EP1511875A2 - Procede et dispositif d'incorporation d'un compose dans les pores d'un materiau poreux et leurs utilisations - Google Patents

Procede et dispositif d'incorporation d'un compose dans les pores d'un materiau poreux et leurs utilisations

Info

Publication number
EP1511875A2
EP1511875A2 EP03757115A EP03757115A EP1511875A2 EP 1511875 A2 EP1511875 A2 EP 1511875A2 EP 03757115 A EP03757115 A EP 03757115A EP 03757115 A EP03757115 A EP 03757115A EP 1511875 A2 EP1511875 A2 EP 1511875A2
Authority
EP
European Patent Office
Prior art keywords
compound
enclosure
porous material
pores
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03757115A
Other languages
German (de)
English (en)
Inventor
Thu-Hoa Tran-Thi
Thanh-Toan Truong
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP1511875A2 publication Critical patent/EP1511875A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28095Shape or type of pores, voids, channels, ducts
    • B01J20/28097Shape or type of pores, voids, channels, ducts being coated, filled or plugged with specific compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/286Phases chemically bonded to a substrate, e.g. to silica or to polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3248Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such
    • B01J20/3253Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such comprising a cyclic structure not containing any of the heteroatoms nitrogen, oxygen or sulfur, e.g. aromatic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3289Coatings involving more than one layer of same or different nature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3291Characterised by the shape of the carrier, the coating or the obtained coated product
    • B01J20/3293Coatings on a core, the core being particle or fiber shaped, e.g. encapsulated particles, coated fibers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3291Characterised by the shape of the carrier, the coating or the obtained coated product
    • B01J20/3297Coatings in the shape of a sheet
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/046Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/46Materials comprising a mixture of inorganic and organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/49Materials comprising an indicator, e.g. colour indicator, pH-indicator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/54Sorbents specially adapted for analytical or investigative chromatography

Definitions

  • the present invention relates to a process for incorporating a compound into the pores of a porous material and, more specifically, to a porous material selected from microporous and mesoporous materials obtained by the sol-gel process that the In what follows, microporous and mesoporous sol-gel materials will be referred to more simply.
  • the method according to the invention which is applicable to both an organic and inorganic compound, leads, according to the operating conditions used, to an incorporation of this compound, either in the form of monomers or in the form of aggregates.
  • One of the objectives of the invention is the incorporation, in the form of monomers, of an organic compound and, more particularly of a Probe molecule - that is, a detectable molecule capable of interacting specifically with a molecular species and revealing its presence and, optionally, concentration within a complex mixture - in the pores a microporous or mesoporous sol-gel material and, in particular, a mesoporous material with structuring surfactants.
  • a microporous or mesoporous material thus "doped" by a probe molecule finds an application in the manufacture of chemical sensors and multisensors and, more specifically, of sensors and multisensors for the detection and dosing of atmospheric pollutants.
  • the sol-gel process consists in forming a colloidal suspension of oxide particles (or "sol") by hydrolysis and condensation of a precursor or a mixture of ion precursors (salts) and / or molecular (alkoxides) to dry the soil so as to obtain a semi-rigid "gel” by complementary condensation of said or said precursors, and subjecting the gel to a heat treatment of drying and densification.
  • sol colloidal suspension of oxide particles
  • This process makes it possible to produce a wide variety of materials, in the form of solid pieces, powders, fibers or films, and in particular microporous and mesoporous thin films that can be used, after incorporation of probe molecules, of sensitive layers in sensors and multi-sensor chemicals. It is generally accepted in the field of sol-gel materials that a microporous film has pores with a diameter of less than 20 ⁇ (Angstr ⁇ ms), while a mesoporous material has pores with a diameter of 20 ⁇ . 5 ⁇ m (microns).
  • Mesoporous materials with structural surfactants (MTS) appeared ten years ago following the work of BECK et al. (J. Am Chem Soc, 1992, 114, 10834) [1]. These materials are obtained by polycondensing, according to the sol-gel process, networks of metal oxides (silicon alkoxides in particular) in the presence of a surfactant whose molecules form micelles organized on a nanoscopic scale.
  • STDs have the particularity of having a double porosity: in fact, the polycondensation of the metal oxide networks around the surfactant micelles leads to the formation of a porous inorganic material whose pores form a first unorganized porosity and which contains a compact and orderly arrangement of organic micelles; by calcination of these micelles, a second porosity appears, which is organized contrary to the previous one and whose structure depends directly on the size of the micelles and their three-dimensional arrangement.
  • Another special feature of STMs is that they have pores with adjustable diameters.
  • the pore diameter of the first porosity from about 5 to 18 ⁇ , in particular by the choice of metal oxides serving as precursors during the preparation of the MTS, and to vary the pore diameter. of the second porosity of about 10 to 100 ⁇ by varying the length of the surfactant chain or using an agent capable of swelling the surfactant micelles.
  • the characteristics of the MTS that have just been mentioned make it a particularly interesting material for the realization of sensors and multi-sensor chemicals and, in particular, sensors and multi-sensors for detecting and quantifying atmospheric pollutants.
  • the unorganized porosity of MTS can serve as molecular sieve and promote the diffusion of small pollutants or gases whose interference we want to study;
  • the pore diameter of the organized porosity can be adjusted so that, after incorporation in these pores of a probe molecule capable of interacting with a family of pollutants, the remaining space corresponds to the kinetic diameter of 'a particular pollutant of this family.
  • the specificity of probe molecules vis-à-vis a family of pollutants is added a specificity of the pore diameter vis-à-vis a particular pollutant of this family. This dual specificity makes it possible to avoid or, at the very least, limit the risks of interference between pollutants of the same nature but of different size.
  • the soil comprises, as solvents, water and alcohol
  • they are, in the first place, unsuited to the incorporation of water-sensitive compounds due to major risk of hydrolysis of these compounds.
  • They are also unsuited to the incorporation of hydrophobic compounds which, because of their low solubility in water and alcohol, can be incorporated only in very small quantities and will tend to form aggregates in the soil and, therefore, to find themselves in this same form in the final material.
  • the interstitial solvents gradually evaporate by taking with them molecules of the incorporated compound, thus creating a concentration gradient of this compound in the final material.
  • the method of incorporating a compound into the pores of a porous material according to the invention is characterized in that it comprises the vaporization or sublimation of this compound in an enclosure containing said material.
  • the method according to the invention is based on the use of a change in the physical state of the compound to obtain incorporation into the pores of a porous material, this change consisting either in a passage of the liquid state in the gaseous state, either in a direct passage from the solid state to the gaseous state.
  • the temperature at which a compound vaporizes or sublimates depends on the pressure at which it is located, so that it is possible to play on the pressure to change this temperature. This is perfectly illustrated by the P / T phase diagram of a pure body.
  • the vaporization and sublimation temperatures available in the literature correspond, in the absence of indications to the contrary, to those established at atmospheric pressure and are likely to be substantially lowered by the use of lower pressures, that is, say by the use of vacuum.
  • the conditions of temperature and pressure in which the compound is vaporized or sublimed are chosen, firstly, as a function of the thermal decomposition temperature of this compound.
  • the temperature at which the compound is vaporized or sublimated is at least 30 ° C lower, and preferably at least 50 ° C at the temperature at which it decomposes, in order to to rule out any risk of thermal decomposition of said compound during its incorporation into the pores of the porous material.
  • the thermal decomposition temperature of a large number of compounds is known, in which case it is generally indicated in reference works such as the MERCK INDEX, twelfth edition, or catalogs of chemical suppliers such as the ALDRICH catalog. -CHEMISTRY.
  • the decomposition temperature of a compound When the decomposition temperature of a compound is not known, then it can be determined, for example by bringing the compound to higher and higher temperatures and monitoring the temperature at which it is consumed or at which it lose its properties, for example absorbance, fluorescence, luminescence or other.
  • a maximum operating temperature this temperature being, according to the invention, lower by at least 30 ° C. and, preferably, by at least 50 ° C at the thermal decomposition temperature of said compound, depending on the margin of safety that it is desired to provide.
  • the conditions of temperature and pressure at which the compound is vaporized or sublimed are chosen, secondly, depending on the necessity and / or the possibility of operating at a temperature lower than that at which it vaporizes. or sublimates at atmospheric pressure, especially in view of the equipment available.
  • a very high vaporization or sublimation temperature (of the order of several hundred degrees) and where one can not or one does not want to operate at this temperature, for reasons of equipment, safety or more simply operating comfort, then will operate under vacuum at a pressure to lower the vaporization or sublimation temperature of the compound to an acceptable value.
  • the compound has a large vapor pressure and is capable of vaporizing or subliming at a temperature of low or medium elevation at atmospheric pressure, it will be possible to operate at this temperature and pressure as well as a lower temperature under vacuum.
  • Another criterion that can be taken into account for the choice of temperature and pressure conditions at which the compound is vaporized or sublimated is the rate at which it is desired to incorporate the latter into the pores of the porous material, this speed being itself even chosen according to the molecular form (monomers or aggregates) under which it is desired that the compound is present in the pores.
  • a compound vaporizes or sublimates the faster the temperature of the medium in which it is higher, while for a given temperature, a compound vaporizes or sublimates. as much faster than the pressure that prevails in the environment in which it is located is weaker.
  • the compound is vaporized or sublimed, preferably under vacuum
  • the process according to the invention comprises: a) evacuation of the enclosure containing the compound and the porous material until a vacuum is obtained desired, and optionally, b) heating the enclosure to the selected temperature to vaporize or sublimate the compound.
  • it is the temperature chosen to operate that determines whether the compound is vaporized or sublimated. Indeed, if it is, at this temperature, in a liquid form, then it is vaporized, while if it is in a solid form, for example pulverulent, or pasty, then it is sublimated.
  • the invention provides for subliming it under vacuum after having separated the agglomerates by at least partial dissolution of the paste in a volatile solvent which will then be easily removed at room temperature when of the vacuum installation in the enclosure containing the compound and the porous material.
  • the chamber containing the compound and the porous material is cooled to a temperature of -40 ° C. or lower just before its evacuation, to prevent it causes a sudden suction and dispersion of the compound throughout the volume of the enclosure.
  • This cooling can, for example, be obtained by immersing the enclosure in liquid nitrogen or in a bath of dry ice and ethanol.
  • the enclosure containing the compound and the porous material is heated by immersion in a bath oil maintained at the chosen temperature to vaporize or sublimate the compound, this heating mode ensuring, in fact, a particularly homogeneous supply of heat.
  • it can also be heated by means of a hot water bath or electric heating resistors.
  • the porous material is preferably thermally insulated from the wall and the bottom of this enclosure so that the compound in gaseous form can condense or solidify, a once in contact with the pore walls of the porous material.
  • an oil bath is not restricted to the only case where the compound is intended to be vaporized or sublimated at a temperature above room temperature. Indeed, it can also be considered to operate at room temperature to ensure homogeneity of the temperature around the perimeter of the enclosure and the maintenance of this chamber at a constant temperature.
  • the amount of compound to vaporize or sublimate is preferably chosen according to the pore volume of the porous material and the amount of compound that is to be incorporated in the pores of this material according to its destination .
  • the optimum amount of compound to be present in the pores of the porous material depends on the use that is reserved for it.
  • the compound to be incorporated is a probe molecule such as a fluorophore
  • the pore volume of a porous material can be measured by low temperature gas adsorption and desorption techniques. By dividing this pore volume by the volume of a molecule of the compound to be incorporated, the maximum number of molecules of this compound that can be incorporated per unit weight of porous material is obtained. Knowing the molecular weight of the compound, it is then easy to calculate the maximum amount by weight of the compound that can be incorporated per unit weight of porous material and, therefore, to be vaporized or sublimed to saturate the pores of 1 g of material.
  • the method comprises one or more operations for controlling the incorporation of the compound as it is carried out.
  • Such a provision turns out to be, in fact, very useful when it is desired to define the operating conditions (temperature, pressure and duration of the vaporization or sublimation, amount of compound to be used, ...) most suitable for the obtaining a particular result (for example, incorporation of the compound only in the form of monomers or obtaining a specific pore filling rate). It also makes it possible to verify that the incorporation of the compound is carried out correctly with respect to the desired result and, if necessary, to modify the operating conditions accordingly.
  • this control is achieved by optical measurements, for example of absorbance, fluorescence, luminescence or the like.
  • the porous material is preferably in the form of a block, for example a parallelepiped block, or of one or more thin layers covering one and / or the other of the faces of an inert substrate such as a quartz blade or glass.
  • the process according to the invention has many advantages. Indeed: - the vaporization or sublimation of the compound to be incorporated using no solvent, the method avoids both the compound is found in the pores in a solvated form and a concentration gradient of the compound is not establishes within the porous material;
  • the subject of the present invention is also a device which makes it possible to implement the method according to the invention and which comprises: an enclosure provided with an opening,
  • the means for immobilizing the sample of porous material also serve as means to thermally isolate it from the wall and the bottom of the enclosure.
  • these means comprise a support, for example of cylindrical, cubic or frustoconical shape, which consists of an insulating material such as teflon ® , which is integral with the bottom of the enclosure and which is provided with means for maintaining said sample.
  • These holding means consist, for example, in a groove passing through the face of the support opposite to that in contact with the bottom of the enclosure and in which can be inserted, or one of the ends of the sample if it is in the form of a block or one or more thin layers covering the one and / or the other of the faces of a substrate, or the base of a cup containing the sample if it is in a powder form.
  • the holding of the sample or the cup may be reinforced by the presence, along this groove, of one or more elastic or flexible elements.
  • the means for sealing the enclosure also serve as means for connecting it to the vacuum producing system such as a vacuum ramp.
  • these means comprise a shutter constituted by a first tube which is provided, at one of its ends, with means for its hermetic fixing on the enclosure and, at the other of its ends, with a vacuum valve. , and which carries laterally a second tube terminated by means for its connection to the vacuum generating system, the zone of engagement of the second tube on the first being such that the communication between these two tubes can be opened or closed by rotation of the tap empty.
  • the enclosure is made of a transparent material such as quartz or glass, to allow control, by optical measurements, incorporation of the compound as it proceeds.
  • the enclosure is a four-sided optical tank. According to another preferred embodiment of the device, it further comprises means for connecting it together with at least one other device as previously defined, to a vacuum producing system. According to yet another preferred embodiment of the device, the enclosure contains a plurality of tubes adapted to each contain at least one sample of porous material, each tube being provided with means for immobilizing the sample that it contains and means for thermally isolate it from the other tubes, from the bottom of the enclosure, and, if necessary, from the wall of this enclosure.
  • the means for immobilizing the sample of porous material also serve to isolate it thermally from the bottom of the enclosure.
  • these means also comprise, a support consisting of an insulating material, which is integral with the bottom of the enclosure and which is provided with means for holding said sample.
  • the means for thermally insulating the sample of porous material from the other tubes and, where appropriate, from the wall of the enclosure are constituted by the wall of the tube in which it is located, this wall being formed of a insulating material such as Teflon.
  • the means for sealing the enclosure also serve as means for connecting it to the vacuum producing system and comprise, on the one hand, a cover adapted to be hermetically fixed on the enclosure, and, on the other hand, a shutter constituted by a first tube which is provided at one of its ends with means for its hermetic fixing on the lid and, at the other of its ends, with a tap. vacuum, and laterally carries a second tube terminated by means for its connection to the vacuum generating system, the area of engagement of the second tube on the first being such that the communication between these two tubes can be opened or closed by rotation of the vacuum valve.
  • the invention furthermore relates to the use of a method or a device as defined above, for incorporating an organic compound in the form of monomers into the pores of a porous material chosen from microporous and mesoporous materials.
  • a porous material chosen from microporous and mesoporous materials.
  • MTS structuring surfactants
  • MTS examples include those known as M41S, MCM-41, MCM-48, SBA, HMS, MSU, FSM-16, PCH and ZSM.
  • the porous material is in the form of a block or one or more thin layers covering one and / or the other of the faces of an inert substrate, while the compound is a suitable probe molecule. to detect and, optionally, quantify an analyte, i.e., in practice a marker or ligand coupled to a marker.
  • the term “marker” means a molecule endowed with a particular physical property which renders it detectable and identifiable.
  • ligand means a molecule capable of interacting with an analyte by collision or by forming a complex with it by a physical or chemical bond.
  • the label can be used alone or conjugated to a ligand capable of interacting with said analyte.
  • fluorophores such as
  • phenylhydrazine and its nitro and chlorinated derivatives 0-pentafluorobenzylhydroxylamine, anthracene and its derivatives, bi-anthryl and its derivatives , pyrene and its derivatives, pyrenol, pyranine, fluoroscéine, orégon green, rhodamine and its derivatives, cyanine and its derivatives, porphyrins, phthalocyanines, porphyrazines, tetracyanoquinodimethane and its derivatives; phosphors such as luminol and luciferin; chromophores such as xanthene, anthraquinone, monoazo, diazo and triphenylmethane.
  • a microporous or mesoporous material obtained by the sol-gel process and whose pores contain a probe molecule in the form of monomers, is of great interest for the manufacture of chemical sensors and, a fortiori, of chemical multisensors (a multisensor consisting of a plurality of sensors) for detecting or assaying a set of analytes and, more particularly, air pollutants (CO, C0 2, N0 2, NO, S0 2, CH 2 0 and other aldehydes, benzene, toluene, xylenes, ethylbenzene ...) or gaseous molecules used in the field of microelectronics (Cl 2 , BCl 3 , AlCl 3 .).
  • a material containing as probe molecule phenylhydrazine, one of its nitrous or chlorinated derivatives, or O-pentafluorobenzylhydroxylamine may be used to capture formaldehyde or other aldehydes present in gaseous form in the 'air.
  • a material containing as probe molecule, 1,3-diphenyl-1,3-dipropanedione may be used to capture the gases BC1 3 and A1C1 3 .
  • a material containing, as probe molecule, dibenzoylmethanatobore difluoride or one of its derivatives can be used to capture benzene and its substituted derivatives, while a material containing as a probe molecule, a porphyrin or a metal phthalocyanine can be used to capture CO, NO and / or NO 2 .
  • the invention therefore also relates to the use of a method or a device as defined above, for the manufacture of a sensor or multi-sensor chemical, including the detection or dosing of atmospheric pollutants.
  • Figure 1 is a schematic vertical sectional view of a device according to the invention in a first embodiment.
  • Figure 2 is a schematic vertical sectional view of a device according to the invention in a second embodiment.
  • Figure 3 is a partial schematic view in vertical section of a device according to the invention in a third embodiment.
  • FIG. 4 is a graph illustrating the variation of the absorbance (in continuous line) and that of the fluorescence area (in dashed form) of the dibenzoyl methanobore difluoride (DBMBF 2 ), after incorporation in the pores of an MTS by the process according to the invention, as a function of the duration of the sublimation of this compound when this sublimation is carried out at a pressure of 5.33 ⁇ 10 -3 Pa and a temperature of 25 ° C.
  • DMBF 2 dibenzoyl methanobore difluoride
  • 5 is a graph illustrating the variation of the fluorescence area of DBMBF 2 , after incorporation into the pores of an MTS by the process according to the invention, as a function of the absorbance of this compound when its sublimation is carried out at a pressure of 5.33 ⁇ 10 -3 Pa and a temperature of 25 ° C.
  • FIG. 6 is a graph illustrating the evolution of the fluorescence spectrum of DBMBF 2 , after incorporation into the pores of an MTS by the process according to the invention, as a function of the duration of the sublimation of this compound when this sublimation is carried out at a pressure of 5.33 ⁇ 10 -3 Pa and a temperature of 25 ° C.
  • FIG. 7 is a graph illustrating the evolution of the absorption spectrum of DBMBF 2 , after incorporation into the pores of an MTS by the process according to the invention, as a function of the duration of the sublimation of this compound when this sublimation is carried out at a pressure of 5.33 ⁇ 10 -3 Pa and a temperature of 75 ° C.
  • FIG. 8 is a graph illustrating the variation of the absorbance of DBMBF 2 , after incorporation into the pores of an MTS by the process according to the invention, as a function of the duration of the sublimation of this compound when this sublimation is carried out at a pressure of 5.33 ⁇ 10 -3 Pa and a temperature of 75 ° C.
  • the same references serve to designate the same elements.
  • Figure 1 shows a device 10 according to the invention in an embodiment specifically designed to incorporate a compound in the pores of a porous material by the method according to the invention, while controlling this incorporation by optical measurements.
  • this embodiment is designed to perform both vaporization and sublimation, regardless of the chosen temperature and pressure.
  • this device comprises two elements, namely a tank 11 and a removable shutter 21 which is designed to be able to be hermetically fixed on the tank 11 by interlocking with a male circular lapping 12 that this latter has in a female ground running 22 that includes the shutter 21.
  • the vessel 11, in which the porous material is intended to be placed, is of square cross-section and is made of a transparent material, preferably quartz, so that optical measurements can be made as and when the vaporization or sublimation of the compound.
  • the tank 11 has a flat bottom 13 in the center of which is fixed a solid cylinder 14 whose face opposite to that located in contact with this bottom is traversed in its diameter by a groove 15 provided with a flexible blade 16, for example metal.
  • the groove 15 is intended to house the end of one or two samples 30 of the porous material to be treated and to ensure, together with the flexible lamella
  • a sample of porous material that can be treated by means of the device 10 can be either in the form of a block or in the form of a thin layer covering one of the faces of a substrate of the blade type. Quartz, glass slide or the like - in which case two samples, identical or different, can be joined by mutual contact of their opposite faces to those covered by the porous material, and maintained as such thanks to the groove 15 and the flexible lamella 16-, again in the form of two thin layers each covering one of the faces of the same substrate.
  • the cylinder 14 is made of a material adapted to provide thermal insulation or samples of porous material 30 when the tank 11 is cooled or heated.
  • This insulating material is for example Teflon ® .
  • the shutter 21 has a dual function: in fact, it serves, on the one hand, to seal the tank 11 when desired and, on the other hand, to connect this tank to a vacuum ramp (not shown in Figure 1) if you want to put it under vacuum.
  • a vacuum ramp (not shown in Figure 1) if you want to put it under vacuum.
  • it is in the form of a straight tube 23, one end of which corresponds to the female ground run-in 22, while the other end 24 is provided with a vacuum valve 25. It laterally bears a bent tube 26 which terminates itself by a male conical grounding 27 adapted to be fitted into a female taper of the vacuum ramp, and whose landing zone on the right tube 23 is located opposite the ducking zone of the duct internal 28 of the vacuum valve 25 on the same tube when the valve is in the open position.
  • the communication between the tubes 23 and 26 can be alternately opened or closed by rotation of the key 29 of the vacuum valve 25.
  • the use of the device 10 is extremely simple. After having deposited at the bottom of the tank 11, around the base of the cylinder 14, the compound to be vaporized or sublimed, for example by means of a pasteur pipette or a teflon hose, one of the ends of the sample or samples of the porous material to be treated in the groove 15 of the cylinder 14.
  • the shutter 21 is fixed to the tank 11, the vacuum valve 25 being in the closed position.
  • Either the vaporization or the sublimation of the compound is intended to be carried out without using the vacuum, in which case this vaporization or sublimation is carried out directly by heating the vessel to the temperature chosen to vaporize or sublimate the compound.
  • Either the vaporization or the sublimation of the compound is intended to be carried out under vacuum, in which case the device 10 is connected to the vacuum ramp and the vessel 11 is immersed in liquid nitrogen or in a mixture of dry ice and alcohol. the time required to bring its internal temperature to a value below -40 ° C and thus avoid that, during the evacuation, the compound is brutally sucked and dispersed throughout the volume of the tank 11.
  • the device 10 shown in FIG. 1 does not make it possible to process more than two samples of one porous material at a time.
  • FIG. 2 illustrates a device 40 according to the invention in a second embodiment that makes it possible to process six to twelve samples of a porous material in parallel (depending on whether blocks or thin layers are deposited on substrate), while allowing control of this treatment by optical measurements.
  • this device 40 comprises six devices 10 as illustrated in FIG. 1, as well as a "cow's udder” connection 50 making it possible to connect these six devices to one and the same vacuum ramp (not shown in Figure 2), for the case where it is desired to establish the vacuum in the tanks 11 of the devices 10.
  • the connector 50 comprises, at its base, six pipes 51 which each end with a female conical grounding 52 adapted to fit on the male conical grounding 36 of the devices 10 and, at its top, a pipe 53 provided at its end with a male conical grounding 54 fit to fit on a female taper of the vacuum ramp.
  • each device 10 is provided with a shutter making it possible to hermetically close the tank 11 which it comprises - which eliminates any risk of contamination from one device to another - the device 40 offers the possibility of treating simultaneously samples of porous material by different compounds, provided that these treatments can be performed at the same temperature, the pressure may vary from one tank to another.
  • FIG. 3 shows a device 60 according to the invention in yet another embodiment which is specially designed to allow the simultaneous processing of a large number of samples, for example on an industrial scale, but without control of this treatment by optical measurements.
  • the device 60 comprises three elements, namely a cylindrical container 70, a removable cover 80 which is designed to be able to be hermetically fixed on the container 70 by interlocking and a shutter 21, also removable, which is intended to be hermetically fixed on the cover 80 by cooperation of a male circular lapping 81 that has the latter in a female circular lapping 22 that includes the shutter 21.
  • the container 70 encloses a plurality of tubes 71 arranged in rows and whose bottom is formed by the bottom 72 of this container. These tubes being intended to house the samples 30 of porous material to be treated, their wall 73 is made of a material capable of thermally isolating them from each other such as Teflon. At the center of the bottom of each tube is a solid cylinder 14 having the same structure and function as the cylinder 14 shown in FIG. 1. Thus, the samples 30 of porous material are thermally insulated both by the wall of the tubes. 71 in which they are housed and by the cylinder 14 present in these tubes. This cylinder further allows to channel the gas from vaporization or sublimation in the tubes 71 and to promote its diffusion along the samples of porous material.
  • the device 60 is used according to the same principle as the previous devices. However, since the tubes 71 do not include any individual closure means, they can only be used to treat all of the samples with one and the same compound, otherwise the tubes may be contaminated with each other, unlike the device 40 of FIG.
  • the organic compound is a fluorophore, in this case dibenzoylmethanatobore difluoride
  • the MTS is a mesoporous silica of the MCM-41 family; its organized porosity thus consists of hollow spherical pores organized into hexagonal structures. The diameter of these pores is 25 ⁇ . In the present example, it is used in the form of two thin layers, 300 nm (nanometers) thick, each covering one of the faces of a quartz plate measuring 31 cm long and 8 cm wide and 1 mm thick.
  • the vessel 11 is made of quartz, is 42 cm long and 10 cm square, and of which the cylinder 14 located inside this tank is Teflon ® .
  • the quartz plate coated with the two thin layers of mesoporous silica is introduced into the tank 11 of the device 10 and inserted into the groove of the cylinder 14 located inside this tank.
  • About 0.5 mg of DBMBF 2 is deposited around the base of this cylinder.
  • the shutter 21 is fixed on the tank 11 and the device is connected to a vacuum ramp, the vacuum valve 25 being in the closed position.
  • the vessel 11 is cooled by immersing it in liquid nitrogen for 3 to 4 minutes.
  • the vacuum valve 25 is slowly opened, after slow pumping and obtaining a vacuum of 5.33 ⁇ 10 -3 Pa, the valve is closed again, the device 10 is disconnected from the vacuum manifold and the vessel 11 is immersed. in an oil bath heated to 25 ° C, the level of the oil being adjusted to heat the wall of the tank 11 over their entire height in order to prevent the DBMBF 2 gas condensing on said wall, thus making Optical measurements are difficult and sublimation is allowed to take place for 11 hours.
  • DBMBF 2 incorporation of DBMBF 2 into the pores of the mesoporous silica is monitored by measuring, at regular intervals (every hour), the absorbance at 350 nm and the fluorescence emitted by this compound at these thin layers. This, by means a Perkin ® Lambda 900 spectrophotometer and an SPEX Fluorolog 2 spectrofluorometer.
  • FIG. 4 represents the variation of the absorbance at 350 nm (in solid line) of DBMBF 2 and that of the fluorescence area (in dashed form) of DBMBF 2. obtained for an excitation wavelength of 350 nm, as observed during the first 7 hours of sublimation.
  • FIG. 5 represents the variation of the fluorescence area of DBMBF 2 as a function of the absorbance at 350 nm of this compound
  • FIG. 6 represents the evolution of the fluorescence spectrum of DBMBF 2 such that observed during the entire duration of the sublimation.
  • the absorbance and the fluorescence area of DBMBF 2 vary linearly as a function of the duration of sublimation for a given temperature (in this case, 25 ° C.) (FIG. 4),
  • the fluorescence area of the DBMBF 2 also varies linearly as a function of the absorbance of this compound (FIG. 5), and that the fluorescence spectrum of the DBMBF 2 remains unchanged throughout the duration of the sublimation.
  • Example 2 Incorporation of an Organic Compound into the Pores of an STM as Aggregates
  • This example differs from the previous one only in that the sublimation of DBMBF 2 is carried out at 70 ° C. in order to increase the rate of incorporation of this compound, and for 15 days.
  • the incorporation of DBMBF 2 into the mesoporous silica thin layers is also monitored by measuring, at different intervals (1:30, 3:00, 18:30, 21:30, 24h, 26h, 42h, 44h, 46h30, 48h30, 50h30, 65h, 67h, 70h, 72h, 74h, 89h45, 91h30, 93h30, 96h30, 98h30, 352h30, 354h30, 356h30, 358h30, 360h30, 362h30), the absorbance of this compound between 300 and 450 nm at these thin layers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

L'invention se rapporte à un procédé et à un dispositif d'incorporation d'un composé dans les pores d'un matériau poreux choisi parmi les matériaux microporeux et mésoporeux obtenus par le procédé sol-gel, ainsi qu'aux utilisations de ce procédé et de ce dispositif.Le procédé comprend la vaporisation ou la sublimation du composé dans une enceinte contenant le matériau poreux.Utilisations : dopage de matériaux microporeux et mésoporeux obtenus par le procédé sol-gel et, en particulier, de matériaux mésoporeux aux tensioactifs structurants, pour la fabrication de capteurs et multicapteurs chimiques, de tamis moléculaires, de membranes sélectives pour la filtration, de phases stationnaires pour la chromatographie, de matériaux optiques ou optoélectroniques.

Description

PROCEDE ET DISPOSITIF D'INCORPORATION D'UN COMPOSE DANS LES PORES D'UN MATERIAU POREUX ET LEURS
UTILISATIONS
DESCRIPTION
Domaine technique
La présente invention se rapporte à un procédé d'incorporation d'un composé dans les pores d'un matériau poreux et, plus précisément, d'un matériau poreux choisi parmi les matériaux microporeux et mésoporeux obtenus par le procédé sol-gel que l'on désignera plus simplement, dans ce qui suit, matériaux microporeux et mésoporeux sol-gel.
Elle se rapporte également à un dispositif permettant de mettre en œuvre ce procédé .
Le procédé selon l'invention, qui est applicable aussi bien à un composé organique que minéral, conduit, selon les conditions opératoires utilisées, à une incorporation de ce composé, soit sous la forme de monomères, soit sous la forme d'agrégats.
Dans ce qui précède et ce qui suit, on entend par "monomère", une molécule individualisée, tandis qu'on entend par "agrégat", un assemblage de plusieurs molécules liées entre elles par des liaisons non covalentes .
Un des objectifs de l'invention est l'incorporation, sous la forme de monomères, d'un composé organique et, plus particulièrement d'une molécule sonde - c'est-à-dire d'une molécule détectable, capable d' interagir spécifiquement avec une espèce moléculaire et d'en révéler la présence et, éventuellement, la concentration au sein d'un mélange complexe -, dans les pores d'un matériau microporeux ou mésoporeux sol-gel et, notamment, d'un matériau mésoporeux aux tensioactifs structurants.
Un matériau microporeux ou mésoporeux ainsi "dopé" par une molécule sonde trouve une application dans la fabrication de capteurs et multicapteurs chimiques et, plus spécialement, de capteurs et multicapteurs destinés à la détection et au dosage de polluants atmosphériques.
Il peut également trouver une application dans de nombreux autres domaines comme la fabrication de tamis moléculaires, de membranes sélectives pour la filtration, de phases stationnaires pour les chromatographies, notamment d'exclusion, ou encore de matériaux optiques tels que des filtres optiques, ou optoélectroniques en exploitant les propriétés non- linéaires d'un matériau dopé.
Etat de la technique antérieure
Schématiquement, le procédé sol-gel consiste à former une suspension colloïdale de particules d'oxydes (ou "sol") par hydrolyse et condensation d'un précurseur ou d'un mélange de précurseurs ioniques (sels) et/ou moléculaires (alkoxydes) , à sécher le sol de manière à obtenir un "gel" semi-rigide par condensation complémentaire dudit ou desdits précurseurs, et à soumettre ce gel à un traitement thermique de séchage et de densification.
Ce procédé permet de réaliser des matériaux très divers, se présentant sous forme de pièces massives, de poudres, de fibres ou de films, et notamment de films minces microporeux et mésoporeux aptes à servir, après incorporation de molécules sonde, de couches sensibles dans des capteurs et multicapteurs chimiques . II est généralement admis dans le domaine des matériaux sol-gel qu'un film microporeux comporte des pores d'un diamètre inférieur à 20 Â (angstrδms) , tandis qu'un matériau mésoporeux comporte des pores d'un diamètre allant de 20 Â à 5 μm (microns) . Les matériaux mésoporeux aux tensioactifs structurants (MTS) sont apparus il y a une dizaine d'années suite aux travaux de BECK et al . (J. Am . Chem . Soc , 1992, 114, 10834) [1] . Ces matériaux sont obtenus en polycondensant , selon le procédé sol-gel, des réseaux d'oxydes métalliques (alkoxydes de silicium notamment) en présence d'un agent tensioactif dont les molécules forment des micelles organisées à l'échelle nanoscopique .
Les MTS ont la particularité de présenter une double porosité : en effet, la polycondensation des réseaux d'oxydes métalliques autour des micelles d'agent tensioactif conduit à la formation d'un matériau inorganique poreux dont les pores forment une première porosité non organisée et qui contient un arrangement compact et ordonné de micelles organiques ; par calcinâtion de ces micelles, une deuxième porosité apparaît, qui est organisée contrairement à la précédente et dont la structure dépend directement de la taille des micelles et de leur arrangement tridimensionnel . Les MTS ont, comme autre particularité, de présenter des pores dont le diamètre est ajustable. En effet, il est possible de faire varier le diamètre des pores de la première porosité d'environ 5 à 18 Â, notamment par le choix des oxydes métalliques servant de précurseurs lors de la préparation des MTS, et de faire varier le diamètre des pores de la deuxième porosité d'environ 10 à 100 Â en jouant sur la longueur de la chaîne de l'agent tensioactif ou en utilisant un agent apte à gonfler les micelles d'agent tensioactif. Les caractéristiques des MTS qui viennent d'être évoquées en font un matériau particulièrement intéressant pour la réalisation de capteurs et multicapteurs chimiques et, notamment, de capteurs et multicapteurs destinés à détecter et quantifier les polluants atmosphériques.
En effet : d'une part, la porosité non organisée des MTS peut servir de tamis moléculaire et favoriser la diffusion des polluants de petite taille ou des gaz dont on veut étudier les interférences ; d'autre part, le diamètre des pores de la porosité organisée peut être ajusté de telle sorte que, après incorporation dans ces pores d'une molécule sonde capable d' interagir avec une famille de polluants, l'espace restant corresponde au diamètre cinétique d'un polluant particulier de cette famille. Ainsi, à la spécificité des molécules sonde vis-à-vis d'une famille de polluants, s'ajoute une spécificité du diamètre des pores vis-à-vis d'un polluant particulier de cette famille. Cette double spécificité permet d'éviter ou, à tout le moins, de limiter les risques d'interférence entre des polluants de même nature mais de taille différente.
L'incorporation de molécules sonde dans les pores de MTS en vue de l'utilisation de ces derniers comme couches sensibles de capteurs et multicapteurs chimiques, doit satisfaire à trois exigences principales :
- les molécules sonde ne doivent pas se décomposer au cours de leur incorporation sous peine de perdre leur réactivité vis-à-vis des polluants et leur aptitude à servir de révélateurs ;
- elles ne doivent pas se retrouver dans les pores sous la forme d'agrégats mais seulement sous la forme de monomères, la présence d'agrégats dans les pores affectant à la fois la diffusion des polluants vers les sites réactifs, la réactivité des molécules sonde vis-à-vis des polluants et les propriétés qui les rendent détectables ; et
- elles ne doivent pas non plus se retrouver dans les pores sous une forme solvatée pour des raisons identiques de gêne diffusionnelle et réactionnelle .
Ces contraintes existent également dans le cas de l'incorporation d'une molécule sonde dans les pores d'un matériau poreux sol -gel autre qu'un MTS. Autant un certain nombre de techniques ont été proposées à ce jour pour incorporer un composé dans les pores d'un matériau microporeux ou mésoporeux préparé par un procédé autre que le procédé sol-gel comme, par exemple, la sorption en phase liquide, la sorption en phase gazeuse, la sorption par réaction à l'état solide, l'échange d'ions (voir à cet égard la mise au point publiée par Schulz-Ekloff et al . dans Microporous and Mesoporous Materials, 2002, 51, 91-138, [4]) , autant les procédés visant à incorporer un composé dans les pores d'un matériau microporeux ou mésoporeux obtenu par le procédé sol-gel sont en nombre très limité.
En fait, il s'agit essentiellement de procédés qui consistent à ajouter le composé au sol avant que celui-ci ne se condense en gel. Ces procédés, qui sont notamment décrits dans les brevets US n°5,650,311 [2] et n°5,824,526 [3], présentent de multiples inconvénients.
En effet, dans la mesure où le sol comprend, en tant que solvants, de l'eau et de l'alcool, ils sont, en premier lieu, inadaptés à l'incorporation de composés sensibles à l'eau en raison d'un risque majeur d'hydrolyse de ces composés. Ils sont également inadaptés à l'incorporation de composés hydrophobes qui, du fait de leur faible solubilité dans l'eau et l'alcool, ne peuvent être incorporés qu'en de très petites quantités et vont avoir tendance à former des agrégats dans le sol et, partant, à se retrouver sous cette même forme dans le matériau final. Par ailleurs, au cours de la gélification du sol, les solvants interstitiels s'évaporent progressivement en entraînant avec eux des molécules du composé incorporé, créant ainsi un gradient de concentration de ce composé dans le matériau final.
Les procédés décrits dans les brevets US précités posent encore une autre difficulté qui est celle de parvenir à extraire totalement les solvants présents dans le matériau final, notamment lorsque ceux-ci interagissent avec la surface des pores, afin d'éviter que le composé incorporé ne soit présent dans les pores sous une forme solvatée. Enfin, ils ne permettent pas de contrôler l'incorporation du composé pendant que celle-ci s'effectue et ce n'est qu'après séchage du gel et évaporation des solvants résiduels, c'est-à-dire lorsque le composé incorporé a cessé de migrer vers la surface du matériau, qu'il devient possible de vérifier si l'incorporation s'est déroulée de manière satisfaisante.
Le problème se pose, par conséquent, de fournir un procédé d'incorporation d'un composé dans les pores un matériau microporeux ou mésoporeux sol-gel qui :
- permette, selon la destination de ce matériau, d'incorporer le composé uniquement sous la forme de monomères ou, au contraire, sous la forme d'agrégats,
- n'emploie pas ou que de façon très limitée de solvant,
- ne risque pas de provoquer une dégradation du composé, que ce soit par hydrolyse, décomposition thermique ou autre, - soit applicable au plus grand nombre possible de composés, qu'ils soient minéraux ou organiques, hydrophobes ou hydrophiles, ...,
- offre la possibilité, si on le souhaite, de contrôler l'incorporation du composé au fur et à mesure qu'elle s'effectue, et qui de plus
- soit simple à mettre en œuvre et à des coûts acceptables et ce, aussi bien à une échelle industrielle qu'expérimentale. Ce problème est résolu par la présente invention qui propose un procédé d'incorporation d'un composé dans les pores d'un matériau poreux choisi parmi les matériaux microporeux et mésoporeux sol-gel, ainsi qu'un dispositif spécialement conçu pour mettre en œuvre ce procédé.
Exposé de l'invention
Le procédé d'incorporation d'un composé dans les pores d'un matériau poreux selon l'invention est caractérisé en ce qu'il comprend la vaporisation ou la sublimation de ce composé dans une enceinte contenant ledit matériau.
Ainsi, le procédé selon l'invention est basé sur l'utilisation d'un changement d'état physique du composé pour en obtenir l'incorporation dans les pores d'un matériau poreux, ce changement consistant, soit en un passage de l'état liquide à l'état gazeux, soit en un passage direct de l'état solide à l'état gazeux. La température à laquelle un composé se vaporise ou se sublime dépend de la pression à laquelle il se trouve, en sorte qu'il est possible de jouer sur la pression pour modifier cette température. Ceci est parfaitement illustré par le diagramme de phases P/T d'un corps pur. Les températures de vaporisation et de sublimation disponibles dans la littérature correspondent, en l'absence d'indications contraires, à celles établies à la pression atmosphérique et sont susceptibles d'être substantiellement abaissées par l'utilisation de pressions inférieures, c'est-à-dire par l'utilisation du vide.
Selon l'invention, les conditions de température et de pression dans lesquelles le composé est vaporisé ou sublimé sont choisies, en premier lieu, en fonction de la température de décomposition thermique de ce composé .
En effet, il est souhaitable que la température à laquelle le composé est vaporisé ou sublimé soit inférieure d'au moins 30°C et, de préférence, d'au moins 50°C à la température à laquelle il se décompose, afin d'écarter tout risque de décomposition thermique dudit composé au cours de son incorporation dans les pores du matériau poreux. La température de décomposition thermique d'un grand nombre de composés est connue, auquel cas elle est généralement indiquée dans des ouvrages de référence tels que le MERCK INDEX, douzième édition, ou des catalogues de fournisseurs de produits chimiques comme le catalogue de la société ALDRICH-CHIMIE. Lorsque la température de décomposition d'un composé n'est pas connue, alors elle peut être déterminée, par exemple en portant le composé à des températures de plus en plus élevées et en surveillant la température à laquelle il se consume ou celle à laquelle il perd ses propriétés, par exemple d'absorbance, de fluorescence, de luminescence ou autre .
Aussi, quel que soit le composé devant être incorporé, il est possible de définir, pour ce composé, une température opératoire maximale, cette température étant, conformément à l'invention, inférieure d'au moins 30°C et, de préférence, d'au moins 50°C à la température de décomposition thermique dudit composé, selon la marge de sécurité que l'on souhaite se ménager.
Les conditions de température et de pression auxquelles le composé est vaporisé ou sublimé sont choisies, en second lieu, en fonction de la nécessité et/ou de la possibilité que l'on a à opérer à une température inférieure à celle à laquelle il se vaporise ou se sublime à la pression atmosphérique, compte tenu notamment des appareillages dont on dispose . Ainsi, par exemple, dans le cas où le composé présente, à la pression atmosphérique, une température de vaporisation ou de sublimation très élevée (de l'ordre de plusieurs centaines de degrés) et où on ne peut pas ou on ne veut pas opérer à cette température, pour des raisons d'équipement, de sécurité ou plus simplement de confort opératoire, alors on opérera sous vide, à une pression permettant d'abaisser la température de vaporisation ou de sublimation du composé à une valeur acceptable.
Par contre, dans le cas où le composé présente une grande tension de vapeur et est apte à se vaporiser ou se sublimer à une température peu ou moyennement élevée à la pression atmosphérique, on pourra aussi bien opérer à cette température et cette pression qu'à une température inférieure sous vide. Un autre critère susceptible d'être pris en considération pour le choix des conditions de température et de pression auxquelles le composé est vaporisé ou sublimé, est la vitesse à laquelle on souhaite incorporer ce dernier dans les pores du matériau poreux, cette vitesse étant elle-même choisie en fonction de la forme moléculaire (monomères ou agrégats) sous laquelle on désire que le composé soit présent dans les pores.
En effet, pour incorporer le composé dans les pores du matériau poreux uniquement sous la forme de monomères, il est souhaitable d'utiliser des conditions de température et de pression propres à permettre à la vaporisation ou à la sublimation de s'effectuer très lentement de façon à ce que la diffusion du composé à l'intérieur des pores soit la plus homogène possible sur l'ensemble du matériau.
Par contre, lorsque la contrainte d'incorporation du composé dans les pores du matériau poreux sous la forme de monomères n'existe pas et que la finalité de la vaporisation ou de la sublimation est d'incorporer la plus grande quantité possible de composé dans les pores, par exemple si ce matériau est destiné à servir de tamis moléculaires, alors il est souhaitable d'utiliser des conditions de température et de pression propres à permettre un remplissage des pores le plus rapide possible.
Or, pour une pression donnée, un composé se vaporise ou se sublime d'autant plus vite que la température du milieu dans lequel il se trouve est plus élevée, tandis que, pour une température donnée, un composé se vaporise ou se sublime d'autant plus vite que la pression qui règne dans le milieu dans lequel il se trouve est plus faible.
Aussi, il est possible de moduler la vitesse à laquelle un composé se vaporise ou se sublime en jouant sur la température ou la pression à laquelle on effectue cette vaporisation ou sublimation.
Selon l'invention, on essaie d'opérer, de préférence, à une température la plus proche possible de la température ambiante et, en tout état de cause, à une température qui n'excède pas 200°C.
De ce fait, on vaporise ou sublime le composé, de préférence, sous vide, auquel cas le procédé selon l'invention comprend : a) la mise sous vide de l'enceinte contenant le composé et le matériau poreux jusqu'à obtention du vide désiré, et optionnellement, b) le chauffage de l'enceinte à la température choisie pour vaporiser ou sublimer le composé . Quoi qu'il en soit, c'est la température choisie pour opérer qui détermine si le composé est vaporisé ou sublimé. En effet, s'il se trouve, à cette température, sous une forme liquide, alors il est vaporisé, tandis que s'il se trouve sous une forme solide, par exemple pulvérulente, ou pâteuse, alors il est sublimé.
Lorsque le composé se présente sous la forme d'une pâte, l'invention prévoit de le sublimer sous vide après en avoir séparé les agglomérats par dissolution au moins partielle de la pâte dans un solvant volatil qui sera ensuite aisément éliminé à la température ambiante lors de l'installation du vide dans l'enceinte contenant le composé et le matériau poreux.
Selon une disposition avantageuse de l'invention, dans le cas où il est prévu de vaporiser ou de sublimer le composé sous vide, l'enceinte contenant le composé et le matériau poreux est refroidie à une température inférieure ou égale à -40°C juste avant sa mise sous vide, afin d'éviter que cette dernière ne provoque une brusque aspiration et une dispersion du composé dans tout le volume de l'enceinte. Ce refroidissement peut, par exemple, être obtenu en immergeant l'enceinte dans de l'azote liquide ou dans un bain de carboglace et d'éthanol. Selon une autre disposition avantageuse de l'invention, dans le cas où il est prévu de vaporiser ou de sublimer le composé à une température supérieure à la température ambiante, l'enceinte contenant le composé et le matériau poreux est chauffée par immersion dans un bain d'huile maintenu à la température choisie pour vaporiser ou sublimer le composé, ce mode de chauffage garantissant, en effet, un apport particulièrement homogène de chaleur.
Toutefois, elle peut également être chauffée au moyen d'un bain d'eau chaude ou de résistances électriques chauffantes.
Quel que soit le mode de chauffage de l'enceinte retenu, le matériau poreux est, de préférence, isolé thermiquement de la paroi et du fond de cette enceinte de manière à ce que le composé sous forme gazeuse puisse se condenser ou se solidifier, une fois au contact des parois des pores du matériau poreux.
L'utilisation d'un bain d'huile n'est pas réservée au seul cas où le composé est destiné à être vaporisé ou sublimé à une température supérieure à la température ambiante. En effet, elle peut aussi être envisagée pour opérer à température ambiante en vue de garantir une homogénéité de la température sur le pourtour de l'enceinte et le maintien de cette enceinte à une température constante.
Selon 1 ' invention, la quantité de composé mise à vaporiser ou à sublimer est, de préférence, choisie en fonction du volume poreux du matériau poreux et de la quantité de composé que l'on souhaite incorporer dans les pores de ce matériau selon sa destination.
Il est, en effet, possible de déterminer la quantité optimale de composé devant être présente dans les pores du matériau poreux en fonction de l'utilisation qui lui est réservée. Ainsi, par exemple, dans le cas où il est destiné à servir de couche sensible dans un capteur chimique et où, de ce fait, le composé à incorporer est une molécule sonde comme un fluorophore, il convient que la quantité de fluorophore présente dans les pores soit suffisamment élevée pour qu'il soit facile de le détecter, mais sans l'être trop pour que l'analyte devant être détecté puisse pénétrer dans les pores, interagir avec le fluorophore et pour que cette interaction se traduise par une variation significative de la fluorescence émise par le fluorophore.
Le volume poreux d'un matériau poreux peut être mesuré par les techniques d'adsorption et de désorption de gaz à basse température. En divisant ce volume poreux par le volume d'une molécule du composé à incorporer, on obtient le nombre maximal de molécules de ce composé susceptible d'être incorporé par unité de poids de matériau poreux. Connaissant le poids moléculaire du composé, on peut alors aisément calculer la quantité maximale en poids de composé susceptible d'être incorporée par unité de poids de matériau poreux et, partant, d'être mise à vaporiser ou sublimer pour saturer les pores d'1 g de matériau.
Une fois cette quantité maximale connue, il est alors possible de déterminer, par quelques essais expérimentaux, la quantité de composé à vaporiser ou à sublimer la plus adaptée au résultat recherché.
Selon encore une disposition avantageuse de l'invention, le procédé comprend une ou plusieurs opérations de contrôle de l'incorporation du composé au fur et à mesure que celle-ci s'effectue. Une telle disposition s'avère être, en effet, très utile lorsque l'on souhaite définir les conditions opératoires (température, pression et durée de la vaporisation ou de la sublimation, quantité de composé à utiliser, ...) les plus adaptées à l'obtention d'un résultat particulier (par exemple, l'incorporation du composé uniquement sous la forme de monomères ou l'obtention d'un taux spécifique de remplissage des pores) . Elle permet également de vérifier que l'incorporation du composé s'effectue correctement par rapport au résultat recherché et, si nécessaire, de modifier les conditions opératoires en conséquence.
De préférence, ce contrôle est réalisé par des mesures optiques, par exemple d'absorbance, de fluorescence, de luminescence ou analogue.
Selon l'invention, le matériau poreux se présente préfèrentiellement sous la forme d'un bloc, par exemple parallélépipédique, ou d'une ou plusieurs couches minces recouvrant l'une et/ou l'autre des faces d'un substrat inerte comme une lame de quartz ou de verre .
En variante, il est toutefois possible de mettre en œuvre le procédé de l'invention avec un matériau poreux pulvérulent . Le procédé selon l'invention s'est avéré convenir aussi bien à l'incorporation de composés dans les pores de matériaux inorganiques que dans ceux de matériaux ou hybrides organique-inorganiques, et, en particulier dans les pores de MTS, tous ces matériaux pouvant être à base de silicium, de vanadium, de titane, d'étain, de zirconium, de gallium ou encore d'un mélange de ceux-ci.
Le procédé selon l'invention présente de nombreux avantages. En effet : - la vaporisation ou la sublimation du composé à incorporer n'utilisant aucun solvant, le procédé évite à la fois que ce composé ne se retrouve dans les pores sous une forme solvatée et qu'un gradient de concentration du composé ne s'instaure au sein du matériau poreux ;
- au contraire, il aboutit à une distribution très homogène du composé dans les pores du matériau poreux ;
- il offre la possibilité d'incorporer le composé sous une forme (monomères ou agrégats) et en une quantité parfaitement adaptées à l'usage auquel le matériau poreux est destiné ;
- il permet de vérifier, au fur et à mesure que l'incorporation s'effectue, que celle-ci répond bien aux objectifs que l'on s'est fixé et de modifier, le cas échéant, les conditions opératoires en conséquence ;
- il utilise de très faibles quantités de composé, y compris dans le cas où l'on cherche à saturer les pores du matériau poreux, en sorte que, lorsque la vaporisation ou la sublimation est réalisée en présence d'une source de chaleur, on n'observe pas de gradient de température dans l'enceinte dans laquelle s'effectue cette vaporisation ou sublimation ; - il est applicable à un très grand nombre de composés puisqu'en principe tous les composés sont vaporisables ou sublimables, ainsi qu'à des matériaux poreux très différents ;
- il est simple à mettre en œuvre et offre, notamment, la possibilité de travailler à des températures raisonnables ; il ne nécessite pas d'appareillages complexes et coûteux.
A cet égard, la présente invention a également pour objet un dispositif qui permet de mettre en œuvre le procédé selon l'invention et qui comprend : — une enceinte munie d'une ouverture,
- des moyens pour immobiliser au moins un échantillon de matériau poreux dans l'enceinte,
- des moyens pour isoler thermiquement cet échantillon de la paroi et du fond de l'enceinte, - des moyens pour fermer hermétiquement l'enceinte, et
- des moyens pour raccorder l'enceinte à un système producteur de vide.
Selon un premier mode de réalisation préféré du dispositif, les moyens pour immobiliser l'échantillon de matériau poreux servent aussi de moyens pour l'isoler thermiquement de la paroi et du fond de l'enceinte.
De préférence, ces moyens comprennent un support, par exemple de forme cylindrique, cubique ou tronconique, qui est constitué d'un matériau isolant comme du téflon®, qui est solidaire du fond de l'enceinte et qui est muni de moyens pour maintenir ledit échantillon. Ces moyens de maintien consistent, par exemple, en une rainure traversant la face du support opposée à celle en contact avec le fond de l'enceinte et dans laquelle peut être insérée, soit une des extrémités de l'échantillon si celui-ci se présente sous la forme d'un bloc ou d'une ou plusieurs couches minces recouvrant l'une et/ou l'autre des faces d'un substrat, soit la base d'une coupelle contenant l'échantillon si celui-ci se présente sous une forme pulvérulente .
Le maintien de l'échantillon ou de la coupelle peut être renforcé par la présence, le long de cette rainure, d'un ou plusieurs éléments élastiques ou flexibles .
Par ailleurs, dans ce premier mode de réalisation préféré du dispositif, les moyens pour fermer hermétiquement l'enceinte servent aussi de moyens pour la raccorder au système producteur de vide tel qu'une rampe à vide.
Avantageusement, ces moyens comprennent un obturateur constitué par un premier tube qui est muni, à l'une de ses extrémités, de moyens pour sa fixation hermétique sur l'enceinte et, à l'autre de ses extrémités, d'un robinet à vide, et qui porte latéralement un deuxième tube terminé par des moyens pour sa connexion au système producteur de vide, la zone d'abouchement du deuxième tube sur le premier étant telle que la communication entre ces deux tubes peut être ouverte ou fermée par rotation du robinet à vide.
De préférence, l'enceinte est constituée d'un matériau transparent comme du quartz ou du verre, pour permettre un contrôle, par des mesures optiques, de 1 ' incorporation du composé au fur et à mesure que celle-ci s'effectue.
Avantageusement, l'enceinte est une cuve optique à quatre faces. Selon un autre mode réalisation préféré du dispositif, celui-ci comprend de plus des moyens pour le raccorder conjointement avec au moins un autre dispositif tel que précédemment défini, à un système producteur de vide . Selon encore un autre mode de réalisation préféré du dispositif, l'enceinte contient une pluralité de tubes propres à contenir chacun au moins un échantillon de matériau poreux, chaque tube étant muni de moyens pour immobiliser l'échantillon qu'il contient et de moyens pour l'isoler thermiquement des autres tubes,- du fond de l'enceinte, et, le cas échéant, de la paroi de cette enceinte.
Dans ce dernier mode de réalisation préféré du dispositif, les moyens pour immobiliser l'échantillon de matériau poreux servent aussi à l'isoler thermiquement du fond de l'enceinte.
De préférence, ces moyens comprennent, là également, un support constitué d'un matériau isolant, qui est solidaire du fond de l'enceinte et qui est muni de moyens pour maintenir ledit échantillon.
Par ailleurs, les moyens pour isoler thermiquement l'échantillon de matériau poreux des autres tubes et, le cas échéant, de la paroi de l'enceinte sont constitués par la paroi du tube dans lequel il se trouve, cette paroi étant formée d'un matériau isolant comme du téflon . Dans ce dernier mode de réalisation préféré du dispositif, les moyens pour fermer hermétiquement l'enceinte servent également de moyens pour la raccorder au système producteur de vide et comprennent, d'une part, un couvercle apte à être fixé hermétiquement sur l'enceinte, et, d'autre part, un obturateur constitué par un premier tube qui est muni, à l'une de ses extrémités, de moyens pour sa fixation hermétique sur le couvercle et, à l'autre de ses extrémités, d'un robinet à vide, et qui porte latéralement un deuxième tube terminé par des moyens pour sa connexion au système producteur de vide, la zone d'abouchement du deuxième tube sur le premier étant telle que la communication entre ces deux tubes peut être ouverte ou fermée par rotation du robinet à vide .
L'invention a de plus pour objet l'utilisation d'un procédé ou d'un dispositif tel que précédemment défini, pour incorporer un composé organique sous la forme de monomères dans les pores d'un matériau poreux choisi parmi les matériaux microporeux et mésoporeux sol-gel et, plus particulièrement, dans les pores d'un matériau mésoporeux aux tensioactifs structurants (MTS) , tous ces matériaux pouvant être à base de silicium, de vanadium, de titane, d'étain, de zirconium, de gallium ou encore d'un mélange de ceux-ci.
A titre d'exemples de MTS, on peut citer ceux connus sous les appellations M41S, MCM-41, MCM-48, SBA, HMS, MSU, FSM-16, PCH et ZSM. De préférence, le matériau poreux se présente sous la forme d'un bloc ou d'une ou plusieurs couches minces recouvrant l'une et/ou l'autre des faces d'un substrat inerte, tandis que le composé est une molécule sonde apte à détecter et, éventuellement, quantifier un analyte, c'est-à-dire en pratique un marqueur ou un ligand couplé à un marqueur.
Dans le cadre de l'invention, on entend par "marqueur", une molécule douée d'une propriété physique particulière qui la rend détectable et identifiable. Par ailleurs, on entend par "ligand", une molécule capable d' interagir avec un analyte par collision ou en formant avec lui un complexe par un lien physique ou chimique . Ainsi, selon l'aptitude du marqueur à interagir avec l' analyte, il peut être utilisé seul ou conjugué à un ligand apte, lui, à interagir avec ledit analyte .
A titre d'exemples de marqueurs susceptibles d'être utilisés dans le cadre de l'invention, on peut citer les fluorophores comme le
Bodipy, la 1, 3-diphényl-l, 3-dipropanedione, le difluorure dibenzoylméthanatobore et ses dérivés
(naphtoyl-benzoyl, biphénylcarbonyl-benzoyl , biphényl- carbonyl-naphtoyl, méthoxybenzoyl-benzoyl) , la phényl- hydrazine et ses dérivés nitrés et chlorés, la 0- pentafluorobenzylhydroxylamine, 1 ' anthracène et ses dérivés, le bi-anthryl et ses dérivés, le pyrène et ses dérivés, le pyrénol, la pyranine, la fluoroscéine, le vert orégon, la rhodamine et ses dérivés, la cyanine et ses dérivés, les porphyrines, les phtalocyanines, les porphyrazines, le tétracyanoquinodiméthane et ses dérivés ; les luminophores comme le luminol et la luciférine ; les chromophores comme le xanthène, 1 ' anthraquinone, les monoazoïques, les diazoïques et le triphénylméthane .
Un matériau microporeux ou mésoporeux obtenu par le procédé sol-gel et dont les pores renferment une molécule sonde sous la forme de monomères, présente un grand intérêt pour la fabrication de capteurs chimiques et, a fortiori, de multicapteurs chimiques (un multicapteur étant constitué d'une pluralité de capteurs) destinés à détecter ou à doser un ensemble d'analytes et, plus spécialement, des polluants atmosphériques (CO, C02, N02, NO, S02, CH20 et autres aldéhydes, benzène, toluène, xylènes, éthylbenzène ...) ou des molécules gazeuses utilisées dans le domaine de la microélectronique (Cl2, BC13, AlCl3....).
Ainsi, par exemple, un matériau renfermant comme molécule sonde, de la phénylhydrazine, l'un de ses dérivés nitrès ou chlorés, ou de la 0- pentafluorobenzylhydroxylamine pourra être utilisé pour capter le formaldéhyde ou d'autres aldéhydes présents sous forme gazeuse dans l'air. Un matériau renfermant comme molécule sonde, de la 1, 3-diphényl-l, 3-dipropanedione pourra être utilisé pour capter les gaz BC13 et A1C13.
Un matériau renfermant comme molécule sonde, du difluorure dibenzoylméthanatobore ou l'un de ses dérivés (naphtoyl-benzoyl, biphénylcarbonyl- benzoyl, biphénylcarbonyl-naphtoyl, méthoxybenzoyl- benzoyl) pourra être utilisé pour capter le benzène et ses dérivés substitués, tandis qu'un matériau renfermant comme molécule sonde, une porphyrine ou une phtalocyanine métallée pourra être utilisé pour capter le CO, le NO et/ou le N02.
L'invention a donc encore pour objet l'utilisation d'un procédé ou d'un dispositif tel que précédemment défini, pour la fabrication d'un capteur ou multicapteur chimique, notamment pour la détection ou le dosage de polluants atmosphériques.
Outre les dispositions qui précédent, l'invention comprend encore d'autres dispositions qui ressortiront du complément de description qui suit, qui est donné à titre illustratif et non limitatif, en référence aux dessins annexés.
Brève description des dessins
La figure 1 est une vue schématique en coupe verticale d'un dispositif selon l'invention dans un premier mode de réalisation.
La figure 2 est une vue schématique en coupe verticale d'un dispositif selon l'invention dans un deuxième mode de réalisation. La figure 3 est une vue schématique partielle en coupe verticale d'un dispositif selon l'invention dans un troisième mode de réalisation.
La figure 4 est un graphique illustrant la variation de l'absorbance (en trait continu) et celle de l'aire de fluorescence (en tirets) du difluorure dibenzoylméthanatobore (DBMBF2) , après incorporation dans les pores d'un MTS par le procédé selon l'invention, en fonction de la durée de la sublimation de ce composé lorsque cette sublimation est réalisée à une pression de 5,33.10"3 Pa et une température de 25°C. La figure 5 est un graphique illustrant la variation de l'aire de fluorescence du DBMBF2, après incorporation dans les pores d'un MTS par le procédé selon l'invention, en fonction de l'absorbance de ce composé lorsque sa sublimation est réalisée à une pression de 5,33.10"3 Pa et une température de 25°C.
La figure 6 est un graphique illustrant l'évolution du spectre de fluorescence du DBMBF2, après incorporation dans les pores d'un MTS par le procédé selon 1 ' invention, en fonction de la durée de la sublimation de ce composé lorsque cette sublimation est réalisée à une pression de 5,33.10"3 Pa et une température de 25°C.
La figure 7 est un graphique illustrant l'évolution du spectre d'absorption du DBMBF2, après incorporation dans les pores d'un MTS par le procédé selon l'invention, en fonction de la durée de la sublimation de ce composé lorsque cette sublimation est réalisée à une pression de 5,33.10~3 Pa et une température de 75°C. La figure 8 est un graphique illustrant la variation de l'absorbance du DBMBF2, après incorporation dans les pores d'un MTS par le procédé selon l'invention, en fonction de la durée de la sublimation de ce composé lorsque cette sublimation est réalisée à une pression de 5,33.10"3 Pa et une température de 75°C. Sur les figures 1 à 3, les mêmes références servent à désigner les mêmes éléments.
Expose détaillé de modes de réalisation d'un dispositif selon l'invention
On se réfère tout d'abord à la figure 1 qui montre un dispositif 10 selon l'invention dans un mode de réalisation spécialement conçu pour incorporer un composé dans les pores d'un matériau poreux par le procédé selon l'invention, tout en contrôlant cette incorporation par des mesures optiques. De plus, ce mode de réalisation est conçu pour effectuer aussi bien une vaporisation qu'une sublimation et ce, quelles que soient la température et la pression choisies.
Comme visible sur la figure 1, ce dispositif comprend deux éléments, à savoir une cuve 11 et un obturateur amovible 21 qui est prévu pour pouvoir être fixé hermétiquement sur la cuve 11 par emboîtement d'un rodage circulaire mâle 12 que présente cette dernière dans un rodage circulaire femelle 22 que comporte l'obturateur 21.
La cuve 11, dans laquelle le matériau poreux est destiné à être placé, est à section droite carrée et est réalisée dans un matériau transparent, de préférence du quartz, afin que les mesures optiques puissent être effectuées au fur et à mesure que se produit la vaporisation ou la sublimation du composé.
A l'opposé du rodage mâle 12, la cuve 11 présente un fond plat 13 au centre duquel est fixé un cylindre plein 14 dont la face opposée à celle située au contact de ce fond est traversée en son diamètre par une rainure 15 munie d'une lamelle flexible 16, par exemple métallique.
Comme visible sur la figure 1, la rainure 15 est destinée à loger l'extrémité d'un ou de deux échantillons 30 du matériau poreux devant être traité et à assurer, conjointement avec la lamelle flexible
16, leur immobilisation dans la cuve 11.
Un échantillon de matériau poreux susceptible d'être traité au moyen du dispositif 10 peut se présenter soit sous la forme d'un bloc, soit sous la forme d'une couche mince recouvrant l'une des faces d'un substrat du type lame de quartz, lame de verre ou analogue - auquel cas, deux échantillons, identiques ou différents, peuvent être accolés par contact mutuel de leurs faces opposées à celles recouvertes par le matériau poreux, et maintenus tels quels grâce à la rainure 15 et à la lamelle flexible 16-, soit encore sous la forme de deux couches minces recouvrant chacune l'une des faces d'un même substrat.
Conformément à l'invention, le cylindre 14 est constitué d'un matériau propre à assurer une isolation thermique du ou des échantillons 30 de matériau poreux lorsque la cuve 11 est refroidie ou chauffée. Ce matériau isolant est par exemple du téflon®.
L'obturateur 21 a une double fonction : en effet, il sert, d'une part, à fermer hermétiquement la cuve 11 lorsqu'on le souhaite et, d'autre part, à raccorder cette cuve à une rampe à vide (non représentée sur la figure 1) si l'on désire la mettre sous vide. De ce fait, il se présente sous la forme d'un tube droit 23 dont une extrémité correspond au rodage circulaire femelle 22 tandis que l'autre extrémité 24 est munie d'un robinet à vide 25. Il porte latéralement un tube coudé 26 qui se termine lui-même par un rodage conique mâle 27 propre à être emboîté dans un rodage conique femelle de la rampe à vide, et dont la zone d'abouchement sur le tube droit 23 est située en regard de la zone d'abouchement du conduit interne 28 du robinet à vide 25 sur ce même tube lorsque ce robinet est en position ouverte. Ainsi, la communication entre les tubes 23 et 26 peut être alternativement ouverte ou fermée par rotation de la clé 29 du robinet à vide 25. L'utilisation du dispositif 10 est extrêmement simple. Après avoir déposé au fond de la cuve 11, autour de la base du cylindre 14, le composé devant être vaporisé ou sublimé, par exemple au moyen d'une pipette pasteur ou d'un tuyau souple en téflon , on insère l'une des extrémités du ou des échantillons du matériau poreux devant être traité dans la rainure 15 du cylindre 14.
On fixe l'obturateur 21 sur la cuve 11, le robinet à vide 25 étant en position fermée. Soit la vaporisation ou la sublimation du composé est prévue pour être réalisée sans utilisation du vide, auquel cas on procède directement à cette vaporisation ou sublimation en chauffant la cuve à la température choisie pour vaporiser ou sublimer le composé. Soit la vaporisation ou la sublimation du composé est prévue pour être réalisée sous vide, auquel cas on connecte le dispositif 10 à la rampe à vide et on plonge la cuve 11 dans de l'azote liquide ou dans un mélange de carboglace et d'alcool le temps nécessaire pour amener sa température interne à une valeur inférieure à -40°C et éviter ainsi que, lors de la mise sous vide, le composé ne soit brutalement aspiré et dispersé dans tout le volume de la cuve 11. On ouvre alors le robinet à vide 25 et on laisse le vide s'installer dans la cuve 11. Une fois le vide désiré obtenu, on referme ce robinet et on laisse la vaporisation ou la sublimation du composé s'effectuer, éventuellement en présence d'une source de chaleur si la température choisie pour réaliser cette vaporisation ou sublimation est supérieure à la température ambiante .
Il résulte de ce qui précède que le dispositif 10 représenté sur la figure 1 ne permet pas de traiter plus de deux échantillons d'un matériau poreux à la fois.
Aussi la figure 2 illustre un dispositif 40 selon l'invention dans un deuxième mode de réalisation qui permet de traiter en parallèle de six à douze échantillons d'un matériau poreux (selon qu'il s'agit de blocs ou de couches minces déposées sur substrat) , tout en permettant un contrôle de ce traitement par des mesures optiques .
Pour ce faire, ce dispositif 40 comprend six dispositifs 10 tels qu'illustrés sur la figure 1, ainsi qu'un raccord "pis de vache" 50 permettant de relier ces six dispositifs à une seule et même rampe à vide (non représentée sur la figure 2) , pour le cas où l'on souhaite établir le vide dans les cuves 11 des dispositifs 10. De ce fait, le raccord 50 comporte, à sa base, six tubulures 51 qui se terminent chacune par un rodage conique femelle 52 propre à s'emboîter sur le rodage conique mâle 36 des dispositifs 10 et, à son sommet, une tubulure 53 munie à son extrémité d'un rodage conique mâle 54 propre à s'emboîter sur un rodage conique femelle de la rampe à vide.
Dans la mesure où chaque dispositif 10 est muni d'un obturateur permettant de fermer hermétiquement la cuve 11 qu'il comporte - ce qui supprime tout risque de contamination d'un dispositif à l'autre -, le dispositif 40 offre la possibilité de traiter simultanément des échantillons de matériau poreux par des composés différents, pour autant que ces traitements puissent être réalisés à une même température, la pression pouvant varier d'une cuve à 1 ' autre .
La figure 3 montre un dispositif 60 selon l'invention dans encore un autre mode de réalisation qui est spécialement conçu pour permettre le traitement simultané d'un grand nombre d'échantillons, par exemple à une échelle industrielle, mais sans contrôle de ce traitement par des mesures optiques.
Comme visible sur la figure 3, le dispositif 60 comprend trois éléments, à savoir un récipient cylindrique 70, un couvercle amovible 80 qui est prévu pour pouvoir être fixé hermétiquement sur le récipient 70 par emboîtement et un obturateur 21, également amovible, qui est destiné à être fixé hermétiquement sur le couvercle 80 par coopération d'un rodage circulaire mâle 81 que présente ce dernier dans un rodage circulaire femelle 22 que comporte l'obturateur 21.
Ce dernier ayant la même structure et la même fonction que l'obturateur 21 visible sur la figure 1, à savoir assurer une fermeture hermétique du récipient 70 d'une part, et permettre son raccordement à une rampe à vide d'autre part, il n'est que partiellement représenté sur la figure 3.
Le récipient 70 renferme une pluralité de tubes 71 disposés en rangées et dont le fond est formé par le fond 72 de ce récipient. Ces tubes étant destinés à loger les échantillons 30 de matériau poreux devant être traités, leur paroi 73 est constitué d'un matériau propre à les isoler thermiquement les uns des autres comme du téflon . Au centre du fond de chaque tube se trouve un cylindre plein 14 ayant la même structure et la même fonction que le cylindre 14 représenté sur la figure 1. Ainsi, les échantillons 30 de matériau poreux sont isolés thermiquement à la fois par la paroi des tubes 71 dans lesquels ils sont logés et par le cylindre 14 présent dans ces tubes. Ce cylindre permet de plus de canaliser le gaz né de la vaporisation ou de la sublimation dans les tubes 71 et de favoriser sa diffusion le long des échantillons de matériau poreux. Le dispositif 60 s'utilise selon le même principe que les dispositifs précédents. Toutefois, comme les tubes 71 ne comportent aucun moyen de fermeture individuel, il ne peut être utilisé que pour traiter l'ensemble des échantillons par un seul et même composé, sous peine de contamination mutuelle des tubes, contrairement au dispositif 40 de la figure 2.
Exposé détaillé de modes de mise en œuvre d'un procédé selon l'invention
Exemple 1 : incorporation d'un composé organique dans les pores d'un MTS sous forme de monomères
Dans cet exemple :
- le composé organique est un fluorophore, en l'espèce du difluorure dibenzoylméthanatobore
(DBMBF2) qui est typiquement un composé s ' hydrolysant en présence de traces d'eau et qui est donc difficile à incorporer dans les pores d'un matériau poreux en milieu solvant. - le MTS est une silice mésoporeuse de la famille des MCM-41 ; sa porosité organisée est donc constituée de pores spheriques creux organisés en structures hexagonales. Le diamètre de ces pores est de 25 Â. Dans le présent exemple, elle est utilisée sous la forme de deux couches minces, de 300 nm (nanomètres) d'épaisseur, recouvrant chacune l'une des faces d'une lame de quartz mesurant 31 cm de long sur 8 cm de large et 1 mm d'épaisseur.
- l'incorporation du DBMBF dans les pores de la silice mésoporeuse est réalisée par sublimation
DBMBF2 à une température de 25°C et sous une pression de 5,33.10"3 Pa (4.10"5 torr) , au moyen d'un dispositif tel qu'illustré sur la figure 1, dont la cuve 11 est en quartz, mesure 42 cm de long sur 10 cm de côté, et dont le cylindre 14 situé à l'intérieur de cette cuve est en téflon®.
Pour ce faire, la lame de quartz revêtue des deux couches minces de silice mésoporeuse est introduite dans la cuve 11 du dispositif 10 et insérée dans la rainure du cylindre 14 situé à l'intérieur de cette cuve. On dépose autour de la base de ce cylindre environ 0,5 mg de DBMBF2. On fixe l'obturateur 21 sur la cuve 11 et on connecte le dispositif à une rampe à vide, le robinet à vide 25 étant en position fermée. On refroidit la cuve 11 en la plongeant dans de l'azote liquide pendant 3 à 4 mn.
Puis, on ouvre tout doucement le robinet à vide 25. Après pompage lent et obtention d'un vide de 5,33.10"3 Pa, on referme ce robinet. On déconnecte le dispositif 10 de la rampe à vide et on plonge la cuve 11 dans un bain d'huile chauffé à 25°C, le niveau de l'huile étant ajusté pour chauffer la paroi de la cuve 11 sur toute leur hauteur afin d'éviter que le DBMBF2 gazeux ne se condense sur ladite paroi, rendant ainsi difficiles les mesures optiques. On laisse la sublimation s'effectuer pendant 11 heures.
On effectue un suivi de l'incorporation du DBMBF2 dans les pores de la silice mésoporeuse en mesurant, à intervalles réguliers (toutes les heures) , l'absorbance à 350 nm et la fluorescence émise par ce composé au niveau de ces couches minces et ce, au moyen d'un spectrophotometre Perkin® Lambda 900 et d'un spectrofluorimètre SPEX Fluorolog 2.
Les résultats de ces mesures sont illustrés sur les figures 4 à 6. La figure 4 représente la variation de l'absorbance à 350 nm (en trait continu) du DBMBF2 et celle de l'aire de fluorescence (en tirets) du DBMBF2 obtenue pour une longueur d'onde d'excitation de 350 nm, telles qu'observées au cours des 7 premières heures de la sublimation.
La figure 5 représente, elle, la variation de l'aire de fluorescence du DBMBF2 en fonction de l'absorbance à 350 nm de ce composé, tandis que la figure 6 représente l'évolution du spectre de fluorescence du DBMBF2 telle qu'observée pendant toute la durée de la sublimation.
Ces figures montrent que :
- l'absorbance et l'aire de fluorescence du DBMBF2 varient linéairement en fonction de la durée de la sublimation pour une température donnée (en l'espèce, 25°C) (figure 4),
- l'aire de fluorescence du DBMBF2 varie également linéairement en fonction de l'absorbance de ce composé (figure 5) , et que - le spectre de fluorescence du DBMBF2 reste inchangé pendant toute la durée de la sublimation.
Ces résultats traduisent la présence, dans les pores de la silice mésoporeuse ainsi traitée, d'une seule espèce fluorescente correspondant à des monomères de DBMBF2. Par ailleurs, une absorbance à 350 nm égale à 0,065 est obtenue au bout de 7 heures de sublimation du DBMBF2.
A titre de comparaison, des essais réalisés par les inventeurs ont montré que lorsque ce composé est incorporé dans les pores de la même silice mésoporeuse par trempage d'échantillons identiques à ceux utilisés ci-dessus dans une solution de DBMBF2 10"5 M dans du cyclohexane exempt de traces d'eau, 10 jours de trempage s'avèrent nécessaires pour obtenir, après séchage à l'air libre, une absorbance à 350 nm de 0,065.
Exemple 2 : incorporation d'un composé organique dans les pores d'un MTS sous la forme d'agrégats
Cet exemple ne se distingue du précédent qu'en ce que la sublimation du DBMBF2 est réalisée à 70°C afin d'augmenter la vitesse d'incorporation de ce composé, et pendant 15 jours.
Dans cet exemple, on effectue également un suivi de l'incorporation du DBMBF2 dans les couches minces de silice mésoporeuse en mesurant, à différents intervalles (lh30, 3h, 18h30, 21h30, 24h, 26h, 42h, 44h, 46h30, 48h30, 50h30, 65h, 67h, 70h, 72h, 74h, 89h45, 91h30, 93h30, 96h30, 98h30, 352h30, 354h30, 356h30, 358h30, 360h30, 362h30) , l'absorbance de ce composé entre 300 et 450 nm au niveau de ces couches minces . Les résultats de ces mesures sont illustrés sur les figures 7 et 8. La figure 7, qui représente l'évolution du spectre d'absorption du DBMBF2 en fonction de la durée de la sublimation de ce composé, montre qu'au début de la sublimation, l'allure de ce spectre d'absorption reste inchangée mais que son intensité augmente, traduisant un remplissage des pores de la silice mésoporeuse par le DBMBF2. Puis, on observe un léger décalage spectral qui s'accentue au cours du temps et qui correspond à la formation d'agrégats. La figure 8, qui représente la variation de l'absorbance à 351 nm du DBMBF2 en fonction de la durée de la sublimation de ce composé, montre que, pour une longueur d'onde fixe (351 nm) , cette variation suit un premier régime linéaire puis s'incurve pour atteindre une valeur plateau correspondant à une saturation des pores de la silice mésoporeuse par le DBMBF2.
La mesure de 1 ' absorbance sur toute la longueur des couches minces de silice mésoporeuse indique une incorporation homogène du DBMBF2 dans les pores de ces couches minces.
DOCUMENTS CITES
[1] Beck et al., J. Am. Chem. Soc, 1992, 114, 10834 5 [2] US-A-5,650,311
[3] US-A-5,824,526
[4] Schulz-Ekloff et al., Microporous and Mesoporous Materials, 2002, 51, 91-138.
10

Claims

REVENDICATIONS
1. Procédé d'incorporation d'un composé dans les pores d'un matériau poreux choisi parmi les matériaux microporeux et mésoporeux obtenus par le procédé sol-gel, caractérisé en ce qu'il comprend la vaporisation ou la sublimation de ce composé dans une enceinte contenant ledit matériau.
2. Procédé selon la revendication 1, caractérisé en ce que la température à laquelle le composé est vaporisé ou sublimé est inférieure d'au moins 30°C et, de préférence, d'au moins 50°C à sa température de décomposition thermique.
3. Procédé selon la revendication 1 ou la revendication 2, caractérisé en ce que la température à laquelle le composé est vaporisé ou sublimé est au plus égale à 200°C.
4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le composé est vaporisé ou sublimé sous vide, auquel cas il comprend : a) la mise sous vide de l'enceinte contenant le composé et le matériau poreux jusqu'à obtention du vide désiré, et optionnellement b) le chauffage de l'enceinte à la température choisie pour vaporiser ou sublimer le composé .
5. Procédé selon la revendication 4, caractérisé en ce que l'enceinte contenant le composé et le matériau poreux est refroidie à une température inférieure ou égale à -40°C juste avant sa mise sous vide .
6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que, pour vaporiser ou sublimer le composé à une température supérieure à la température ambiante, l'enceinte contenant le composé et le matériau poreux est chauffée par immersion dans un bain d'huile maintenu à la température choisie pour vaporiser ou sublimer le composé .
7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le matériau poreux est isolé thermiquement de la paroi et du fond de l'enceinte.
8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend une ou plusieurs opérations de contrôle de l'incorporation du composé dans les pores du matériau poreux.
9. Procédé selon la revendication 8, caractérisé en ce que le contrôle est réalisé par des mesures optiques.
10. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le matériau poreux présent dans l'enceinte est sous la forme d'un bloc ou d'une ou plusieurs couches minces recouvrant l'une et/ou l'autre des faces d'un substrat inerte.
11. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le matériau poreux est un matériau inorganique ou hybride organique-inorganique .
12. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le matériau poreux est un matériau mésoporeux aux tensioactifs structurants (MTS) .
13. Dispositif (10, 40, 60) d'incorporation d'un composé dans les pores d'un matériau poreux choisi parmi les matériaux microporeux et mésoporeux obtenus par le procédé sol-gel, caractérisé en ce qu'il comprend : - une enceinte (11, 70) munie d'une ouverture,
- des moyens pour immobiliser au moins un échantillon du matériau poreux dans l'enceinte,
- des moyens pour isoler thermiquement cet échantillon de la paroi et du fond de l'enceinte,
- des moyens pour fermer hermétiquement l'enceinte, et
- des moyens pour raccorder l'enceinte à un système producteur de vide .
14. Dispositif selon la revendication 13, caractérisé en ce que les moyens pour immobiliser l'échantillon de matériau poreux servent aussi de moyens pour l'isoler thermiquement de la paroi et du fond de l'enceinte.
15. Dispositif selon la revendication 14, caractérisé en ce que les moyens pour immobiliser l'échantillon de matériau poreux et l'isoler thermiquement de la paroi et du fond de l'enceinte comprennent un support (14) constitué d'un matériau isolant, qui est solidaire du fond (13) de l'enceinte et qui est muni de moyens (15, 16) pour maintenir ledit échantillon.
16. Dispositif selon l'une quelconque des revendications 13 à 15, caractérisé en ce que les moyens pour fermer hermétiquement l'enceinte servent aussi de moyens pour la raccorder au système producteur de vide.
17. Dispositif selon la revendication 16, caractérisé en ce que les moyens pour fermer hermétiquement l'enceinte et la raccorder au système producteur de vide comprennent un obturateur (21) constitué par un premier tube (23) qui est muni, à l'une de ses extrémités, de moyens (22) pour sa fixation hermétique sur' 1 ' enceinte et, à l'autre de ses extrémités, d'un robinet à vide (25) , et qui porte latéralement un deuxième tube (26) terminé par des moyens (27) pour sa connexion au système producteur de vide, la zone d'abouchement du deuxième tube sur le premier étant telle que la communication entre ces deux tubes peut être fermée ou ouverte par rotation du robinet à vide .
18. Dispositif selon l'une quelconque des revendications 13 à 17, caractérisé en ce que l'enceinte (11) est constituée d'un matériau transparent .
19. Dispositif selon la revendication 18, caractérisé en ce que l'enceinte (11) est une cuve optique à quatre faces.
20. Dispositif (40) selon l'une quelconque des revendications 13 à 19, caractérisé en ce qu'il comprend de plus des moyens (50) pour le raccorder conjointement avec au moins un dispositif tel que défini dans l'une quelconque des revendications 13 à 19, à un système producteur de vide.
21. Dispositif (60) selon la revendication 13, caractérisé en ce que l'enceinte contient une pluralité de tubes (71) propres à contenir chacun au moins un échantillon de matériau poreux, chaque tube étant muni de moyens pour immobiliser l'échantillon qu'il contient et de moyens pour l'isoler thermiquement des autres tubes, du fond (72) de l'enceinte, et, le cas échéant, de la paroi de cette enceinte.
22. Dispositif selon la revendication 21, caractérisé en ce que les moyens pour immobiliser l'échantillon de matériau poreux servent aussi à l'isoler thermiquement du fond (72) de l'enceinte.
23. Dispositif selon la revendication 22, caractérisé en ce que les moyens pour immobiliser l'échantillon de matériau poreux et l'isoler thermiquement du fond (72) de l'enceinte comprennent un support (14) constitué d'un matériau isolant, qui est solidaire du fond (72) de l'enceinte et qui est muni de moyens (15, 16) pour maintenir ledit échantillon.
24. Dispositif selon l'une quelconque des revendications 20 à 23, caractérisé en ce que les moyens pour isoler thermiquement l'échantillon de matériau poreux des autres tubes (71) et, le cas échéant, de la paroi de l'enceinte sont constitués par la paroi (73) du tube (71) dans lequel il se trouve, cette paroi étant formée d'un matériau isolant.
25. Dispositif selon l'une quelconque des revendications 19 à 24, caractérisé en ce que les moyens pour fermer hermétiquement l'enceinte servent également de moyens pour la raccorder au système producteur de vide.
26. Dispositif selon la revendication 25, caractérisé en ce que les moyens pour fermer hermétiquement l'enceinte et pour la raccorder au système producteur de vide comprennent un couvercle (80) apte à être fixé hermétiquement sur l'enceinte ainsi qu'un obturateur (21) constitué par un premier tube (23) qui est muni, à l'une de ses extrémités, de moyens (22) pour sa fixation hermétique sur le couvercle et, à l'autre de ses extrémités, d'un robinet à vide (25) , et qui porte latéralement un deuxième tube (26) terminé par des moyens (27) pour sa connexion au système producteur de vide, la zone d'abouchement du deuxième tube sur le premier étant telle que la communication entre ces deux tubes peut être ouverte ou fermée par rotation du robinet à vide.
27. Utilisation d'un procédé selon l'une quelconque des revendications 1 à 12 ou d'un dispositif selon l'une quelconque des revendications 13 à 26 pour incorporer un composé organique sous la forme de monomères dans les pores d'un matériau poreux choisi parmi les matériaux microporeux et mésoporeux obtenus par le procédé sol-gel.
28. Utilisation selon la revendication 27, caractérisée en ce que le matériau poreux est un matériau mésoporeux aux tensioactifs structurants (MTS) .
29. Utilisation selon la revendication 27 ou la revendication 28, caractérisée en ce que le matériau poreux se présente sous la forme d'un bloc ou d'une ou plusieurs couches minces recouvrant l'une et/ou l'autre des faces d'un substrat inerte.
30. Utilisation selon l'une quelconque des revendications 27 à 29, caractérisée en ce que le composé est un marqueur ou un ligand couplé à un marqueur.
31. Utilisation selon la revendication 30, caractérisée en ce que le composé est choisi parmi les fluorophores, les luminophores et les chromophores .
32. Utilisation d'un procédé selon l'une quelconque des revendications 1 à 12 ou d'un dispositif selon l'une quelconque des revendications 13 à 26 pour la fabrication d'un capteur ou multicapteur chimique.
33. Utilisation selon la revendication 32, caractérisée en ce que le capteur ou multicapteur chimique est destiné à la détection ou le dosage de polluants atmosphériques ou de gaz utilisés dans la microélectronique .
EP03757115A 2002-06-11 2003-06-06 Procede et dispositif d'incorporation d'un compose dans les pores d'un materiau poreux et leurs utilisations Withdrawn EP1511875A2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0207135 2002-06-11
FR0207135A FR2840547B1 (fr) 2002-06-11 2002-06-11 Procede et dispositif d'incorporation d'un compose dans les pores d'un materiau poreux et leurs utilisations
PCT/FR2003/001696 WO2003104517A2 (fr) 2002-06-11 2003-06-06 Procede et dispositif d'incorporation d'un compose dans les pores d'un materiau poreux et leurs utilisations

Publications (1)

Publication Number Publication Date
EP1511875A2 true EP1511875A2 (fr) 2005-03-09

Family

ID=29559112

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03757115A Withdrawn EP1511875A2 (fr) 2002-06-11 2003-06-06 Procede et dispositif d'incorporation d'un compose dans les pores d'un materiau poreux et leurs utilisations

Country Status (7)

Country Link
US (1) US20060051826A1 (fr)
EP (1) EP1511875A2 (fr)
JP (1) JP2005529320A (fr)
CN (1) CN1668775A (fr)
AU (1) AU2003251111A1 (fr)
FR (1) FR2840547B1 (fr)
WO (1) WO2003104517A2 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005003827A1 (fr) * 2003-07-01 2005-01-13 Hitachi Cable, Ltd. Fibre optique, procede de raccordement de fibre optique, et connecteur optique
FR2869036B1 (fr) 2004-04-19 2008-02-22 Commissariat Energie Atomique Composes, materiaux poreux hybrides organique-inorganiques mesostructures et capteurs utiles pour la detection ou le dosage de composes gazeux halogenes
FR2882371B1 (fr) * 2005-02-24 2008-01-18 Centre Nat Rech Scient Materiau composite constitue par une matrice poreuse et des nanoparticules de metal ou d'oxyde de metal
FR2890745B1 (fr) * 2005-09-15 2007-11-30 Commissariat Energie Atomique Materiau nanoporeux d'aldehydes a transduction optique directe
JP2008082840A (ja) * 2006-09-27 2008-04-10 National Institute Of Advanced Industrial & Technology ホルムアルデヒド検出体、ホルムアルデヒド検出装置、ホルムアルデヒド検出方法及びホルムアルデヒド検出試薬
FR2915805B1 (fr) * 2007-05-04 2010-02-12 Commissariat Energie Atomique Procede de detection de composes gazeux halogenes
US7901726B2 (en) 2007-08-31 2011-03-08 Boston Scientific Scimed, Inc. Porous medical articles for therapeutic agent delivery
US9880137B2 (en) * 2008-09-04 2018-01-30 The Board Of Trustees Of The University Of Illinois Colorimetric sensor arrays based on nanoporous pigments
CN102466639B (zh) * 2010-11-12 2013-09-11 中国科学院大连化学物理研究所 光化学比色传感器阵列用于多种重金属离子检测的方法
CN102478526B (zh) * 2010-11-29 2014-03-26 中国科学院大连化学物理研究所 溶液中痕量镍离子高灵敏选择性检测的过滤比色分析方法
CN103930589B (zh) * 2011-06-22 2016-03-30 艾克斯特朗欧洲公司 气相沉积材料源及其制造方法
EP2743681A1 (fr) 2012-12-13 2014-06-18 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Système de détecteur de fluorescence pour la détection d'un hydrocarbure aromatique
KR101634653B1 (ko) * 2014-03-26 2016-06-29 국방과학연구소 분석대상가스 농축용 흡착제 및 제조방법, 분석대상가스의 검출방법
CN106637090B (zh) * 2016-12-29 2019-09-27 西安理工大学 一种在多孔材料中负载易升华物质的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2558485B1 (fr) * 1984-01-25 1990-07-13 Rech Applic Electrochimique Structure metallique poreuse, son procede de fabrication et applications
IL93134A (en) * 1990-01-23 1997-11-20 Yissum Res Dev Co Doped sol-gel glasses for obtaining chemical interactions
US5262199A (en) * 1992-04-17 1993-11-16 Center For Innovative Technology Coating porous materials with metal oxides and other ceramics by MOCVD
GB9901041D0 (en) * 1999-01-18 1999-03-10 Dunlop Aerospace Ltd Densification of porous bodies
EP1132493A3 (fr) * 2000-03-09 2001-09-19 Junji Kido Méthodes de dépôt en phase vapeur d'un composé organique et de raffinement d'un composé organique
US6733828B2 (en) * 2002-01-29 2004-05-11 Kuei-Jung Chao Method of fabricating nanostructured materials

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03104517A2 *

Also Published As

Publication number Publication date
AU2003251111A1 (en) 2003-12-22
JP2005529320A (ja) 2005-09-29
AU2003251111A8 (en) 2003-12-22
WO2003104517A2 (fr) 2003-12-18
FR2840547B1 (fr) 2005-03-04
US20060051826A1 (en) 2006-03-09
WO2003104517A3 (fr) 2004-04-01
CN1668775A (zh) 2005-09-14
FR2840547A1 (fr) 2003-12-12

Similar Documents

Publication Publication Date Title
WO2003104517A2 (fr) Procede et dispositif d'incorporation d'un compose dans les pores d'un materiau poreux et leurs utilisations
EP2300539B1 (fr) Detecteurs nanoporeux de composes aromatiques monocycliques
Sumner et al. The nature of water on surfaces of laboratory systems and implications for heterogeneous chemistry in the troposphere
Kreno et al. SERS of molecules that do not adsorb on Ag surfaces: a metal–organic framework-based functionalization strategy
EP2304416B1 (fr) Capteur d'humidité capacitif à diélectrique hydrophile nano-poreux et procédé pour sa réalisation
US8293340B2 (en) Plasma deposited microporous analyte detection layer
EP2652533B1 (fr) Element optique comprenant un aerogel sans fissure
EP2271438B1 (fr) Recouvrement d'un substrat par un film de polymere stable en milieu liquide
FR2928932A1 (fr) Nanocristaux fluorescents enrobes d'une coquille inorganique
EP2080734B1 (fr) Procédé de réalisation de cavités d'air dans des microstructures
CA2681300C (fr) Nanocristaux organiques luminescents pour la realisation de capteurs biologiques
Morris et al. A spectroscopic study of mercury vapor adsorption on gold nanoparticle films
WO2011114070A1 (fr) Procede de preparation de bicouches ceramiques poreuses nanostructurees, bicouches ceramiques obtenues par ce procede et applications
WO2002016914A1 (fr) Fabrication d'un capteur chimique a fibre optique comprenant un indicateur colore, utilisable notamment pour la mesure de l'acidite nitrique
CA2563781A1 (fr) Procede de fabrication de couches minces semi-conductrices photosensibilisees
Korposh et al. Films based on bacteriorhodopsin in sol-gel matrices
EP3221042B1 (fr) Procédé de préparation d'une solution colloïdale de nanoparticules d'un oxyde mixte de vanadium et d'europium ou d'un oxyde mixte de vanadium, d'europium et d'yttrium.
WO2005100371A1 (fr) Materiaux poreux hybrides organique-inorganiques pour la detection de halogenes
EP2643496B1 (fr) Utilisation de films minces de silices mesoporeuses comme materiaux sensibles dans des capteurs gravimetriques pour la detection ou le dosage de vapeurs de composes nitres
EP0036360B1 (fr) Procédé de croissance d'un mono-cristal dans une enceinte tubulaire fermée
WO2020239630A1 (fr) Procédé de traitement d'une pièce polymère en vue de modifier sa rugosité et/ou de la fonctionnaliser
Sohn Hydrosilylation of Photoluminescent Porous Silicon with Aromatic Molecules; Stabilization of Photoluminescence and Anti-photobleaching Properties of Surface-Passivated Luminescent Porous Silicon
Um et al. Adsorption and Desorption Characteristics of Gradient Distributed Bragg Reflector Porous Silicon Layers
Bagnich The influence of the interaction of carbonyl compounds with the matrix walls on phosphorescence of their solution in porous glasses
WO2017220908A1 (fr) Dispositif de détection d'un taux alcoolémie

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041201

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20091231