EP1496099B1 - Procédé amélioré d'isomérisation d'une coupe C7 avec ouverture des cycles naphténiques - Google Patents

Procédé amélioré d'isomérisation d'une coupe C7 avec ouverture des cycles naphténiques Download PDF

Info

Publication number
EP1496099B1
EP1496099B1 EP04291494.5A EP04291494A EP1496099B1 EP 1496099 B1 EP1496099 B1 EP 1496099B1 EP 04291494 A EP04291494 A EP 04291494A EP 1496099 B1 EP1496099 B1 EP 1496099B1
Authority
EP
European Patent Office
Prior art keywords
unit
isomerization
paraffins
distillation column
stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP04291494.5A
Other languages
German (de)
English (en)
Other versions
EP1496099A1 (fr
Inventor
Laurent Bournay
Dominique Casanave
Elsa Jolimaître
Jean-Francois Joly
Paul Broutin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1496099A1 publication Critical patent/EP1496099A1/fr
Application granted granted Critical
Publication of EP1496099B1 publication Critical patent/EP1496099B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/62Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline

Definitions

  • the product of the isomerization (or isomerate) is free of aromatic compounds in contrast to the reformate which usually contains a significant amount due to dehydrocyclization reactions.
  • Isomerate and reformate are usually sent to the gasoline pool in which other bases such as gasoline resulting from fluidized catalytic cracking (FCC) or additives such as methyl tertiary butyl ether (MTBE) can also be used.
  • FCC fluidized catalytic cracking
  • MTBE methyl tertiary butyl ether
  • Aromatics have high octane numbers that are suitable for use in spark-ignition engines, but for environmental reasons, increasingly stringent specifications result in reduced total aromatics content in gasolines.
  • the process described in the French patent application FR-A-2828205 relates to a process for isomerizing a C 5 -C 8 filler, the C 8+ cut of the naphtha being sent to reforming.
  • the charge C 5 -C 8 is preliminarily separated into two fractions, a first fraction rich in C 5 -C 6 and a second fraction rich in C 7 -C 8 , these two fractions being treated separately in separate reaction zones.
  • the present invention relates more particularly to the isomerization of the second C 7 -C 8 rich fraction which in practice will essentially be a C 7 cut.
  • isomers with only one branch or mono-branched have insufficient octane numbers (42 for 2-methylhexane, 52 for 3-methylhexane) to be mixed with the gasoline pool.
  • These compounds should be as much as possible converted into di- and / or tribranched paraffins in the isomerization process.
  • normal-heptane the problem is even stronger: its octane number being zero, it must imperatively be converted to exhaustion in the isomerization process. Up to 1% by weight of nC7 can be tolerated in the isomerate but if possible less than 0.5% wt.
  • the toluene present in the fresh feedstock is totally hydrogenated to methylcyclohexane either in a specific hydrogenation unit or in the paraffin isomerization unit.
  • the methyl-cyclohexane which is also present in the charge in significant amount is very little affected by the isomerization, the isomerization catalysts very little promoting the opening of naphthenic rings in their usual conditions of implementation.
  • the isomerate C 7 obtained can contain up to 30% by weight of methyl-cyclohexane: this compound whose RON is less than 75 significantly reduces the RON of this isomerization C 7 .
  • the patent US5,382,731 describes a sequence of a naphthenic ring opening reactor followed by an isomerization reactor in the presence of hydrogen and chlorine, this set of reactions being applied to a charge of 6 carbon atoms containing 50% by weight of normal hexane 14.5% by weight of methylcyclopentane, 32% by weight of cyclohexane and 3.9% by weight of benzene.
  • Licences US5,463,155 and US 5,770,042 describe a sequence of a naphthenic ring opening reactor followed by an isomerization reactor supplemented by normal separation of paraffins / isoparaffins in the patent US 5,770,042 .
  • the filler used is a naphtha defined as a petroleum fraction having from 4 to 7 carbon atoms, with a concentration of C 7 preferably limited to 20% by weight.
  • the problem which the present invention seeks to solve is that of the production of gasoline bases from a C 7 fraction which have a search octane number (RON) of at least 80, with a content of aromatic compounds limited to 1% wt, which makes it possible to anticipate the new regulation on the specifications of the gasoline pool.
  • RON search octane number
  • the solution proposed in the present invention consists of a combination of known units, namely at least one isomerization unit and at least one opening unit of the naphthenic rings, the combination having the characteristic of producing a depletion of methylcyclohexane, and normal and mono branched C 7 paraffins responsible for lowering the octane number.
  • exhaustion is meant converting said compounds by systematic recycling into an appropriate unit of the combination of units integrated in the process according to the invention, said compounds having been previously isolated in at least one separation unit.
  • the toluene present in the fresh feed is totally hydrogenated, which makes it possible to limit the aromatic content in the isomerate produced.
  • This C 7 fraction is thus composed of C 7 paraffins, approximately equally distributed in mono-branched and normal paraffins, of C 7 naphthenes, the principal representative of which is methylcyclohexane and of C 7 aromatics, of which unique representative is toluene.
  • the objective of the method which is the subject of the present invention is to transform this C 7 cut into a cut containing predominantly, that is to say at least 70% by weight, preferably at least 85% by weight, of paraffins in C 7 multi -branched, that is to say having a degree of connection greater than or equal to two.
  • the invention relates more specifically to the treatment of the 7-carbon cut and makes it possible to convert the said C 7 cut from the naphtha of first distillation into a 7-carbon cut composed of a majority of di and tribranched paraffins. that is to say containing at least 70% by weight, preferably at least 85% by weight of multi-branched paraffins.
  • the process uses at least one isomerization unit, an opening unit of the naphthenic rings and a separation step comprising at least one distillation column, possibly supplemented by a unit allowing the separation to be carried out.
  • normal and mono-paraffins on the one hand and paraffins di- and tribranched on the other hand.
  • These units are combined to recycle methylcyclohexane, toluene and normal and mono-branched paraffins until exhaustion.
  • a unit may comprise one or more reactors.
  • the present invention therefore relates to the treatment of the 7-carbon fraction resulting from the fractionation described above, but given the performance of the naphtha fractionation unit, it will be possible to find in said C 7 cut to 10% lighter compounds having 6 carbon atoms or less, and up to 10% heavier compounds having 8 or more carbon atoms.
  • the subject of the present invention is a process for producing an isomerization of RON at least equal to 80 and containing less than 1% by weight of aromatics from a cut predominantly consisting of hydrocarbons containing 7 carbon atoms, and containing of the paraffins, naphthenes and aromatics, said process comprising at least one isomerisation unit, at least one naphthenic ring opening unit and at least one separation unit, characterized in that said units are combined in such a way that recycle until exhausted methylcyclohexane, toluene and normal and mono-branched paraffins.
  • the initial section consisting mainly of hydrocarbons with 7 carbon atoms, paraffins, naphthenes and aromatics are in any proportion.
  • exhaustion is meant the conversion of methylcyclohexane, toluene and normal and mono-branched paraffins by systematic recycling into an appropriate unit of the combination of units integrated in the process according to the invention, said compounds having been previously isolated in at least a separation unit.
  • At least one of the separation units is a distillation column supplied with a mixture of different streams, at least one of which comes from the fresh feed, and from which a) a head stream is extracted which, after any further separation, gives the isomerate produced, b) a side stream, which feeds alone or in mixture one of the isomerization units, from which the normal and mono-branched paraffins are converted to exhaustion, and c) a bottom stream from which is recycled to exhaustion toluene and methylcyclohexane contained in the fresh load.
  • nC7 Up to 1% by weight of nC7 can be tolerated in the isomerate constituting the head flow but if possible less than 0.5% by weight.
  • a first isomerization unit is fed by the side withdrawal from the distillation column, the isomerization effluent, after stabilization, being returned to the distillation column on a tray above the draw plate lateral, fresh load feeds the distillation column, and the cycle opening unit is fed by the bottom flow of said column, the effluent of the ring opening unit being recycled to the inlet of the isomerization unit , in mixture with the lateral withdrawal stream from said column.
  • an isomerization unit is fed by the lateral withdrawal from the distillation column, the effluent of the isomerization after stabilization being returned to the distillation column on a plateau located above of the side withdrawal tray, the fresh feed feeds the distillation column and the cycle opening unit is fed by the bottom flow of said column, the effluent of the cycle opening unit being recycled to mixing with the fresh charge at the inlet of said column.
  • one of the isomerization units is fed by the lateral withdrawal from the distillation column, the effluent of this first isomerization after stabilization being returned to the column.
  • the fresh feed feeds a second isomerization unit distinct from the first isomerization unit, the effluent of this second isomerization unit being, after stabilization, sent as feed to the distillation column and the cycle opening unit being fed by the bottom stream of the distillation column, the effluent of the ring opening unit being recycled in admixture with the fresh feed to the entry of the second isomerization unit.
  • one of the isomerization units is fed by the lateral withdrawal from the distillation column, the effluent of this first isomerization after stabilization being returned to the column.
  • the fresh feed feeds the ring opening unit
  • the effluent of this ring opening unit feeds a second isomerization unit distinct from the first isomerization
  • the effluent of this second isomerization unit after stabilization, feeds the distillation column, the bottom flow of the distillation column feeding in mixture with the fresh charge the ring opening unit.
  • one of the isomerization units is fed by the lateral withdrawal from the distillation column, the effluent of this first isomerization after stabilization being returned to the distillation column on a plate located above the lateral withdrawal tray, the fresh feed feeds the distillation column, and the bottom flow of the distillation column feeds the opening unit of cycles, the effluent of this unit
  • the opening of the cycles feeds a second isomerization unit distinct from the first isomerization, the effluent of this second isomerization, after stabilization, feeds the distillation column in a mixture with the fresh feedstock.
  • the overhead stream of the distillation column is sent to a separation unit from which the normal and mono-paraffins which are recycled either at the inlet of the column, on the one hand, are extracted on the one hand.
  • the separation unit used may be based on any technique known to those skilled in the art, for example a molecular sieve adsorption unit such as that described in the patent application. US2002 / 0045793 A1 .
  • the adsorbent used in said unit may be any adsorbent known to those skilled in the art to make this separation, for example the adsorbents described in the patent US 6,353,144 , the patent application FR 02/09841 (Non-homogeneous adsorbent consisting of at least one crystal formed of a core and a continuous outer layer having a diffusional selectivity greater than 5) and the patent application US2002 / 0045793 A1 . It is also conceivable to use one or more membrane modules for this separation, as described for example in the patent application. EP-A1-0192274 .
  • the distillation column may optionally be of the type column-inner wall (divided-wall column in English terminology), which is a technology that applies well in case one has a side racking.
  • one of the separation units involved is supplied with a mixture of different streams, at least one of which comes from the fresh feedstock, and this separation unit is extracted from a feedstock.
  • the normal and mono-paraffins which are recycled at the inlet of an isomerisation unit, and secondly a stream rich in di- and tribranched paraffins and naphthenic which feeds a distillation column which is extracted a) a flow of head which is the isomerate produced, and b) a bottom stream from which the toluene and methylcyclohexane contained in the fresh feed are exhaustively recycled.
  • nC7 can be tolerated in the isomerate constituting the head flow but if possible less than 0.5% by weight.
  • the fresh feed feeds an isomerization unit, the isomerization effluent, after stabilization, feeds the separation unit from which on the one hand the normal and mono are extracted.
  • paraffins which are recycled to the input of the isomerization unit, mixed with the fresh feed, and secondly a rich flow of di- and tribranched paraffins and naphthenic rings which feeds the distillation column, the top flow of which constitutes the isomerate, and whose naphthenic rich bottom stream is fed to the ring opening unit, the effluent of which is recycled to the inlet of the isomerization unit in admixture with the fresh feed and the feedstock. recycle from the separation unit.
  • the fresh feed feeds after stabilization, the separation unit from which are extracted on the one hand the normal and mono-paraffins which are recycled to the input of an isomerization unit and on the other hand, a stream rich in di- and tribranched paraffins and in naphthenic rings which feeds the distillation column, the top flow of which constitutes the isomerate, and whose rich naphthenic bottom flow is fed into the feed.
  • a ring opening unit the effluent of which is recycled mixed with the fresh feedstock and the effluent of the isomerization unit at the inlet of the stabilization.
  • the fresh feed feeds a unit for opening cycles
  • the effluent of said unit feeds an isomerization unit
  • the effluent of the isomerization unit after stabilization feeds the separation unit from which are extracted on the one hand the normal and mono-paraffins which are recycled to the input of the isomerization unit mixed with the effluent of the ring-opening unit, and on the other hand, a stream rich in di- and tribranched paraffins and in naphthenic rings which feeds the distillation column, the top flow of which constitutes the isomerate, and whose rich naphthenic bottom stream is recycled in charge of the daphthenic unit. opening cycles in mixture with the fresh load.
  • one of the separation units involved is a distillation column fed by a mixture of different streams, at least one of which is derived from the fresh feed, from which a flow is extracted.
  • head which feeds a second separation unit which is extracted on the one hand normal and mono-paraffins which are recycled to the input of one of the isomerization units, and secondly a rich flow of di and tribranched paraffins which is the isomerate produced, and b) a bottom stream from which the toluene and methylcyclohexane contained in the fresh feed are exhaustively recycled.
  • the fresh feed feeds an isomerization unit, the isomerization effluent, after stabilization, feeds the distillation column whose feed stream feeds the separation unit of which one extracts on the one hand the normal and mono-paraffins which are recycled at the input of the isomerization unit, mixed with the fresh feedstock, and on the other hand a stream rich in di- and tribranched paraffins which constitutes the isomerate, the bottom stream of the naphthenic rich distillation column is fed to a ring opening unit whose effluent is recycled to the inlet of the isomerization unit in admixture with the fresh feedstock and the recycle from the separation unit.
  • the fresh feed feeds a unit of opening of cycles
  • the effluent of said unit feeds an isomerization unit
  • the effluent of this isomerization unit after stabilization , feeds the distillation column whose head flow feeds the separation unit from which one extracts on the one hand the normal and mono-paraffins which are recycled to the input of the isomerisation unit, in mixing with the effluent of the ring opening unit and secondly a rich flow of di- and tribranched paraffins which constitutes the isomerate, the bottom flow of the column is recycled in charge of the unit of opening of cycles mixed with fresh feed.
  • the fresh feed feeds a unit for opening cycles, the effluent of said unit, after stabilization, feeds the distillation column, the feed of which feeds the feed unit. separation from which are extracted on the one hand the normal and mono-paraffins which are sent as input to a first isomerization unit whose effluent is recycled to the stabilization inlet mixed with the effluent of the opening unit of cycles and on the other hand a flow rich in di- and tribranched paraffins which constitutes the isomerate, the bottom flow of the column feeds a second isomerization unit, whose effluent is recycled in charge of the unit of opening of cycles mixed with fresh feed.
  • the term "rich" stream is understood to mean a stream whose weight composition is such that said compound represents at least 50% by weight, preferably at least 65% by weight and even more preferably at least 80% by weight of the total composition.
  • the hydrogenation of toluene can be carried out in a specific hydrogenation unit. This unit can be placed to process the entire fresh feed, or to process only the feed of the ring opening unit or one of the isomerization units.
  • the charge to be treated (1) is introduced into a distillation column (A) comprising 88 actual trays at the plateau 50.
  • the fresh batch (1) has in the example considered the following composition (in% by weight) and a mass flow rate given below:% by weight dimethyl 2-3 butane 0.01 2-methyl pentane 0.10 methyl-3 pentane 0.14 n-hexane 1.41 methyl-cyclopentane 0.79 cyclohexane 1.64 benzene 0.18 trimethyl 2-2-3 butane 0.06 dimethyl 2-2 pentane 0.15 dimethyl 2-3 pentane 3.66 dimethyl 2-4 pentane 0.42 dimethyl 3-3 pentane 0.24 2-methyl hexane 9.39 3-methyl hexane 12.68 ethyl-3 pentane 1.16 n-heptane 31,20 1,1-dimethylcyclopentane 0.89 cis-dimethyl-1,3 cyclopentane 2.40 1,
  • a flow (2) which corresponds to the product isomerate and whose weight composition and mass flow rate are as follows: isopentane 4.23 dimethyl 2-2 butane 0.22 dimethyl 2-3 butane 0.18 2-methyl pentane 0.83 methyl-3 pentane 0.53 n-hexane 2.21 methyl-cyclopentane 0.97 cyclohexane 1.93 benzene 0.18 trimethyl 2-2-3 butane 8.12 dimethyl 2-2 pentane 22.04 dimethyl 2-3 pentane 0.88 dimethyl 2-4 pentane 47,23 dimethyl 3-3 pentane 3.07 2-methyl hexane 4.34 3-methyl hexane 1.79 ethyl-3 pentane 0.06 n-heptane 0.50 1,1-dimethylcyclopentane 0.20 cis-dimethyl-1,3 cyclopentane 0.08 1,3-trans-1,3-dimethylcyclopentane 0.07 1,2-trans-1,
  • the RON of this isomerate (stream 2) is 84.2 and its aromatic content is 0.18 wt%.
  • stream (3) containing a majority (at least 70%) of normal-heptane and C 7 paraffins mono-branched.
  • a stream (4) which is a rich flow of methylcyclohexane, toluene and n-heptane.
  • This stream (4) is sent to a toluene-specific hydrogenation unit (B) and then to a ring-opening unit (C) which produces an effluent (5) containing mainly a mixture of paraffins resulting in part from the opening of the rings, as well as unconverted methyl-cyclohexane, toluene being completely hydrogenated.
  • the catalyst used for the ring opening unit may be any catalyst for ring-opening conversion of at least 5% of the methylcyclohexane present in the mixture to be treated.
  • the ring opening unit uses an iridium catalyst deposited on alumina or silica-alumina, such as that described in the patent application. WO 02/07881 .
  • the weight composition and the mass flow rate (excluding hydrogen) of the stream (5) corresponding to the effluent of the ring opening unit are as follows: C 5- 1.82 paraffins C 5 3.69 paraffins C 6 1.72 methyl-cyclopentane 0.00 cyclohexane 0.00 benzene 0.00 paraffins C 7 71.13 1,1-dimethylcyclopentane 0.39 cis-dimethyl-1,3 cyclopentane 0.37 1,3-trans-1,3-dimethylcyclopentane 0.40 1,2-trans-1,2-dimethylcyclopentane 0.40 methyl-cyclohexane 19.18 ethyl-cyclopentane 0.39 toluene 0.00 C 8+ 0.51 total flow (kg / h) 10962
  • the stream (5) is mixed with the stream (3) to give a stream (6) which is introduced into an isomerization unit (D) using a platinum catalyst on chlorinated alumina as described in the application patent US2002 / 0002319 A1 .
  • the weight composition and the mass flow rate (excluding hydrogen) of the stream (7) corresponding to the effluent of the isomerization unit are as follows: C 5- 2.54 isopentane 0.56 dimethyl 2-2 butane 0.03 dimethyl 2-3 butane 0.02 2-methyl pentane 0.10 methyl-3 pentane 0.05 n-hexane 0.12 methyl-cyclopentane 0.04 cyclohexane 0.10 benzene 0.00 trimethyl 2-2-3 butane 1.63 dimethyl 2-2 pentane 3.26 dimethyl 2-3 pentane 4.08 dimethyl 2-4 pentane 8.16 dimethyl 3-3 pentane 4.08 2-methyl hexane 22.04 3-methyl hexane 16.32 ethyl-3 pentane 0.82 n-heptane 21,22 1,1-dimethylcyclopentane 0.33 cis-dimethyl-1,3 cyclopentane 0.32 1,3-trans-1,3-dimethylcyclopentane 0.34 1,
  • the effluent (7) of the isomerization unit is sent to a stabilization column (E) from which a flow (9) comprising the light gases resulting from the cracking reactions within the isomerization unit (C 5- cut) and bottom a flow (8) whose composition is very close to that of the flow (7) and which is reintroduced at the top of the column (A) at the plateau 12 .
  • the mass flow (excluding hydrogen) of the flow (9) amounts to 1800 kg / h.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

    Domaine de l'invention :
  • La suppression des alkyles de plomb dans les essences automobiles, et plus récemment la limitation des teneurs en composés aromatiques dans les essences (35% en 2005 contre 42 % actuellement) a généré un développement des procédés de production de paraffines ramifiées qui ont un bien meilleur indice d'octane que les paraffines linéaires, et en particulier un développement des procédés d'isomérisation des paraffines normales en paraffines ramifiées. Ces procédés revêtent actuellement une importance croissante dans l'industrie pétrolière.
  • Les schémas actuels de valorisation du naphta (coupe C5-C10) issu de la distillation atmosphérique du pétrole comprennent le plus souvent un fractionnement produisant :
    • un naphta léger (coupe C5-C6) qui est envoyé à l'isomérisation,
    • un naphta lourd (coupe C7-C10) qui est envoyé au reformage catalytique.
  • Le produit de l'isomérisation (ou isomérat) est exempt de composés aromatiques contrairement au réformat qui en contient en général une quantité importante du fait des réactions de déshydrocyclisation.
  • Isomérat et réformat sont habituellement envoyés au pool essence dans lequel peuvent intervenir également d'autres bases telles que l'essence issue du craquage catalytique en lit fluidisé (FCC), ou des additifs tel que le méthyl-tertiobutyl-éther (MTBE).
  • Les aromatiques présentent de hauts indices d'octane propices à leur utilisation dans les moteurs à allumage commandé, mais pour des raisons environnementales, les spécifications de plus en plus sévères conduisent à réduire la teneur totale en aromatiques dans les essences.
  • La spécification européenne prévoit dès 2005 de réduire à un maximum de 35 % en volume la teneur totale en aromatiques dans les supercarburants, alors qu'actuellement ladite teneur est de l'ordre de 42 % volume.
  • Ainsi, il est impératif de développer de nouveaux procédés permettant de synthétiser de nouvelles bases exemptes d'aromatiques mais présentant de forts indices d'octane.
  • Parmi ceux-ci, le procédé décrit dans la demande de brevet française FR-A-2,828,205 concerne un procédé d'isomérisation d'une charge C5-C8, la coupe C8+ du naphta étant envoyée au reforming. La charge C5-C8 est préalablement séparée en deux fractions, une première fraction riche en C5-C6 et une seconde fraction riche en C7-C8, ces deux fractions étant traitées séparément dans des zones réactionnelles distinctes.
  • La présente invention concerne plus particulièrement l'isomérisation de la seconde fraction riche en C7-C8 qui dans la pratique sera essentiellement une coupe C7.
  • Le tableau ci-dessous donne l'indice d'octane recherche (RON) des principaux composés hydrocarbonés en C7 qui sont présents dans cette seconde fraction ainsi que leur température normale d'ébullition.
    RON teb (°C)
    triméthyl 2-2-3 butane 112,1 80,8
    diméthyl 2-2 pentane 92,8 79,2
    diméthyl 2-4 pentane 83,1 80,5
    diméthyl 3-3 pentane 80,8 86
    diméthyl 2-3 pentane 91,1 89,7
    méthyl-2 hexane 42,4 90
    méthyl-3 hexane 52 91,9
    éthyl-3 pentane 65 93,4
    n-heptane 0 98,4
    diméthyl-1,1 cyclopentane 92,3 87,8
    cis-diméthyl-1,3 cyclopentane 79,2 90,8
    trans-diméthyl-1,3 cyclopentane 80,6 91,7
    trans-diméthyl-1,2 cyclopentane 80,6 91,8
    méthyl-cyclohexane 74,8 100,9
    éthyl-cyclopentane 67,2 103,4
    toluène 120 110,7
  • La considération des indices d'octane des différents isomères C7 montre que les isomères du normal-heptane (n-C7) présentant plusieurs ramifications, c'est-à-dire les di- et tribranchés possèdent un indice d'octane suffisamment élevé (de 80 à 110) pour pouvoir être envoyés directement dans le pool essence.
  • Par contre, les isomères ne présentant qu'une seule ramification ou monobranchés, présentent des indices d'octane insuffisants (42 pour le méthyl-2 hexane ; 52 pour le méthyl-3 hexane) pour être mélangés au pool essence. Ces composés doivent être le plus possible transformés en paraffines di- et /ou tribranchées dans le procédé d'isomérisation. Concernant le normal-heptane, la problématique est plus forte encore : son indice d'octane étant nul, il doit impérativement être converti à épuisement dans le procédé d'isomérisation. On pourra tolérer jusqu'à 1 % pds de nC7 dans l'isomérat mais si possible moins de 0,5 % pds.
  • Par ailleurs, le toluène présent dans la charge fraîche est totalement hydrogéné en méthyl-cyclohexane soit dans une unité d'hydrogénation spécifique, soit dans l'unité d'isomérisation des paraffines. Or, le méthyl-cyclohexane qui est également présent dans la charge en quantité importante est très peu affecté par l'isomérisation, les catalyseurs d'isomérisation favorisant très peu l'ouverture des cycles naphténiques dans leurs conditions habituelles de mise en oeuvre. L'isomérat C7 obtenu peut contenir jusqu'à 30 % pds de méthyl-cyclohexane : ce composé dont le RON est inférieur à 75 diminue notablement le RON de cet isomérat C7. Afin de maximiser le RON de l'isomérat produit, il paraît donc intéressant de convertir le méthyl-cyclohexane en paraffines dans une unité d'ouverture de cycles, afin de réduire la teneur en méthyl-cyclohexane de l'isomérat C7. Ainsi la demande de brevet WO 02/07881 porte sur un catalyseur à base d'iridium sur silice-alumine permettant de réaliser la réaction d'ouverture des cycles naphténiques. Le brevet US 5,382,731 décrit un enchaînement d'un réacteur à ouverture de cycles naphténiques suivi d'un réacteur d'isomérisation en présence d'hydrogène et de chlore, cet ensemble de réactions étant appliqué à une charge à 6 atomes de carbone comportant 50 % poids de normal hexane, 14,5 % poids de méthyl-cyclopentane, 32% poids de cyclohexane et 3,9 %poids de benzène. Les brevets US 5,463,155 et US 5,770,042 décrivent un enchaînement d'un réacteur à ouverture de cycles naphténiques suivi d'un réacteur d'isomérisation complété par une séparation normale paraffines / isoparaffines dans le brevet US 5,770,042 . La charge utilisée est un naphta défini comme une coupe pétrolière ayant de 4 à 7 atomes de carbone, avec une concentration en C7 préférentiellement limitée à 20 % poids. Enfin, le brevet US 2,915,571 décrit un enchaînement d'une isomérisation suivie d'une colonne de distillation et d'un réacteur d'ouverture de cycles.
  • Le problème que cherche à résoudre la présente invention est celui de la production de bases d'essence à partir d'une coupe en C7 qui répondent à un indice d'octane recherche (RON) d'au moins 80, avec une teneur en composés aromatiques limitée à 1% pds, ce qui permet d'anticiper la nouvelle réglementation sur les spécifications du pool essence.
  • La solution proposée dans la présente invention consiste en une combinaison d'unités connues nommément, au moins une unité d'isomérisation et au moins une unité d'ouverture des cycles naphténiques, la combinaison ayant comme caractéristique de réaliser un épuisement du méthyl-cyclohexane, et des paraffines en C7 normales et mono branchées responsables de l'abaissement de l'indice d'octane. On entend par épuisement le fait de convertir lesdits composés par recyclage systématique dans une unité appropriée de la combinaison d'unités intégrées au procédé selon l'invention, les dits composés ayant été préalablement isolés dans au moins une unité de séparation.
  • Les nombreuses variantes qui seront décrites dans la suite du texte ont toutes en commun cette notion d'épuisement.
  • Par ailleurs, le toluène présent dans la charge fraîche est totalement hydrogéné ce qui permet de limiter la teneur en aromatiques dans l'isomérat produit.
  • L'art antérieur décrit ci-dessus fait apparaître individuellement les unités qui sont utilisées dans la présente invention, mais il ne les combine pas de la manière décrite par la Demanderesse, c'est-à-dire avec des recyclages à épuisement des paraffines normales et monobranchées, en particulier des paraffines normales et monobranchées en C7 non converties d'une part, et des naphtènes, en particulier du méthyl-cyclohexane, et des aromatiques, en particulier du toluène, d'autre part.
  • Présentation sommaire de l'invention :
  • La présente invention concerne un procédé de production de paraffines multi-branchées à 7 atomes de carbone, permettant d'obtenir un isomérat ayant un indice d'octane au moins égal à 80 avec une teneur en composés aromatiques inférieure à 1%, à partir d'une charge comprenant en majeure partie des hydrocarbures à 7 atomes de carbone appartenant aux familles des paraffines, des naphtènes et des aromatiques selon les revendications 1 à 6. Dans la suite de la description, on utilisera l'abréviation coupe C7 pour désigner une charge comprenant une majeure partie d'hydrocarbures à 7 atomes de carbone, cette coupe C7 étant généralement issue d'un naphta de première distillation, et ayant une composition chimique qui varie avec l'origine de la coupe naphta dans les fourchettes typiques données ci dessous :
    • normal-heptane de 20 à 35 % poids,
    • méthyl-2 hexane de 5 à 10 % poids,
    • méthyl-3 hexane de 10 à 15% poids,
    • méthyl-cyclohexane de 10 à 25 % poids,
    • toluène de 4 à 15 % poids.
  • Cette coupe en C7 est donc composée de paraffines en C7, à peu près également réparties en paraffines monobranchées et normales, de naphtènes en C7 dont le représentant principal est le méthyl-cyclohexane et d'aromatiques en C7, dont l'unique représentant est le toluène.
  • L'objectif du procédé objet de la présente invention est de transformer cette coupe C7 en une coupe contenant majoritairement, c'est-à-dire au moins 70% poids, de préférence au moins 85% poids, des paraffines en C7 multi-branchées, c'est-à-dire présentant un degré de branchement supérieur ou égal à deux.
  • Ces paraffines multi-branchées vont conférer à la coupe correspondante un indice d'octane recherche (RON) élevé, c'est-à-dire d'au moins 80, et qui peut atteindre et même dépasser 87. Ce nombre d'octane peut en pratique être légèrement inférieur en raison de la présence résiduelle d'environ 10 % ou moins de paraffines normales et monobranchées.
  • La transformation de la coupe C7 de départ en la coupe C7 finale, composée d'une majorité de paraffines dibranchées nécessite plusieurs types de réaction :
    1. 1) la transformation des normales paraffines en paraffines branchées et des paraffines mono branchées en multibranchées qui est réalisée par une unité d'isomérisation travaillant sous pression partielle d'hydrogène, et qu'on appelle pour cette raison unité d'hydroisomérisation.
    2. 2) la transformation des naphtènes, essentiellement le méthyl-cyclohexane en paraffines multibranchées qui nécessite une première étape d'ouverture du cycle naphténique pour transformer le méthyl-cyclohexane en paraffines, puis la transformation ultérieure de ces paraffines en paraffines multibranchées dans l'unité d'isomérisation. L'unité d'ouverture des cycles naphténiques est également opérée sous pression partielle d'hydrogène.
    3. 3) la transformation du toluène en méthyl-cyclohexane qui a lieu soit dans une unité spécifique d'hydrogénation, soit dans l'unité d'isomérisation, soit dans l'unité d'ouverture de cycles.
  • L'invention porte plus précisément sur le traitement de la coupe à 7 atomes de carbone et permet de transformer la dite coupe C7 issue du naphta de première distillation en une coupe à 7 atomes de carbone composée d'une majorité de paraffines di et tribranchées, c'est-à-dire contenant au moins 70% poids, de préférence au moins 85% poids de paraffines multibranchées.
  • Pour réaliser ces transformations, le procédé fait appel à au moins une unité d'isomérisation, une unité d'ouverture des cycles naphténiques et une étape de séparation comportant au moins une colonne à distiller, éventuellement complétée par une unité permettant d'effectuer la séparation des normales et mono- paraffines d'une part, et des paraffines di- et tribranchées d'autre part. Ces unités sont combinées de manière à recycler jusqu'à épuisement le méthylcyclohexane, le toluène et les paraffines normales et monobranchées. De manière générale, une unité pourra comporter un ou plusieurs réacteurs.
  • Les schémas qui sont décrits dans la présente invention permettent de répondre à la demande d'octane dans le respect des teneurs admissibles en aromatiques dans l'essence, en maximisant la formation de composés paraffiniques multibranchés après avoir séparé la coupe naphta d'origine en 3 fractions:
    1. 1) une fraction de tête comportant essentiellement les composés à 5 et 6 atomes de carbone qui est envoyée dans une isomérisation spécifique dont les conditions opératoires et le catalyseur peuvent être différents de ceux utilisés pour l'isomérisation de la coupe C7.
    2. 2) une fraction à 7 atomes de carbone qui fait l'objet du traitement décrit dans la présente invention et qui aboutit à un effluent à 7 atomes de carbone contenant au moins 70 % poids, de préférence au moins 85% poids, de paraffines di et tribranchées et dont le nombre d'octane est d'au moins 80, de préférence compris entre 80 et 87. Cette fraction à 7 atomes de carbone pourra éventuellement avant le traitement décrit dans la présente invention subir un prétraitement permettant de réduire jusqu'à des valeurs inférieures à 0,5 % poids la teneur en toluène au travers d'une unité spécifique d'hydrogénation.
    3. 3) une fraction de fond contenant essentiellement les composés à 8 atomes de carbone et plus qui est envoyée dans une unité de reformage catalytique.
  • La présente invention porte donc sur le traitement de la fraction à 7 atomes de carbone issue du fractionnement décrit ci-dessus, mais étant donné les performances de l'unité de fractionnement du naphta, on pourra trouver dans la dite coupe C7 jusqu'à 10 % de composés plus légers ayant 6 atomes de carbone ou moins, et jusqu'à 10 % de composés plus lourds ayant 8 atomes de carbone et plus.
  • Description de l'invention :
  • La présente invention a pour objet un procédé de production d'un isomérat de RON au moins égal à 80 et contenant moins de 1% poids d'aromatiques à partir d'une coupe majoritairement constituée d'hydrocarbures à 7 atomes de carbone, et contenant des paraffines, des naphtènes et des aromatiques, le dit procédé comprenant au moins une unité d'isomérisation, au moins une unité d'ouverture des cycles naphténiques et au moins une unité de séparation, caractérisé en ce que les dites unités sont combinées de manière à recycler jusqu'à épuisement le methylcyclohexane, le toluène et les paraffines normales et monobranchées. Dans la coupe initiale majoritairement constituée d'hydrocarbures à 7 atomes de carbone, les paraffines, les naphtènes et les aromatiques sont en proportion quelconque.
  • On entend par épuisement le fait de convertir le methylcyclohexane, le toluène et les paraffines normales et monobranchées par recyclage systématique dans une unité appropriée de la combinaison d'unités intégrées au procédé selon l'invention, les dits composés ayant été préalablement isolés dans au moins une unité de séparation. Au moins une des unités de séparation est une colonne de distillation alimentée par un mélange de différents flux dont l'un au moins est issu de la charge fraîche, et dont on extrait a) un flux de tête qui, après éventuelle séparation supplémentaire, donne l'isomérat produit, b) un flux latéral, qui alimente seul ou en mélange une des unités d'isomérisation, à partir duquel on convertit à épuisement les paraffines normales et monobranchées, et c) un flux de fond à partir duquel on recycle à épuisement le toluène et le methylcyclohexane contenus dans la charge fraîche.
  • On pourra tolérer jusqu'à 1 % poids de nC7 dans l'isomérat constituant le flux de tête mais si possible moins de 0,5 % pds. Selon l'invention (Cf figure 1), une première unité d'isomérisation est alimentée par le soutirage latéral issu de la colonne de distillation, l'effluent de l'isomérisation, après stabilisation, étant renvoyé à la colonne de distillation sur un plateau situé au-dessus du plateau de soutirage latéral, la charge fraîche alimente la colonne de distillation, et l'unité d'ouverture de cycles est alimentée par le flux de fond de la dite colonne, l'effluent de l'unité d'ouverture de cycles étant recyclé en entrée de l'unité d'isomérisation, en mélange avec le flux de soutirage latéral issu de la dite colonne.
  • Dans une seconde variante de l'invention, une unité d'isomérisation est alimentée par le soutirage latéral issu de la colonne de distillation, l'effluent de l'isomérisation après stabilisation étant renvoyé à la colonne de distillation sur un plateau situé au-dessus du plateau de soutirage latéral, la charge fraîche alimente la colonne de distillation et l'unité d'ouverture de cycles est alimentée par le flux de fond de la dite colonne, l'effluent de l'unité d'ouverture de cycles étant recyclé en mélange avec la charge fraîche en entrée de la dite colonne.
  • Dans un exemple ne faisant pas partie de l'invention, une des unités d'isomérisation, appelée première isomérisation, est alimentée par le soutirage latéral issu de la colonne de distillation, l'effluent de cette première isomérisation après stabilisation étant renvoyé à la colonne de distillation sur un plateau situé au-dessus du plateau de soutirage latéral, la charge fraîche alimente une seconde unité d'isomérisation distincte de la première unité d'isomérisation, l'effluent de cette seconde unité d'isomérisation étant, après stabilisation, envoyé comme charge de la colonne de distillation et l'unité d'ouverture de cycles étant alimentée par le flux de fond de la colonne de distillation, l'effluent de l'unité d'ouverture de cycles étant recyclé en mélange avec la charge fraîche à l'entrée de la seconde unité d'isomérisation.
  • Dans un exemple ne faisant pas partie de l'invention, une des unités d'isomérisation, appelée première isomérisation, est alimentée par le soutirage latéral issu de la colonne de distillation, l'effluent de cette première isomérisation après stabilisation étant renvoyé à la colonne de distillation sur un plateau situé au-dessus du plateau de soutirage latéral, la charge fraîche alimente l'unité d'ouverture de cycles, l'effluent de cette unité d'ouverture de cycles alimente une seconde unité d'isomérisation distincte de la première isomérisation, et l'effluent de cette seconde unité d'isomérisation, après stabilisation, alimente la colonne de distillation, le flux de fond de la colonne de distillation alimentant en mélange avec la charge fraîche l'unité d'ouverture de cycles.
  • Dans une troisième variante de l'invention, une des unités d'isomérisation, appelée première isomérisation, est alimentée par le soutirage latéral issu de la colonne de distillation, l'effluent de cette première isomérisation après stabilisation étant renvoyé à la colonne de distillation sur un plateau situé au dessus du plateau de soutirage latéral, la charge fraîche alimente la colonne de distillation, et le flux de fond de la colonne de distillation alimente l'unité d'ouverture de cycles, l'effluent de cette unité d'ouverture de cycles alimente une seconde unité d'isomérisation distincte de la première isomérisation, l'effluent de cette seconde isomérisation, après stabilisation, alimente en mélange avec la charge fraîche la colonne de distillation.
  • Dans une quatrième variante du procédé selon l'invention le flux de tête de la colonne de distillation est envoyé dans une unité de séparation de laquelle on extrait d'une part les normales et mono paraffines qui sont recyclées soit en entrée de la colonne, en mélange avec la charge fraîche, soit en entrée de la première unité d'isomérisation, en mélange avec le flux de soutirage latéral, et d'autre part un flux riche en paraffines di et tribranchées qui constitue l'isomérat produit.
  • L'unité de séparation utilisée pourra être basée sur toute technique connue de l'homme de l'art par exemple une unité d'adsorption sur tamis moléculaire telle que celle décrite dans la demande de brevet US2002/0045793 A1 . L'adsorbant utilisé dans ladite unité pourra être tout adsorbant connu de l'homme de l'art permettant de faire cette séparation, par exemple les adsorbants décrits dans le brevet US 6 353 144 , la demande de brevet FR 02/09841 (adsorbant non-homogène constitué d'au moins un cristal formé d'un coeur et d'une couche extérieure continue présentant une sélectivité diffusionnelle supérieure à 5) et la demande de brevet US2002/0045793 A1 . On peut également envisager d'utiliser un ou plusieurs modules membranaires pour cette séparation, comme décrit par exemple dans la demande de brevet EP-A1- 0 922 748 .
  • Pour chacune des variantes de l'invention, la colonne de distillation pourra éventuellement être du type colonne à paroi interne (divided-wall column dans la terminologie anglo-saxonne), qui est une technologie qui s'applique bien au cas où l'on a un soutirage latéral.
  • Dans les exemples décrits ci-après, l'une des unités de séparation mise en jeu est alimentée par un mélange de différents flux dont l'un au moins est issu de la charge fraîche, et on extrait de cette unité de séparation d'une part les normales et mono paraffines qui sont recyclées en entrée d'une unité d'isomérisation, et d'autre part un flux riche en paraffines di et tribranchées et naphténiques qui alimente une colonne de distillation dont on extrait a) un flux de tête qui est l'isomérat produit, et b) un flux de fond à partir duquel on recycle à épuisement le toluène et le methylcyclohexane contenus dans la charge fraîche.
  • On pourra tolérer jusqu'à 1 % poids de nC7 dans l'isomérat constituant le flux de tête mais si possible moins de 0,5 % pds.
  • Dans un exemple ne faisant pas partie de l'invention, la charge fraîche alimente une unité d'isomérisation, l'effluent d'isomérisation, après stabilisation, alimente l'unité de séparation de laquelle on extrait d'une part les normales et mono paraffines qui sont recyclées en entrée de l'unité d'isomérisation, en mélange avec la charge fraîche, et d'autre part un flux riche en paraffines di et tribranchées et en cycles naphténiques qui alimente la colonne de distillation dont le flux de tête constitue l'isomérat, et dont le flux de fond riche en naphténiques est envoyé en charge de l'unité d'ouverture de cycles, dont l'effluent est recyclé en entrée de l'unité d'isomérisation en mélange avec la charge fraîche et le recycle provenant de l'unité de séparation.
  • Dans un exemple ne faisant pas partie de l'invention, la charge fraîche alimente, après stabilisation, l'unité de séparation de laquelle on extrait d'une part les normales et mono paraffines qui sont recyclées en entrée d'une unité d'isomérisation, et d'autre part un flux riche en paraffines di et tribranchées et en cycles naphténiques qui alimente la colonne de distillation dont le flux de tête constitue l'isomérat, et dont le flux de fond riche en naphténiques est envoyé en charge de l'unité d'ouverture de cycles, dont l'effluent est recyclé en mélange avec la charge fraîche et l'effluent de l'unité d'isomérisation en entrée de la stabilisation.
  • Dans un exemple ne faisant pas partie de l'invention, la charge fraîche alimente une unité d'ouverture de cycles, l'effluent de la dite unité alimente une unité d'isomérisation, l'effluent de l'unité d'isomérisation, après stabilisation, alimente l'unité de séparation de laquelle on extrait d'une part les normales et mono paraffines qui sont recyclées en entrée de l'unité d'isomérisation en mélange avec l'effluent de l'unité d'ouverture de cycles, et d'autre part un flux riche en paraffines di et tribranchées et en cycles naphténiques qui alimente la colonne de distillation dont le flux de tête constitue l'isomérat, et dont le flux de fond riche en naphténiques est recyclé en charge de l'unité d'ouverture de cycles en mélange avec la charge fraîche.
  • Dans les exemples décrits ci-après, l'une des unités de séparation mise en jeu est une colonne de distillation alimentée par un mélange de différents flux dont l'un au moins est issu de la charge fraîche, dont on extrait a) un flux de tête qui alimente une seconde unité de séparation dont on extrait d'une part les normales et mono paraffines qui sont recyclées en entrée d'une des unités d'isomérisation, et d'autre part un flux riche en paraffines di et tribranchées qui est l'isomérat produit, et b) un flux de fond à partir duquel on recycle à épuisement le toluène et le méthylcyclohexane contenus dans la charge fraîche.
  • On pourra tolérer jusqu'à 1 % poids de nC7 dans l'isomérat mais si possible moins de 0,5 % pds. Un exemple ne faisant pas partie de l'invention, la charge fraîche alimente une unité d'isomérisation, l'effluent d'isomérisation, après stabilisation, alimente la colonne de distillation dont le flux de tête alimente l'unité de séparation de laquelle on extrait d'une part les normales et mono paraffines qui sont recyclées en entrée de l'unité d'isomérisation, en mélange avec la charge fraîche, et d'autre part un flux riche en paraffines di et tribranchées qui constitue l'isomérat, le flux de fond de la colonne de distillation riche en naphténiques est envoyé en charge d'une unité d'ouverture de cycles dont l'effluent est recyclé en entrée de l'unité d'isomérisation en mélange avec la charge fraîche et le recycle provenant de l'unité de séparation.
  • Dans un exemple ne faisant pas partie de l'invention, la charge fraîche alimente, après stabilisation, la colonne de distillation dont le flux de tête alimente l'unité de séparation de laquelle on extrait d'une part les normales et mono paraffines qui sont recyclées en entrée d'une première unité d'isomérisation, et d'autre part un flux riche en paraffines di et tribranchées qui constitue l'isomérat, le flux de fond de la colonne riche en naphténiques est envoyé en charge d'une unité d'ouverture de cycles dont l'effluent est envoyé en charge d'une seconde unité d'isomérisation dont l'effluent est recyclé en mélange avec la charge fraîche et l'effluent recyclé de la première unité d'isomérisation en entrée de la stabilisation.
  • Dans un exemple ne faisant pas partie de l'invention, la charge fraîche alimente une unité d'ouverture de cycles, l'effluent de la dite unité alimente une unité d'isomérisation, l'effluent de cette unité d'isomérisation, après stabilisation, alimente la colonne de distillation dont le flux de tête alimente l'unité de séparation de laquelle on extrait d'une part les normales et mono paraffines qui sont recyclées en entrée de l'unité d'isomérisation, en mélange avec l'effluent de l'unité d'ouverture de cycles et d'autre part un flux riche en paraffines di et tribranchées qui constitue l'isomérat, le flux de fond de la colonne est recyclé en charge de l'unité d'ouverture de cycles en mélange avec la charge fraîche.
  • Dans un exemple ne faisant pas partie de l'invention, la charge fraîche alimente une unité d'ouverture de cycles, l'effluent de la dite unité, après stabilisation, alimente la colonne de distillation dont le flux de tête alimente l'unité de séparation de laquelle on extrait d'une part les normales et mono paraffines qui sont envoyées en entrée d'une première unité d'isomérisation dont l'effluent est recyclé en entrée de stabilisation en mélange avec l'effluent de l'unité d'ouverture de cycles et d'autre part un flux riche en paraffines di et tribranchées qui constitue l'isomérat, le flux de fond de la colonne alimente une seconde unité d'isomérisation, dont l'effluent est recyclé en charge de l'unité d'ouverture de cycles en mélange avec la charge fraîche.
  • Au sens de la présente invention et des différentes variantes du procédé selon l'invention, on entend par flux "riche" en un composé, un flux dont la composition pondérale est telle que ledit composé représente au moins 50% poids, de préférence au moins 65 % poids et de manière encore plus préférée au moins 80% poids de la composition totale. L'hydrogénation du toluène peut être réalisée dans une unité d'hydrogénation spécifique. Cette unité peut être placée de manière à traiter l'ensemble de la charge fraîche, ou de manière à traiter uniquement la charge de l'unité d'ouverture de cycles ou d'une des unités d'isomérisation.
  • La description détaillée de l'invention est faite au moyen de la figure 1 qui présente un schéma de procédé de l'invention dans une de ses variantes préférées. La description détaillée de cette variante inclut l'exemple qui l'illustre.
  • D'autres variantes sont possibles, mais ne seront pas toutes décrites de manière détaillée.
  • Dans l'exemple qui illustre la variante préférée (Cf figure 1), la charge à traiter (1) est introduite dans une colonne à distiller (A) comportant 88 plateaux réels au niveau du plateau 50. La charge fraîche (1) a dans l'exemple considéré la composition suivante (en % poids) et un débit massique donné ci-après : % poids
    diméthyl 2-3 butane 0,01
    méthyl-2 pentane 0,10
    méthyl-3 pentane 0,14
    n-hexane 1,41
    méthyl-cyclopentane 0,79
    cyclohexane 1,64
    benzène 0,18
    triméthyl 2-2-3 butane 0,06
    diméthyl 2-2 pentane 0,15
    diméthyl 2-3 pentane 3,66
    diméthyl 2-4 pentane 0,42
    diméthyl 3-3 pentane 0,24
    méthyl-2 hexane 9,39
    méthyl-3 hexane 12,68
    éthyl-3 pentane 1,16
    n-heptane 31,20
    diméthyl-1,1 cyclopentane 0,89
    cis-diméthyl-1,3 cyclopentane 2,40
    trans-diméthyl-1,3 cyclopentane 2,29
    trans-diméthyl-1,2 cyclopentane 4,33
    méthyl-cyclohexane 12,43
    éthyl-cyclopentane 0,70
    toluène 13,23
    C8+ 0,50
    débit total (kg /h) 11117
  • En tête de la colonne (A) sort un flux (2) qui correspond à l'isomérat produit et dont la composition pondérale et le débit massique sont les suivants :
    isopentane 4,23
    diméthyl 2-2 butane 0,22
    diméthyl 2-3 butane 0,18
    méthyl-2 pentane 0,83
    méthyl-3 pentane 0,53
    n-hexane 2,21
    méthyl-cyclopentane 0,97
    cyclohexane 1,93
    benzène 0,18
    triméthyl 2-2-3 butane 8,12
    diméthyl 2-2 pentane 22,04
    diméthyl 2-3 pentane 0,88
    diméthyl 2-4 pentane 47,23
    diméthyl 3-3 pentane 3,07
    méthyl-2 hexane 4,34
    méthyl-3 hexane 1,79
    éthyl-3 pentane 0,06
    n-heptane 0,50
    diméthyl-1,1 cyclopentane 0,20
    cis-diméthyl-1,3 cyclopentane 0,08
    trans-diméthyl-1,3 cyclopentane 0,07
    trans-diméthyl-1,2 cyclopentane 0,06
    méthyl-cyclohexane 0,28
    éthyl-cyclopentane 0,00
    toluène 0,00
    C8+ 0,00
    débit total (kg /h) 9317
  • Le RON de cet isomérat (flux 2) est de 84,2 et sa teneur en aromatiques est de 0,18 % pds. Au niveau du plateau 44 est soutiré un flux (3) contenant une majorité (au moins 70%) de normal-heptane et de paraffines en C7 monobranchées.
  • Au niveau du fond de la colonne (A) est soutiré un flux (4) qui est un flux riche en methylcyclohexane, toluène et n-heptane.
  • Ce flux (4) est envoyé dans une unité d'hydrogénation spécifique du toluène (B) puis dans une unité d'ouverture de cycles (C) qui produit un effluent (5) contenant principalement un mélange de paraffines résultant pour partie de l'ouverture des cycles, ainsi que le méthyl-cyclohexane non converti, le toluène étant totalement hydrogéné.
  • Le catalyseur utilisé pour l'unité d'ouverture de cycles pourra être tout catalyseur permettant de convertir par ouverture de cycle au moins 5% du méthylcyclohexane présent dans le mélange à traiter. Dans l'exemple illustrant la variante préférée, l'unité d'ouverture de cycles met en oeuvre un catalyseur à base d'iridium déposé sur alumine ou silice-alumine, tel que celui décrit dans la demande de brevet WO 02 /07881 .
  • L'unité d'ouverture de cycles est opérée dans les conditions suivantes :
    • Température = 300 °C
    • Pression = 14 bar.eff
    • PPH = 10 h-1
    • Ratio molaire hydrogène/hydrocarbure = 6 moles/mole
  • La composition pondérale et le débit massique (hors hydrogène) du flux (5) correspondant à l'effluent de l'unité d'ouverture de cycles sont les suivants :
    C5- 1,82
    paraffines C5 3,69
    paraffines C6 1,72
    méthyl-cyclopentane 0,00
    cyclohexane 0,00
    benzène 0,00
    paraffines C7 71,13
    diméthyl-1,1 cyclopentane 0,39
    cis-diméthyl-1,3 cyclopentane 0,37
    trans-diméthyl-1,3 cyclopentane 0,40
    trans-diméthyl-1,2 cyclopentane 0,40
    méthyl-cyclohexane 19,18
    éthyl-cyclopentane 0,39
    toluène 0,00
    C8+ 0,51
    débit total (kg /h) 10962
  • Le flux (5) est mélangé avec le flux (3) pour donner un flux (6) qui est introduit dans une unité d'isomérisation (D) mettant en oeuvre un catalyseur à base de platine sur alumine chlorée tel que décrit dans la demande de brevet US2002/0002319 A1 .
  • L'unité d'isomérisation travaille aux conditions suivantes :
    • Température = 90 °C
    • Pression = 30 bar.eff
    • PPH = 1 h-1
    • Ratio molaire hydrogène/hydrocarbure = 0,2 mole/mole
  • La composition pondérale et le débit massique (hors hydrogène) du flux (7) correspondant à l'effluent de l'unité d'isomérisation sont les suivants :
    C5- 2,54
    isopentane 0,56
    diméthyl 2-2 butane 0,03
    diméthyl 2-3 butane 0,02
    méthyl-2 pentane 0,10
    méthyl-3 pentane 0,05
    n-hexane 0,12
    méthyl-cyclopentane 0,04
    cyclohexane 0,10
    benzène 0,00
    triméthyl 2-2-3 butane 1,63
    diméthyl 2-2 pentane 3,26
    diméthyl 2-3 pentane 4,08
    diméthyl 2-4 pentane 8,16
    diméthyl 3-3 pentane 4,08
    méthyl-2 hexane 22,04
    méthyl-3 hexane 16,32
    éthyl-3 pentane 0,82
    n-heptane 21,22
    diméthyl-1,1 cyclopentane 0,33
    cis-diméthyl-1,3 cyclopentane 0,32
    trans-diméthyl-1,3 cyclopentane 0,34
    trans-diméthyl-1,2 cyclopentane 0,32
    méthyl-cyclohexane 13,20
    éthyl-cyclopentane 0,32
    toluène 0,00
    C8+ 0,00
    débit total (kg /h) 70847
  • L'effluent (7) de l'unité d'isomérisation est envoyé dans une colonne de stabilisation (E) d'où l'on sort en tête un flux (9) comprenant les gaz légers qui résultent des réactions de craquage au sein de l'unité d'isomérisation (coupe C5-) et en fond un flux (8) dont la composition est très proche de celle du flux (7) et qui est réintroduit en tête de la colonne (A) au niveau du plateau 12.
  • Le débit massique (hors hydrogène) du flux (9) s'élève à 1800 kg/h.
  • On peut vérifier globalement que le débit massique du flux (1) est égal à la somme des débits massiques des flux (2) et (9).

Claims (6)

  1. Procédé de production d'un isomérat de RON au moins égal à 80, formé d'au moins 70% poids de paraffines en C7 multibranchées et contenant moins de 1% poids d'aromatiques à partir d'une coupe majoritairement constituée d'hydrocarbures à 7 atomes de carbone, et contenant des paraffines, des naphtènes et des aromatiques, dans lequel est compris au moins une unité d'isomérisation, au moins une unité d'ouverture des cycles naphténiques et au moins une unité de séparation, dans lequel au moins une des unités de séparation est une colonne de distillation alimentée par un mélange de différents flux dont l'un au moins est issu de la charge fraîche, et dont on extrait a) un flux de tête qui, après éventuelle séparation supplémentaire, donne l'isomérat produit, b) un flux latéral qui alimente seul ou en mélange une des unités d'isomérisation, à partir duquel on convertit à épuisement les paraffines normales et monobranchées, et c) un flux de fond à partir duquel on recycle à épuisement le toluène et le methylcyclohexane contenus dans la charge fraîche, dans lequel une première unité d'isomérisation est alimentée par un soutirage latéral issu de ladite colonne de distillation, l'effluent de l'isomérisation, après stabilisation, étant renvoyé à ladite colonne de distillation sur un plateau situé au-dessus du plateau de soutirage latéral, dans lequel la charge fraîche alimente la colonne de distillation et dans lequel l'unité d'ouverture de cycles est alimentée par le flux de fond de la dite colonne, l'effluent de cette unité d'ouverture de cycles étant recyclé soit en entrée de la première unité d'isomérisation, en mélange avec le flux de soutirage latéral issu de la dite colonne soit en mélange avec la charge fraîche en entrée de la dite colonne.
  2. Procédé selon la revendication 1 dans lequel l'effluent de l'unité d'ouverture de cycles alimente une seconde unité d'isomérisation au lieu d'être recyclé en entrée de la première unité d'isomérisation ou d'être recyclé en mélange avec la charge fraîche en entrée de la colonne de distillation et dans lequel l'effluent de ladite seconde unité d'isomérisation, après stabilisation, alimente en mélange avec la charge fraîche la colonne de distillation.
  3. Procédé selon les revendication 1 ou 2 dans lequel le flux de tête de la colonne de distillation est envoyé dans une unité de séparation de laquelle on extrait d'une part les normales et mono paraffines qui sont recyclés soit en entrée de la colonne, en mélange avec la charge fraîche, soit en entrée de la première unité d'isomérisation, en mélange avec le flux de soutirage latéral et d'autre part un flux riche en paraffines di et tribranchées.
  4. Procédé selon l'une des revendications 1 à 3 dans lequel, la colonne de distillation est du type colonne à paroi interne.
  5. Procédé selon l'une des revendications 1 à 4 dans lequel le toluène est hydrogéné dans une unité d'hydrogénation spécifique, cette unité étant placée soit de manière à traiter l'ensemble de la charge fraîche, soit de manière à traiter uniquement la charge de l'unité d'ouverture de cycles ou d'une des unités d'isomérisation.
  6. Procédé de production d'un isomérat selon l'une des revendications 1 à 5 dans lequel l'isomérat est formé d'au moins 85% poids de paraffines en C7 multibranchées.
EP04291494.5A 2003-07-11 2004-06-14 Procédé amélioré d'isomérisation d'une coupe C7 avec ouverture des cycles naphténiques Active EP1496099B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0308570 2003-07-11
FR0308570A FR2857371B1 (fr) 2003-07-11 2003-07-11 Procede ameliore d'isomerisation d'une coupe c7 avec ouverture des cycles naphteniques

Publications (2)

Publication Number Publication Date
EP1496099A1 EP1496099A1 (fr) 2005-01-12
EP1496099B1 true EP1496099B1 (fr) 2017-08-09

Family

ID=33443279

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04291494.5A Active EP1496099B1 (fr) 2003-07-11 2004-06-14 Procédé amélioré d'isomérisation d'une coupe C7 avec ouverture des cycles naphténiques

Country Status (3)

Country Link
US (1) US7273958B2 (fr)
EP (1) EP1496099B1 (fr)
FR (1) FR2857371B1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2875507B1 (fr) * 2004-09-22 2008-10-31 Inst Francais Du Petrole Procede ameliore d'isomerisation d'une coupe c7 avec coproduction d'une coupe riche en molecules cycliques
US20150166438A1 (en) * 2013-12-12 2015-06-18 Uop Llc Processes and apparatuses for isomerizing hydrocarbons
FR3042190B1 (fr) * 2015-10-09 2019-12-27 IFP Energies Nouvelles Procede de production de bases essence
US11318452B2 (en) 2019-07-24 2022-05-03 Council Of Scientific & Industrial Research Single step process for the simultaneous production of aromatics, naphthenics and isoparaffins using transition metal functionalized zeolite based catalyst

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2915571A (en) * 1957-11-13 1959-12-01 Universal Oil Prod Co Isomerization of saturated hydrocarbons
US4956521A (en) * 1988-10-06 1990-09-11 Uop Adsorption and isomerization of normal and mono-methyl paraffins
US5055633A (en) 1988-10-06 1991-10-08 Uop Adsorption and isomerization of normal and mono-methyl paraffins
US5334792A (en) * 1992-10-09 1994-08-02 Mobil Oil Corporation Combined paraffin isomerization/ring opening process for c5+naphtha
US5382731A (en) * 1993-07-22 1995-01-17 Mobil Oil Corp. Combined paraffin isomerization/ring opening process
US5463155A (en) * 1993-11-15 1995-10-31 Uop Upgrading of cyclic naphthas
FR2769622B1 (fr) * 1997-10-14 1999-12-24 Inst Francais Du Petrole Procede d'isomerisation des composes aromatiques a huit atomes de carbone
FR2771418B1 (fr) * 1997-11-25 2001-02-02 Inst Francais Du Petrole Procede de separation d'une charge c5-c8 ou d'une charge intermediaire, en trois effluents respectivement riches en paraffines lineaires, monobranchees et multibranchees
FR2828205B1 (fr) * 2001-08-06 2004-07-30 Inst Francais Du Petrole Procede d'isomerisation d'une coupe c5-c8 mettant en oeuvre deux reacteurs en parallele

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
FR2857371B1 (fr) 2007-08-24
EP1496099A1 (fr) 2005-01-12
US20050043576A1 (en) 2005-02-24
US7273958B2 (en) 2007-09-25
FR2857371A1 (fr) 2005-01-14

Similar Documents

Publication Publication Date Title
EP1640436B1 (fr) Procédé d'isomérisation d'une coupe C7 avec coproduction d'une coupe cycliques riche en méthylcyclohexane
EP2321385B1 (fr) Procédé de conversion d'une charge lourde en essence et en propylène présentant une structure de rendement modulable
EP1463789B9 (fr) Vapocraquage d'essence de fcc
EP2333031A1 (fr) Procédé de production de carburants kérosène et diesel de haute qualité et de coproduction d'hydrogène à partir de coupes saturées légères
FR2925065A1 (fr) Nouveau schema permettant d'optimiser la production d'essence a haut indice d'octane et la coproduction de bases aromatiques
EP2636661B1 (fr) Procédé de conversion d'une charge lourde, mettant en oeuvre une unité de craquage catalytique et une étape d'hydrogénation sélective de l'essence issue du craquage catalytique
EP1640435B1 (fr) Procédé d'isomérisation d'une coupe C7 avec coproduction d'une coupe aromatique riche en toluène
FR3014894A1 (fr) Procede de reformage catalytique
FR2984916A1 (fr) Procede ameliore de conversion d'une charge lourde en distillat moyen faisant appel a un pretraitement en amont de l'unite de craquage catalytique
EP3137583A1 (fr) Procede de production d'essence comprenant une etape d'isomerisation suivie d'au moins deux etapes de separation
EP1496099B1 (fr) Procédé amélioré d'isomérisation d'une coupe C7 avec ouverture des cycles naphténiques
FR2714305A1 (fr) Catalyseur pour la réduction de la teneur en benzène dans les essences.
EP0661371B1 (fr) Procédé d'obtention d'une base pour carburant pour moteur à combustion interne par hydrotraitement et extraction
EP0552070B1 (fr) Réduction de la teneur en benzène dans les essences
EP1417283B1 (fr) Procede d'isomerisation d'une coupe c5-c8 mettant en oeuvre deux reacteurs en parallele
EP2426189B1 (fr) Procédé de production de carburants kérosène et diesel à partir de coupes insaturées légeres et de coupes aromatiques riches en BTX
EP0787786B1 (fr) Procédé d'isomérisation de paraffines par distillation réactive
EP1110931B1 (fr) Procédé et dispositif pour l'alkylation de l'isobutane par des oléfines légères.
EP0787785A1 (fr) Procédé d'isomérisation de paraffines
WO2023117594A1 (fr) Unité de production et de séparation des aromatiques avec valorisation d'un extrait et/ou d'un raffinat provenant d'un procédé d'extraction liquide-liquide
EP2277980A1 (fr) Procédé de réduction sélective de la teneur en benzène et en composés insatures legers de differentes coupes hydrocarbures
FR2948380A1 (fr) Procede de reduction selective de la teneur en benzene et en composes insatures legers de differentes coupes hydrocarbures
FR3042190A1 (fr) Procede de production de bases essence
WO2013098523A1 (fr) Procédé pour maximiser la production de composés aromatiques
FR2597496A1 (fr) Procede de reformage catalytique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

17P Request for examination filed

Effective date: 20050712

AKX Designation fees paid

Designated state(s): DE ES FR IT NL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C10G 59/02 20060101ALI20170206BHEP

Ipc: C10G 65/04 20060101AFI20170206BHEP

Ipc: C10G 45/62 20060101ALI20170206BHEP

Ipc: C10G 65/08 20060101ALI20170206BHEP

Ipc: C10G 35/04 20060101ALI20170206BHEP

INTG Intention to grant announced

Effective date: 20170223

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR IT NL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602004051636

Country of ref document: DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: IFP ENERGIES NOUVELLES

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602004051636

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

26N No opposition filed

Effective date: 20180511

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602004051636

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190101

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230622

Year of fee payment: 20