EP1502371B1 - Procede et dispositif de production d'au moins une frequence transpondeur dans le plan de frequence intermediaire de satellite - Google Patents

Procede et dispositif de production d'au moins une frequence transpondeur dans le plan de frequence intermediaire de satellite Download PDF

Info

Publication number
EP1502371B1
EP1502371B1 EP03729960A EP03729960A EP1502371B1 EP 1502371 B1 EP1502371 B1 EP 1502371B1 EP 03729960 A EP03729960 A EP 03729960A EP 03729960 A EP03729960 A EP 03729960A EP 1502371 B1 EP1502371 B1 EP 1502371B1
Authority
EP
European Patent Office
Prior art keywords
satellite
frequency
transponder
mhz
band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03729960A
Other languages
German (de)
English (en)
Other versions
EP1502371A1 (fr
EP1502371B8 (fr
Inventor
Anton Ilsanker
Michael Heisenberg
Ralf Exler
Wolfgang Mummert
Christian Linke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kathrein SE
Original Assignee
Kathrein Werke KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kathrein Werke KG filed Critical Kathrein Werke KG
Publication of EP1502371A1 publication Critical patent/EP1502371A1/fr
Publication of EP1502371B1 publication Critical patent/EP1502371B1/fr
Application granted granted Critical
Publication of EP1502371B8 publication Critical patent/EP1502371B8/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H40/00Arrangements specially adapted for receiving broadcast information
    • H04H40/18Arrangements characterised by circuits or components specially adapted for receiving
    • H04H40/27Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95
    • H04H40/90Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for satellite broadcast receiving

Definitions

  • the invention relates to a method and a device for generating at least one transponder in the satellite intermediate frequency plane according to the preamble of claim 1 or 7.
  • the converter can be controlled on the subscriber side in such a way that both the vertical and the horizontal polarizations can be received.
  • the switching of the polarizations is conventionally done by switching a supply voltage of 14 V (for the reception of the vertical polarizations) to 18 V (for the reception of the horizontal polarizations).
  • a supply voltage of 14 V for the reception of the vertical polarizations
  • 18 V for the reception of the horizontal polarizations.
  • twin converters Twin-LNB
  • VCR twin receiver video device
  • the Sat.-ZF1 / Sat.-ZF1 converter for selecting a transponder based on the known techniques is very complicated and expensive.
  • the Ku band (10700 MHz to 12750 MHz) is mixed with a first local oscillator of 9750 MHz into a satellite ZF1 frequency range of 950 to 1950 MHz and with a second local oscillator of 10600 MHz, for example converted into a Sat.-Zf1 frequency range from 1100 MHz to 2150 MHz.
  • a matrix In order to select individual transponders from these frequency bands, a matrix must be used for the selection of the frequency bands. Furthermore, with a mixer and a tunable local oscillator with a tuning frequency of, for example, 1400 MHz to 2700 MHz, a conversion to the intermediate frequency level with an IF frequency of 480 MHz must be made. Further, because of the added need for image rejection, a tunable bandpass filter must be used in front of the mixer. With a further provided downstream SAW filter of 480 MHz then the desired transponder is selected. In order to compensate for the attenuation of the SAW filter, further reinforcement must be made. Finally, with a further mixer with another local oscillator, a return conversion into the Sat.-ZF1 plane must take place. As mentioned, the need to use two local oscillators and the necessary shielding and also the selection to avoid unwanted mixing products is very disadvantageous.
  • Object of the present invention is therefore based on the generic type mentioned at the outset to provide a transponder selection with significantly reduced effort and space requirements.
  • Such a transponder selection should enable at least a twin reception on a single-cable structure.
  • a first implementation of the lower satellite intermediate frequency band with a local oscillator of preferably exactly 9550 MHz and a first Implementation of the upper satellite frequency band proposed with a local oscillator of preferably exactly 10625 MHz.
  • the mixed products of the two local oscillators are then at 1075 and 2150 MHz exactly at the lower and upper limits of the satellite intermediate frequency bands, ie here at 1150 to 215.0 MHz for the lower and 1075 to 2125 MHz for the upper band and annoying because of the protection distances the band limits no signal.
  • a first implementation of the lower satellite frequency band is proposed with a local oscillator of 9600 MHz, for example, and a first implementation of the upper satellite frequency band with a local oscillator of 13850 MHz, for example. Because of these other local oscillator frequencies than the prior art, it is possible that the lower limit for the low band coincides with the lower limit for the upper band (1100 MHz).
  • the second mixer does not use a local oscillator frequency of, for example, 10600 MHz, but rather a local oscillator frequency which is above the upper end of the upper frequency band.
  • a local oscillator frequency of, for example, 10600 MHz
  • an inverse conversion is performed in such a way that the frequency range lying above the upper limit of the upper frequency band (ie above 12750 MHz) is converted to a range below 1100 MHz, which is otherwise completely free of transponders and satellite signals.
  • a freely selectable transponder for example, with a Sat.-ZF1 / Sat.-ZF1-center frequency of 950 MHz can be implemented by simply implementing the mixer using only a tunable oscillator and only a subsequent selection of a suitable bandpass filter.
  • such a transponder is combined with a freely selectable satellite intermediate frequency band, preferably via a crossover network.
  • a frequency range of, for example, less than 1000 MHz for the converted frequency band, specifically with the desired transponder with the highest possible frequency without distortion by the lower frequency filter of the crossover.
  • the explained converter and the crossover can also be installed directly in a converter (LNB). This allows each receiver connected to the converter (LNB) to connect two receivers or a twin receiver for complete independent program selection.
  • a converter with the two local oscillators can also be positioned spatially separated from a matrix with converters and a combination of the selected transponder with a selected Sat.-ZF1 band.
  • a converter with the two local oscillators can also be positioned spatially separated from a matrix with converters and a combination of the selected transponder with a selected Sat.-ZF1 band.
  • special quality of the crossover and the filters used e.g. Also to combine two or three selected transponder with the unreacted satellite ZFl band.
  • even several transponder bands can be combined without combination with a satellite IF band.
  • LNB 1 shows a schematic arrangement of the basic structure of a satellite receiving system according to the invention with a so-called universal twin converter (LNB) 1 is shown.
  • LNB universal twin converter
  • a mixer 7 is arranged in each of the two branches. Furthermore, two local oscillators 9 and 11 are provided, via which a conversion of the respectively received satellite frequency into a satellite intermediate frequency takes place in the mixers 7.
  • the lower frequency band (low band) ranges from 10700 MHz to about 11700 MHz.
  • the upper frequency band (high band) extends from 11700 MHz to 12750 MHz.
  • the second local oscillator 11 with the present invention selected high local oscillator frequency of 10625 MHz
  • the satellite IF level is dropped, but the lower and upper received satellite frequency bands are converted to the upper end of the satellite intermediate frequency level, thereby ensuring that the mixed products of the two local oscillator signals Frequencies at 1075 MHz and 2150 MHz exactly at the bottom and upper limits of the satellite intermediate frequency bands, ie 1150 to 2150 MHz for the lower band and 1075 to 2125 MHz for the upper band, and therefore do not disturb the signal due to the guard
  • the local oscillators 7 can once again single or multi-stage Amplifier arrangements 8 downstream.
  • an improved universal twin LNB according to the invention is now shown. This is constructed from the basic principle similar to Figure 1. The only difference in this embodiment is that the first local oscillator frequency LO 1 is 9600 MHz and the second local oscillator frequency LO 2 is 13850 MHz. This translates the lower satellite frequency band from 10700 to 11700 MHz into a satellite IF from 1100 MHz to 2100 MHz. The upper satellite frequency band is also converted into a satellite intermediate frequency of 1100 MHz to 2150 MHz. In other words, the implementation is such that the lower limit frequency for the lower frequency band as well as for the received upper frequency band is the same and in the illustrated embodiment is significantly higher than the lower frequency limit of the low band in a standard universal LNB.
  • the corresponding one thus takes place. Converting the upper satellite frequency band to the satellite IF level using a local oscillator frequency that is above the upper satellite frequency band.
  • a further mixer 23 is connected, which via a tunable oscillator 25 of, for example, 2025 to 3100 MHz with a subsequent selection, e.g. by means of a bandpass filter 26 at e.g. 950 MHz center frequency and a bandwidth of 40 MHz generates a freely selectable transponder, as shown with reference to Figure 2a.
  • the transponder branch 29b provided with the mixer 23 and a bandpass filter 26 can now be switched on together with the branch 29a which is connected to the other output 21a.
  • the output 27a of the crossover 27 is thus connected to a single antenna cable 31, usually a coax cable.
  • This single-cable solution makes a twin receive operation possible.
  • the generated transponder 33 is combined with a freely selectable Sat. ZF1 band 35, as is schematically illustrated with reference to FIG.
  • This results for the converted frequency band, d. H. for the transponder a frequency range of e.g. less than 1000 MHz, the frequency band representing the desired transponder with the highest possible frequency, at a center frequency of e.g. 950 MHz without any distortion due to the low-pass filter of the crossover.
  • FIG. 5 describes an expansion of the explained principle, in the sense of a single-cable twin converter.
  • a converter structure is used here, which ultimately feeds a 4 ⁇ 4 matrix 19 via four branches 1a through 1d, so that at the output of this matrix, in a known manner, the lower frequency band received via the vertical polarization, which received via the vertical polarization upper frequency band, the lower frequency band received via the horizontal polarization and, for example, the upper frequency band received via the horizontal polarization each lie separately and simultaneously.
  • an arbitrarily high number of subscribers can be connected by appropriate linking of several matrices.
  • the matrix can also be arranged spatially separated from the local oscillators of the converter (LNB).
  • LNB local oscillators of the converter
  • FIG. 7a a conventional converter is shown, at whose four outputs in the IF plane the respective upper or lower frequency band of the vertically or horizontally received signals is applied.
  • the two local oscillators 9 and 11 as shown with reference to Figure 1a can operate with a local oscillator frequency of 9600 MHz or 13850 MHz, or, as was explained with reference to Figure 1, with a Local oscillator frequency of 9550 MHz or 10625 MHz. Accordingly, the conversion then takes place in the satellite intermediate frequency plane, as has been explained with reference to the exemplary embodiments according to FIG. 1 or FIG. 1a.
  • a switching matrix 37 can be connected downstream of the converter shown in FIG. 7a.
  • Several of the switching matrix arrangements can also be connected in series one behind the other.
  • two outputs, namely a first branch 29a and a transponder branch 29b, are again interconnected in accordance with the invention in this case, as in the preceding examples, again via a crossover 27.
  • the output 27a of the respective crossover network 27 is connected to the input of another crossover network, wherein at the second input of the downstream crossover network 39 is a terrestrial Signal is fed.
  • a twin operation can then be carried out again, for which an antenna cable 31 is usually connected in each case.
  • transponder band range not only can a transponder band range be combined with a satellite IF band range, but also that a so-called one-cable tripple converter solution is possible, for example two transposed transponders Frequency ranges are combined with a satellite IF band range.
  • FIGS. 10 and 11 could also be extended to produce a plurality of transponders spaced apart from one another with frequency spacing, and these transponder branches 29 are then combined via a crossover. As a result, several transponders can be fed to a single common antenna line.

Landscapes

  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
  • Radio Relay Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Claims (12)

  1. Procédé de production d'au moins un transpondeur (33) dans le plan de fréquence intermédiaire de satellite ("plan FI/sat") en combinaison avec au moins un autre transpondeur (33a, 33b, ...) et/ou en combinaison avec une bande de fréquence (35) transformée dans le plan FI/sat à partir d'une bande de fréquence de satellite supérieure ou inférieure, pour laquelle on utilise un agencement de convertisseur (1) avec matrice (19, 37) intégrée ou montée en aval, avec au moins deux sorties (21a, 21 b), les signaux apparaissant aux sorties (21 a, 21 b) étant injectés via un circuit additif ou un circuit diviseur de fréquence (27) dans au moins une ligne d'antenne (31) raccordée, caractérisé par les autres caractéristiques suivantes :
    - la bande inférieure et la bande supérieure de fréquence de satellite reçues sont transformées vers l'extrémité supérieure du plan de fréquence intermédiaire de satellite,
    - pour la transformation de la bande inférieure et de la bande supérieure de fréquence de satellite vers le plan de fréquence intermédiaire de satellite, on utilise une combinaison d'oscillateurs locaux, de telle sorte que les produits mixtes des oscillateurs locaux ne tombent pas dans les fréquences de satellite occupées, et
    - la fréquence de transpondeur (33, 33a, 33b) est produite par transformation directe dans la plage de 950 à 1075 MHz.
  2. Procédé selon la revendication 1, caractérisé en ce qu'on utilise via les oscillateurs locaux une combinaison de sous-position pour la bande de fréquence de satellite inférieure et de superposition pour la bande de fréquence de satellite supérieure.
  3. Procédé selon l'une des revendications 1 à 2, caractérisé en ce que la limite de fréquence inférieure de la bande de fréquence de satellite inférieure transformée vers le plan de bande de fréquence intermédiaire satellite ainsi que la limite de fréquence inférieure de la bande de fréquence de satellite supérieure transformée vers le plan de fréquence intermédiaire de satellite est d'environ 1100 MHz.
  4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que le transpondeur (33) est produit par simple transformation avec un mixeur (23) et un oscillateur (25) accordable avec une plage de fréquence de 2025 à 3100 MHz, et de préférence avec une sélection consécutive au moyen d'un filtre passe-bande (26) ou d'un filtre passe-bas.
  5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que pour produire au moins un deuxième transpondeur (33a) ainsi que le cas échéant d'autres transpondeurs (33b, 33c, ...) à d'autres sorties (21 a, 21 b, 21 c, ...) prévues de façon correspondante, d'une matrice (19, 37) montée en aval du convertisseur (1), on utilise d'autres mixeurs (25) respectifs servant à la simple transformation avec un oscillateur local (25) accordable et une sélection montée en aval sous forme d'un filtre passe-bande (26), les transpondeurs (33, 33a, 33b, ...) ainsi produits étant injectés via un circuit diviseur de fréquence (27) dans une ligne d'antenne (31) commune.
  6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce qu'en plus dudit au moins un transpondeur (33), une bande de fréquence de satellite supérieure ou inférieure (35) transformée vers le plan de fréquence intermédiaire de satellite est injectée dans la ligne d'antenne (31) commune, bande dont la limite de fréquence inférieure se trouve dans le plan de fréquence intermédiaire de satellite au-dessus du transpondeur (33).
  7. Dispositif de production d'au moins un transpondeur (33) dans le plan de fréquence intermédiaire de satellite (plan FI/sat) en combinaison avec au moins un autre transpondeur (33a, 33b, ...) et/ou combinaison avec une bande de fréquence transformée vers le plan FI/sat à partir d'une bande de fréquence de satellite supérieure ou inférieure comprenant un agencement de convertisseur avec matrice (19, 37) intégrée ou montée en amont, avec au moins deux sorties (21 a, 21b) pour injecter les signaux y apparaissant de préférence via un circuit diviseur de fréquence (27) monté en aval ou via un circuit additif dans au moins une ligne d'antenne (31) raccordée, caractérisé par les autres caractéristiques suivantes :
    - la structure est telle que la bande de fréquence inférieure et supérieure de satellite reçue est transformée vers l'extrémité supérieure du plan de fréquence intermédiaire de satellite,
    - la transformation de la bande de fréquence inférieure et supérieure de satellite a lieu vers le plan de fréquence intermédiaire de satellite sur la base d'une combinaison d'oscillateurs locaux, de telle sorte que les produits mixtes des oscillateurs locaux ne tombent pas dans la fréquence de satellite occupée, et
    - le transpondeur (33. 33a, 33b, ...) peut être produit au moyen d'une transformation directe vers la bande de fréquence souhaitée.
  8. Dispositif selon la revendication 7, caractérisé en ce que la structure est telle que via les oscillateurs locaux, on utilise via les oscillateurs locaux une combinaison de sous-position pour la bande de fréquence de satellite inférieure et de superposition pour la bande de fréquence de satellite supérieure.
  9. Dispositif selon l'une des revendications 7 ou 8, caractérisé en ce que la limite de fréquence inférieure de la bande de fréquence de satellite inférieure transformée vers le plan de bande de fréquence intermédiaire satellite ainsi que la limite de fréquence inférieure de la bande de fréquence de satellite supérieure transformée vers le plan de fréquence intermédiaire de satellite est d'environ 1100 MHz.
  10. Dispositif selon l'une des revendications 7 à 9, caractérisé en ce que le transpondeur (33) est produit par simple transformation avec un mixeur (23) et un oscillateur (25) accordable avec une plage de fréquence de 2025 à 3100 MHz, et de préférence avec une sélection consécutive au moyen d'un filtre passe-bande (26).
  11. Dispositif selon l'une des revendications 7 à 10, caractérisé en ce que pour produire au moins un deuxième transpondeur (33a) ainsi que le cas échéant d'autres transpondeurs (33b, 33c, ...) à d'autres sorties (21 a, 21 b, 21 c, ...) prévues de façon correspondante, d'une matrice (19, 37) montée en aval du convertisseur (1), on utilise d'autres mixeurs (25) respectifs servant à la simple transformation simple un oscillateur local (25) accordable et une sélection montée en aval sous forme d'un filtre passe-bande (26), les transpondeurs (33, 33a, 33b, ...) ainsi produits pouvant être injectés via un circuit diviseur de fréquence (27) dans une ligne d'antenne (31) commune.
  12. Dispositif selon l'une des revendications 7 à 11, caractérisé en ce qu'en plus dudit au moins un transpondeur (33), une bande de fréquence de satellite supérieure ou inférieure (35) transformée vers le plan de fréquence intermédiaire de satellite peut être injectée dans la ligne d'antenne (31) commune, bande dont la limite de fréquence inférieure se trouve dans le plan de fréquence intermédiaire de satellite au-dessus du transpondeur (33).
EP03729960A 2002-05-03 2003-05-01 Procede et dispositif de production d'au moins une frequence transpondeur dans le plan de frequence intermediaire de satellite Expired - Lifetime EP1502371B8 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10219847 2002-05-03
DE10219847A DE10219847A1 (de) 2002-05-03 2002-05-03 Verfahren sowie Vorrichtung zur Erzeugung zumindest eines Transponders in der Satelliten-Zwischenfrequenz-Ebene
PCT/EP2003/004583 WO2003094397A1 (fr) 2002-05-03 2003-05-01 Procede et dispositif de production d'au moins un transbordeur dans le plan de frequence intermediaire de satellite

Publications (3)

Publication Number Publication Date
EP1502371A1 EP1502371A1 (fr) 2005-02-02
EP1502371B1 true EP1502371B1 (fr) 2006-05-31
EP1502371B8 EP1502371B8 (fr) 2006-09-13

Family

ID=29285081

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03729960A Expired - Lifetime EP1502371B8 (fr) 2002-05-03 2003-05-01 Procede et dispositif de production d'au moins une frequence transpondeur dans le plan de frequence intermediaire de satellite

Country Status (5)

Country Link
EP (1) EP1502371B8 (fr)
AT (1) ATE328412T1 (fr)
AU (1) AU2003240585A1 (fr)
DE (2) DE10219847A1 (fr)
WO (1) WO2003094397A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005008125A1 (de) * 2005-02-21 2006-09-07 FTA Communications Technologies S.à.r.l. LNB-Empfangseinrichtung
DE102005040012A1 (de) * 2005-08-23 2007-03-01 Christian Schwaiger Gmbh Verfahren und Vorrichtung zur Konfiguration von n unabhängigen Teilnehmern einer Satelliten-Empfangsanlage
EP1819061A3 (fr) 2006-02-14 2011-08-31 Alps Electric Co., Ltd. Convertisseur de fréquence pour recevoir une diffusion par satellite
JP2007282094A (ja) * 2006-04-11 2007-10-25 Sharp Corp 無線受信装置
DE202008015500U1 (de) * 2008-11-21 2009-02-12 Christian Schwaiger Gmbh Satelliten-Empfangs- und Verteilanlage als Kopfstelle mit programmierbarer Transponderumsetzung von Transponderblöcken

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3929824A1 (de) * 1989-09-07 1991-03-14 Kathrein Werke Kg Zwei-band-konverteranordnung
DE4126774A1 (de) * 1991-08-13 1993-02-18 Kathrein Werke Kg Konverteranordnung zum empfang von satelliten-empfangssignalen
DE4128947C2 (de) * 1991-08-30 1996-01-25 Wolf & Co Kg Kurt Gerät für Satellitenempfangsanlagen
DE9306499U1 (de) * 1993-03-19 1993-07-08 Richard Hirschmann GmbH & Co, 7300 Esslingen Schaltungsanordnung und Vorrichtung zum Betreiben einer Antennenempfangsvorrichtung
DE4335616C2 (de) * 1993-10-19 1996-02-22 Kathrein Werke Kg Satellitenempfangsanlage
US5959592A (en) * 1996-03-18 1999-09-28 Echostar Engineering Corporation "IF" bandstacked low noise block converter combined with diplexer
DE19713124C2 (de) * 1997-03-27 2001-11-29 Kathrein Werke Kg Satelliten-Empfangsanlage
DE29716786U1 (de) * 1997-09-18 1997-11-27 Yen, Kerl, Chung Li, Taoyuan Satellitenfrequenzdemultiplexer mit Signalteilung am Welleneingang
DE29914050U1 (de) * 1999-08-12 1999-11-11 Kathrein-Werke Kg, 83022 Rosenheim Twin-Konverter

Also Published As

Publication number Publication date
WO2003094397A1 (fr) 2003-11-13
DE10219847A1 (de) 2003-11-27
EP1502371A1 (fr) 2005-02-02
EP1502371B8 (fr) 2006-09-13
ATE328412T1 (de) 2006-06-15
DE50303588D1 (de) 2006-07-06
AU2003240585A1 (en) 2003-11-17

Similar Documents

Publication Publication Date Title
DE2651300A1 (de) Kanalwaehler
EP1502371B1 (fr) Procede et dispositif de production d'au moins une frequence transpondeur dans le plan de frequence intermediaire de satellite
DE9306499U1 (de) Schaltungsanordnung und Vorrichtung zum Betreiben einer Antennenempfangsvorrichtung
DE102007011401B3 (de) Einkabel-Satelliten-Empfangssystem
EP1050920B1 (fr) Convertisseur à quatre sorties
DE1512222C2 (de) Fernseh-Übertragungssystem
DE4335616C2 (de) Satellitenempfangsanlage
EP0757489A2 (fr) Récepteur satellite avec une tête dirigeable
EP0740434B1 (fr) Système pour la distribution de programmes de télévision par satellite dans un système d'antenne collectif
DE69724916T2 (de) Videokommunikationsnetzwerk
DE19713124C2 (de) Satelliten-Empfangsanlage
EP1217836B1 (fr) Biconvertisseur
DE20008239U1 (de) Multischalter für Satelliten-Zwischenfrequenz-Verteilung
DE202009018162U1 (de) Multischalter für Satelliten-Zwischenfrequenz-Verteilung
DE4201649C2 (de) Kompakt-Konverteranordnung
DE4335617C2 (de) Satellitenempfangsanlage
EP1076458B1 (fr) Biconvertisseur
DE3909685A1 (de) Verfahren zur frequenzumsetzung insbesondere fuer satellitenempfangs-gemeinschaftsanlagen sowie zugehoeriger frequenzumsetzer
DE29914051U1 (de) Komponente für Satellitenempfangsanlage sowie Zuschaltgerät
EP0157145B1 (fr) Prise de contact pour antenne
EP0790717B1 (fr) Dispositif pour la transmission de plusieurs signaux radio reçus à bande large à un récepteur de signaux ainsi qu'un récepteur associé
DE2328488C3 (de) Kabelfernsehsystem
DE19543717A1 (de) Verfahren und Vorrichtung zur Verarbeitung und Übertragung von Hochfrequenzsignalen
DE3505183A1 (de) Frequenzumsetzer fuer gemeinschaftsantennenanlagen und kabelverteilnetze mit einem eingangsumsetzer und einem ausgangsumsetzer
DE19521707A1 (de) Antennensignal-Empfangseinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041029

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HEISENBERG, MICHAEL

Inventor name: LINKE, CHRISTIAN

Inventor name: MUMMERT, WOLFGANG

Inventor name: ILSANKER, ANTON

Inventor name: EXLER, RALF

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE LI NL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: METHOD AND DEVICE FOR PRODUCING AT LEAST ONE TRANSPONDER FREQUENCY IN THE SATELLITE INTERMEDIATE FREQUENCY PLANE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE LI NL

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: KATHREIN WERKE KG

REF Corresponds to:

Ref document number: 50303588

Country of ref document: DE

Date of ref document: 20060706

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER & PARTNER AG PATENTANWALTSBUERO

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: KATHREIN WERKE KG

Effective date: 20060614

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070301

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SCHMAUDER & PARTNER AG PATENT- UND MARKENANWAELTE VSP;ZWAENGIWEG 7;8038 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20120523

Year of fee payment: 10

Ref country code: CH

Payment date: 20120522

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20120522

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120521

Year of fee payment: 10

BERE Be: lapsed

Owner name: *KATHREIN WERKE K.G.

Effective date: 20130531

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20131201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 328412

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131201

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170524

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50303588

Country of ref document: DE

Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50303588

Country of ref document: DE

Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50303588

Country of ref document: DE

Owner name: KATHREIN SE, DE

Free format text: FORMER OWNER: KATHREIN-WERKE KG, 83022 ROSENHEIM, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50303588

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181201