartige Einrichtung besonders geeignet.
Das Verfahren kann jedoch auch in der Weise ausgeführt werden, daß das Kühl- oder Prozeßwasser in einem Durchlaufsystem geführt wird, das ein Leitungssystem und einen Arbeitsbereich umfaßt. In dieser Ausführungsform wird das Kühl- oder Prozeßwasser also nicht im Kreis geführt, sondern nach einmaligem Gebrauch abgeleitet.
Unter „Arbeitsbereich" wird dabei derjenige Bereich der Einrichtung verstanden, in dem das Kühl- oder Prozeßwasser seine technisch vorgesehene Wirkung entfaltet. Dies kann beispielsweise derjenige Bereich sein, in dem das Kühl- oder Prozeßwasser mit der Umgebungsluft oder mit anderen Substraten Wärme oder Stoffe austauscht. Beispielsweise kann es sich um eine Kühleinrichtung handeln, in der das Kühl- oder Prozeßwasser durch direkten oder indirekten Kontakt mit einem zu kühlenden Medium aus diesem Wärme aufnimmt. Ein Beispiel hierfür ist die Verdampfungszone eines Kühlturms. Es kann sich hierbei jedoch auch um einen Bereich handeln, in dem das Kühl- oder Prozeßwasser in Kontakt mit warmen Substratoberflächen gebracht wird, um diese zu kühlen. Dies ist beispielsweise bei Strangußanlagen der Stahlindustrie der Fall, wo das Kühl- oder Prozeßwasser auf abzukühlende Metalloberflächen aufgespritzt wird.
Im Arbeitsbereich kommt das Kühl- oder Prozeßwasser in der Regel nicht nur in Kontakt mit dem vorgesehenen Substrat, sondern auch mit der Umgebungsluft. Daher nimmt das Kühl- oder Prozeßwasser in diesem Bereich entweder direkt von der Substratoberfläche oder aus der Umgebungsluft Fremdstoffe auf. Diese können gasförmiger, fester oder flüssiger Natur sein. Durch diese Stoffaufnahme verändert sich die chemische Zusammensetzung des Kühl- oder Prozeßwassers. Im einleitend dargelegten Beispiel kommt es durch Eintrag sauer wirkender Substanzen zu einem Abfall des pH-Wertes im Kühl- oder Prozeßwasser. Hierdurch wird dessen Korrosivität gegenüber den Materialien der Einrichtung und ggf. auch gegenüber dem Substrat auf unerwünschte Weise erhöht.
Erfindungsgemäß wirkt man dem Abfall des pH-Wertes dadurch entgegen, daß man dem Kühl- oder Prozeßwasser ein wasserlösliches Salz mit puffernder Wirkung zudosiert. Zweckmäßigerweise erfolgt dies nicht im Reservoir selbst, sondern im oder kurz vor dem Arbeitsbereich. Daher ist es bevorzugt, daß man das wasserlösliche Salz mit puffernder Wirkung in das Leitungssystem an einer Stelle zudosiert, die in Strömungsrichtung des Kühl- oder Prozeßwassers gesehen vor dem Arbeitsbereich liegt. Demnach ist es nicht erforderlich, durch Zugabe des Salzes mit puffernder Wirkung die chemische Zusammensetzung des gesamten Kühl- oder Prozeßwassers, dessen Hauptmenge sich im Reservoir befindet, zu ändern. Man ändert vielmehr nur die Zusammensetzung desjenigen Teils des Kühl- oder Prozeßwassers, der anschließend im Arbeitsbereich in einen Stoffaustausch mit der Umgebung tritt.
Im einfachsten Fall dosiert man das wasserlösliche Salz mit puffernder Wirkung, basierend auf Erfahrungswerten, mengenproportional zu derjenigen Wassermenge, die den Arbeitsbereich durchfließt. Beispielsweise kann man pro m3 Kühl- oder Prozeßwasser, der den Arbeitsbereich durchfließt, eine durch Erfahrung ermittelte Menge an Salz mit puffernder Wirkung zudosieren. Demnach besteht eine Ausführungsform des erfindungsgemäßen Verfahrens darin, daß man das wasserlösliche Salz mit puffernder Wirkung in Abhängigkeit von der Menge an Kühl- oder Prozeßwasser zudosiert, die innerhalb eines vorgegebenen Zeitintervalls den Arbeitsbereich durchfließt.
Alternativ oder ergänzend hierzu kann man die Dosiermenge des Salzes mit puffernder Wirkung von dem aktuell ermittelten Bedarf abhängig machen. Dies kann für die gesamte Zugabe des Salzes mit puffernder Wirkung gelten. Man kann jedoch auch so verfahren, daß man eine Grundmenge an Salz mit puffernder Wirkung mengenproportional zudosiert und zusätzlich eine Feindosierung anhand des aktuell ermittelten Bedarfs durchführt. Für die Dosierung entsprechend dem aktuell ermittelten Bedarf geht man vorzugsweise so vor, daß man kontinuierlich oder diskontinuierlich den Wert mindestens einer Leitgröße im Kühl- oder Prozeßwasser mißt und das wasserlösliche Salz mit puffernder Wirkung in Abhängigkeit von dem Wert der Leitgröße zudosiert.
Dabei kann man prinzipiell auf 2 unterschiedliche Weisen verfahren: Man kann entweder eine obere oder eine untere Wertgrenze für die Leitgröße definieren und bei Unter- bzw. Überschreiten dieses Grenzwerts so lange wasserlösliches Salz zudosieren, bis der Grenzwert wieder über- bzw. unterschritten wird. Oder man legt einen Sollwert für die Leitgröße fest, bestimmt die Abweichung des gemessenen Wertes von diesem Sollwert und dosiert eine Menge an Salz mit puffernder Wirkung, die proportional ist zur Differenz zwischen dem Sollwert und dem aktuellen Wert der Leitgröße. Der Proportionalitätsfaktor hängt beispielsweise von dem Volumen des zu behandelnden Wasserstroms ab und kann aus diesem berechnet oder vorzugsweise experimentell ermittelt werden. Zweckmäßigerweise mißt man den Wert der Leitgröße entweder im Arbeitsbereich selbst, in einer im Arbeitsbereich entnommenen Probe des Kühl- oder Prozeßwassers oder in demjenigen Teil des Leitungssystems, das sich in Fließrichtung des Kühl- oder Prozeßwassers hinter dem Arbeitsbereich befindet. Im Arbeitsbereich kann man dadurch eine Probe nehmen, daß man entweder einen Teil des Kühl- oder Prozeßwassers ableitet und nach Messung der Leitgröße verwirft oder wieder in den Arbeitsbereich oder in das Leitungssystem zurückführt.
Die Leitgröße kann beispielsweise ausgewählt sein aus dem pH-Wert, der Fluoridionen- Konzentration und der Säurekapazität des Kühl- oder Prozeßwassers.
Wählt man als Leitgröße den pH-Wert aus, so dosiert man das wasserlösliche Salz mit puffernder Wirkung dann zu, wenn der pH-Wert einen vorgegebenen Schwellenwert unterschreitet. Dieser je nach Materialeigenschaften der Einrichtung und/oder des Substrats festzulegende Schwellenwert kann beispielsweise im Bereich von 4 bis 7, insbesondere von 5 bis 6 liegen. Man gibt also bei Unterschreiten des Schwellenwerts entweder so lange Salz mit puffernder Wirkung zu, bis der Schwellenwert wieder überschritten wird, oder man gibt eine Menge an Salz mit puffernder Wirkung zu, die von der Differenz zwischen Schwellenwert und tatsächlich gemessenem pH-Wert abhängt.
Für denjenigen Fall, daß in das Kühl- oder Prozeßwasser Säure als HF oder als eine fluorhaltige Verbindung eingetragen wird, die in Wasser HF bildet, kann man als Leitgröße die Fluoridionen-Konzentration auswählen. Wie einleitend erwähnt, ist dies beispielsweise bei Stranggußanlagen der Stahlindustrie der Fall. Der Säureeintrag ist dann proportional zur Erhöhung der Fluoridionen-Konzentration. In diesem Fall kann man das wasserlösliche Salz mit puffernder Wirkung zudosieren, wenn die Fluoridionen- Konzentration einen vorgegebenen Schwellenwert überschreitet, der beispielsweise im Bereich von 40 bis 300 mg/1, insbesondere im Bereich von 60 bis 200 mg/1 liegen kann. In diesem Fall bietet sich insbesondere die Ausführungsform an, daß man die Abweichung der Fluoridionen-Konzentration von dem vorgegebenen Schwellenwert ermittelt und das Salz mit puffernder Wirkung in Abhängigkeit von der Höhe dieser Abweichung zudosiert.
In einer weiteren Ausführungsform wählt man als Leitgröße die Säurekapazität des Kühloder Prozeßwassers aus. Diese ist definiert durch diejenige Menge (in Millimol) an starker einbasischer Säure, die man zu einem Liter des Wassers zugeben muß, um dessen pH- Wert auf 4,3 abzusenken. Sie wird ausgedrückt in Millimol Säurezugabe pro Liter Wasser. Man dosiert das wasserlösliche Salz mit puffernder Wirkung zu, wenn die Säurekapazität einen vorgegebenen Schwellenwert unterschreitet. Dieser kann beispielsweise im Bereich von 0,1 bis 1 Millimol/I, insbesondere von 0,3 bis 0,7 Millimol/I liegen. Auch hierbei kann man entweder so lange Salz mit puffernder Wirkung zugeben, bis die Säurekapazität den Schwellenwert wieder überschreitet. Oder man bestimmt die Abweichung der tatsächlichen Säurekapazität vom Schwellenwert und gibt eine Menge an Salz mit puffernder Wirkung zu, die zu der Abweichung proportional ist. Der Proportionalitätsfaktor wird vorzugsweise wieder empirisch bestimmt.
Als Salz mit puffernder Wirkung kann man jedes beliebige wasserlösliche (gemäß Definition weiter oben) Salz auswählen, von dem bekannt ist, das es eine puffernde Wirkung hat. Beispielsweise kann das wasserlösliche Salz mit puffernder Wirkung ausgewählt sein aus Hydrogencarbonaten, Carbonaten, Boraten, Ortho- und Polyphosphaten. Vorzugsweise wählt man solche Salze, die ausgewählt sind aus Alkali-, Erdalkali- und Ammoniumsalzen, aus Kosten- und Umweltgründen vorzugsweise aus Natriumsalzen. Demgemäß sind als Salze mit puffernder Wirkung insbesondere Alkalioder Ammoniumsalze, speziell die Natriumsalze, mit Hydrogencarbonat-, Carbonat-, Borat-, Ortho- oder Polyphosphationen bevorzugt.
Das erfindungsgemäße Verfahren ist insbesondere zur Verringerung der Korrosivität von Kühl- oder Prozeßwasser von Stranggußanlagen der Stahlindustrie geeignet.
Beim Eintrag von Fluoridionen in Kühl- oder Prozeßwasser, wie es insbesondere in dem genannten Anwendungsfall in der Stahlindustrie vorkommt, kann es neben den Korrosionserscheinungen auch zu einer Abscheidung von Calciumfluorid kommen. Dies ist unerwünscht, da hierdurch Leitungen, Ventile und Düsen verstopft werden können. Aus der DE 100 64412 ist ein Verfahren zur Verhinderung der Abscheidung von Calciumfluorid in Kühl- oder Prozeßwasser bekannt. Dieses bekannte Verfahren kann mit dem erfindungsgemäßen Verfahren zur Verringerung der Korrosivität kombiniert werden. Demnach besteht eine bevorzugte Ausführungsform der Erfindung darin, daß man zusätzlich die Abscheidung von Calciumfluorid in dem Kühl- oder Prozesswasser verhindert, indem man dem Kühl- oder Prozesswasser zusätzlich mindestens ein weiteres wasserlösliches Salz zugibt, das mindestens eines der folgenden Ionen enthält: Magnesiumkationen, Kationen dreiwertiger Metalle, Anionen von Oligo- oder Polyphosphat. Insbesondere gibt man ein wasserlösliches Salz mit Magnesiumkationen zu. Nähere Angaben zu speziellen Ausführungsformen und bevorzugten Zugabemengen sind der genannten DE 100 64412 zu entnehmen, auf die hiermit ausdrücklich Bezug genommen wird.
Es versteht sich von selbst, daß man dem Kühl- oder Prozeßwasser weitere Additive zugeben kann, die für dieses Einsatzgebiet bekannt sind. Beispiele hierfür sind Scale- Inhibitoren, Korrosionsinhibitoren und Dispergatoren. Beispiele derartiger Additive sind Polymere oder Copolymere von ungesättigten Carbonsäuren wie beispielsweise Acrylsäure, Methacrylsäure und/oder Maleinsäure, die zusätzlich Phosphon- oder Phosphinsäuregruppen tragen können. Weiterhin sind Polyaminosäuren wie beispielsweise Polyasparaginsäure bekannt. Weiterhin sind für diesen Zweck nicht polymere, zur Bildung von Chelatkomplexen befähigte Moleküle bzw. Ionen wie beispielsweise Aminoalkylenphosphonsäuren, Phosphonocarbonsäuren, geminale Diphosphonsäuren bekannt. Ausgewählte Beispiele sind in der bereits genannten DE 10064412 enthalten.
Beispiel:
Der pH-Wert wird im Spritzwasser einer Strangussanlage kontinuierlich mittels einer pH- Elektrode gemessen, und bei Unterschreitung eines vorgegebenen Schwellenwertes wird die Dosierpumpe für die wasserlöslichen, puffernden Salze gestartet. Bei Überschreitung des Schwellwertes wird die Dosierung wieder gestoppt. Der Schwellenwert liegt hier üblicherweise im pH-Bereich zwischen 4 und 7, bevorzugt im pH-Bereich von 5 bis 6.

Claims

Patentansprüche:
1. Verfahren zur Verringerung der Korrosivität von Kühl- oder Prozesswasser, bei dem es aufgrund eines Eintrags von Säuren zu einer Absenkung des pH-Werts kommt, dadurch gekennzeichnet, dass man zu dem Kühl- oder Prozesswasser mindestens ein wasserlösliches Salz mit puffernder Wirkung zudosiert.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das Kühl- oder Prozesswasser in einem Kreislauf geführt wird, der ein Reservoir, ein Leitungssystem und einen Arbeitsbereich umfasst, und der Eintrag von Säure im Arbeitsbereich erfolgt, wobei die Menge des Kühl- oder Prozesswassers im Reservoir und im Leitungssystem mindestens 5 mal so groß ist wie die Menge des Kühl- oder Prozesswassers im Arbeitsbereich.
3. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das Kühl- oder Prozesswasser in einem Durchlaufsystem geführt wird, das ein Leitungssystem und einen Arbeitsbereich umfasst.
4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass man das wasserlösliche Salz mit puffernder Wirkung in das Leitungssystem an einer Stelle zudosiert, die in Strömungsrichtung gesehen in oder vor dem Arbeitsbereich liegt.
5. Verfahren nach einem oder mehreren der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass man das wasserlösliche Salz mit puffernder Wirkung in Abhängigkeit von der Menge an Kühl- oder Prozesswasser zudosiert, die innerhalb eines vorgegebenen Zeitintervalls den Arbeitsbereich durchfließt.
6. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass man kontinuierlich oder diskontinuierlich den Wert mindestens einer Leitgröße im Kühl- oder Prozesswasser misst und das wasserlösliche Salz mit puffernder Wirkung in Abhängigkeit von dem Wert der Leitgröße zudosiert.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass man den Wert der Leitgröße entweder im Arbeitsbereich selbst, in einer im Arbeitsbereich entnommenen Probe des Kühl- oder Prozesswassers oder in demjenigen Teil des Leitungssystems misst, das sich in Fließrichtung hinter dem Arbeitsbereich befindet.
8. Verfahren nach einem oder beiden der Ansprüche 6 und 7, dadurch gekennzeichnet, dass man die Leitgröße auswählt aus dem pH-Wert, der Fluoridionen-Konzentration und der Säurekapazität des Kühl- oder Prozesswassers.
9. Verfahren nach einem oder beiden der Ansprüche 6 und 7, dadurch gekennzeichnet, dass man als Leitgröße den pH-Wert auswählt und das wasserlösliche Salz mit puffernder Wirkung zudosiert, wenn der pH-Wert einen vorgegebenen Schwellenwert im Bereich von 4 bis 7, insbesondere von 5 bis 6, unterschreitet.
10. Verfahren nach einem oder beiden der Ansprüche 6 und 7, dadurch gekennzeichnet, dass man für den Fall, dass in das Kühl- oder Prozesswasser als Säure HF oder eine fluorhaltige Verbindung eingetragen wird, die in Wasser HF bildet, als Leitgröße die Fluoridionen-Konzentration auswählt und das wasserlösliche Salz mit puffernder Wirkung zudosiert, wenn die Fluoridionen-Konzentration einen vorgegebenen Schwellenwert im Bereich von 40 bis 300 mg/l, insbesondere 60 bis 200 mg/l, überschreitet.
11. Verfahren nach einem oder beiden der Ansprüche 6 und 7, dadurch gekennzeichnet, dass man als Leitgröße die Säurekapazität des Kühl- oder Prozesswassers auswählt und das wasserlösliche Salz mit puffernder Wirkung zudosiert, wenn die Säurekapazität einen vorgegebenen Schwellenwert im Bereich von 0,1 bis 1 mmol/l, insbesondere 0,3 bis 0,7 mmol/l, unterschreitet.
12. Verfahren nach einem oder mehreren der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass das wasserlösliche Salz mit puffernder Wirkung ausgewählt ist aus Hydrogencarbonaten, Carbonaten, Boraten, Ortho- und Polyphosphaten.
13. Verfahren nach einem oder mehreren der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass das wasserlösliche Salz mit puffernder Wirkung ausgewählt ist aus Alkali-, Erdalkali- und Ammoniumsalzen.
14. Verfahren nach einem oder mehreren der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass es sich bei dem Kühl- oder Prozesswasser um Kühl- oder Prozesswasser von Stranggussanlagen der Stahlindustrie handelt.
15. Verfahren nach einem oder mehreren der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass man zusätzlich die Abscheidung von Calciumfluorid in dem Kühl- oder Prozesswasser verhindert, indem man dem Kühl- oder Prozesswasser zusätzlich mindestens ein weiteres wasserlösliches Salz zugibt, das mindestens eines der folgenden Ionen enthält: Magnesiumkationen, Kationen dreiwertiger Metalle, Anionen von Oligo- oder Polyphosphat.
EP03735588A 2002-06-17 2003-06-10 Verfahren zur verringerung der korrosivität von kühl- oder prozesswasser Expired - Lifetime EP1513634B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10227040A DE10227040A1 (de) 2002-06-17 2002-06-17 Verfahren zur Verringerung der Korrosivität von Kühl- oder Prozeßwasser
DE10227040 2002-06-17
PCT/EP2003/006041 WO2003106074A2 (de) 2002-06-17 2003-06-10 Verfahren zur verringerung der korrosivität von kühl- oder prozesswasser

Publications (2)

Publication Number Publication Date
EP1513634A2 true EP1513634A2 (de) 2005-03-16
EP1513634B1 EP1513634B1 (de) 2006-05-03

Family

ID=29594595

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03735588A Expired - Lifetime EP1513634B1 (de) 2002-06-17 2003-06-10 Verfahren zur verringerung der korrosivität von kühl- oder prozesswasser

Country Status (6)

Country Link
EP (1) EP1513634B1 (de)
AT (1) ATE324954T1 (de)
AU (1) AU2003236726A1 (de)
DE (2) DE10227040A1 (de)
ES (1) ES2263003T3 (de)
WO (1) WO2003106074A2 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2804623T3 (es) * 2014-11-05 2021-02-08 Ecolab Usa Inc Método para controlar la corrosión en máquinas de colada continua
RU2748255C2 (ru) 2016-10-18 2021-05-21 ЭКОЛАБ ЮЭсЭй ИНК. Устройство для отделения воды и твердых частиц распыляемой воды в машине непрерывного литья и способ непрерывного контроля и управления коррозионным фоном

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA805265B (en) * 1979-08-29 1982-10-27 Lysaght Australia Ltd Temper rolling fluids
JPS61190084A (ja) * 1985-02-16 1986-08-23 Yanmar Diesel Engine Co Ltd 冷却水系の防食法
JPH0843586A (ja) * 1994-04-08 1996-02-16 General Electric Co <Ge> 金属部品の表面における亀裂の発生又は成長を低減させるための方法
US6024892A (en) * 1997-10-06 2000-02-15 Fmc Corporation Anticorrosion and pH stable alkali metal halide solutions for air dehumidification
DE10064412A1 (de) * 2000-12-21 2002-06-27 Henkel Kgaa Verhinderung der Abscheidung von Calciumfluorid

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03106074A3 *

Also Published As

Publication number Publication date
WO2003106074A3 (de) 2004-09-10
ATE324954T1 (de) 2006-06-15
DE10227040A1 (de) 2003-12-24
AU2003236726A1 (en) 2003-12-31
EP1513634B1 (de) 2006-05-03
ES2263003T3 (es) 2006-12-01
WO2003106074A2 (de) 2003-12-24
DE50303211D1 (de) 2006-06-08

Similar Documents

Publication Publication Date Title
DE60025164T2 (de) Zusammensetzung zur verhinderung von ablagerungen und/oder korrosion
DE1517399B2 (de) Verfahren zur Verhütung der Niederschlagsbildung kesselsteinbildender Salze in einem wässrigen System
DE2335331A1 (de) Verfahren zur korrosionshemmung in waessrigen systemen
DE3137525A1 (de) Behandlung von waessrigen systemen zur korrosionshemmung
EP2700075A1 (de) Verfahren zur konditionierung eines der energieerzeugung dienenden kreislaufsystems eines kraftwerks
DE2505435A1 (de) Korrosionsinhibitoren fuer wasserfuehrende systeme
CN106745847A (zh) 复合缓蚀阻垢剂及其制备方法
DE3249178T1 (de) Verfahren zur Unterdrückung der Korrosion von Metallen auf Eisenbasis
DE2338352A1 (de) Korrosionsschutzmittel zur inhibierung der wasserkorrosion
EP1513634B1 (de) Verfahren zur verringerung der korrosivität von kühl- oder prozesswasser
DE112011101068T5 (de) Verfahren zur Behandlung eines Kühlwassersystems
DE102008037428A1 (de) Quecksilber-Ionengas-Standarderzeuger für ein kontinuierliches Emissionsüberwachungssystem
DE2016686A1 (de) Korrosionsschutzmittel
DE3314008A1 (de) Verfahren zur korrosionsbekaempfung in waessrigen systemen, dafuer geeignete zusammensetzung und deren verwendung
WO2000030980A1 (de) Verfahren zur kontrolle der dosiermengen von wasserbehandlungsprodukten
DE2240736A1 (de) Stoffzusammensetzung zur inhibierung der metallkorrosion und verfahren zu ihrer herstellung
EP0860517B1 (de) Verfahren zur Korrosionsschutzbehandlung wasserführender Metallsysteme
EP0218798A2 (de) Verfahren und Zusammensetzung zur Verhinderung von Korrosionen und Steinbildungen in Brauchwassersystemen
DE2337100A1 (de) Verfahren zur korrosionshemmung in waessrigen systemen
DE3334245A1 (de) Zusammensetzung und verfahren zur unterdrueckung von kesselstein
EP3808875A1 (de) Inhibitoren-lösung zum korrosionsschutz für wasserführende leitungen und installationssysteme
DE112009005415T5 (de) Korrosionsschutzvorrichtung, Korrosionsschutzverfahren und Drahterosionsvorrichtung
EP1133448A1 (de) Verfahren zur ermittlung der dosiermengen von wasserbehandlungsprodukten
DE102013105895A1 (de) Wassereingespritzter Gas-Verdichter und Verfahren zur Steuerung der Wasserzufuhr
EP0004665B1 (de) Korrosionsinhibitor für Brauchwassersysteme

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041001

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20050615

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50303211

Country of ref document: DE

Date of ref document: 20060608

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E000375

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060803

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060803

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061003

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2263003

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070206

BERE Be: lapsed

Owner name: HENKEL K.G.A.A.

Effective date: 20060630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070630

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060804

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20090615

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100610

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160608

Year of fee payment: 14

Ref country code: ES

Payment date: 20160510

Year of fee payment: 14

Ref country code: CZ

Payment date: 20160606

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50303211

Country of ref document: DE

Owner name: KURITA WATER INDUSTRIES LTD., JP

Free format text: FORMER OWNER: BK GIULINI GMBH, 67065 LUDWIGSHAFEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20160520

Year of fee payment: 14

Ref country code: HU

Payment date: 20160510

Year of fee payment: 14

Ref country code: FR

Payment date: 20160516

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160621

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170610

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170610

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170610

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170610

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170610

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220505

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50303211

Country of ref document: DE