EP1492926B1 - Fabrication amelioree de fibres moulees - Google Patents
Fabrication amelioree de fibres moulees Download PDFInfo
- Publication number
- EP1492926B1 EP1492926B1 EP02703036A EP02703036A EP1492926B1 EP 1492926 B1 EP1492926 B1 EP 1492926B1 EP 02703036 A EP02703036 A EP 02703036A EP 02703036 A EP02703036 A EP 02703036A EP 1492926 B1 EP1492926 B1 EP 1492926B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- shaped body
- vacuum
- mold
- fiber shaped
- molded fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 159
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 41
- 238000007666 vacuum forming Methods 0.000 claims abstract description 51
- 238000001029 thermal curing Methods 0.000 claims abstract description 48
- 239000002002 slurry Substances 0.000 claims abstract description 34
- 238000000034 method Methods 0.000 claims abstract description 32
- 239000011148 porous material Substances 0.000 claims abstract description 26
- 239000003570 air Substances 0.000 claims description 28
- 230000008569 process Effects 0.000 claims description 19
- 238000010438 heat treatment Methods 0.000 claims description 13
- 238000011010 flushing procedure Methods 0.000 claims description 8
- 230000008595 infiltration Effects 0.000 claims description 5
- 238000001764 infiltration Methods 0.000 claims description 5
- 239000012080 ambient air Substances 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 238000002360 preparation method Methods 0.000 claims description 3
- 239000011105 molded pulp Substances 0.000 abstract description 11
- 238000004140 cleaning Methods 0.000 abstract description 7
- 238000010348 incorporation Methods 0.000 abstract description 2
- 230000009286 beneficial effect Effects 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 28
- 239000000853 adhesive Substances 0.000 description 12
- 230000001070 adhesive effect Effects 0.000 description 12
- 239000000047 product Substances 0.000 description 10
- 238000012546 transfer Methods 0.000 description 7
- 239000012530 fluid Substances 0.000 description 6
- 238000001035 drying Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 4
- 238000005265 energy consumption Methods 0.000 description 4
- 241000196324 Embryophyta Species 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 238000001723 curing Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 230000013011 mating Effects 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 238000012805 post-processing Methods 0.000 description 3
- 238000003856 thermoforming Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000123 paper Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 238000004506 ultrasonic cleaning Methods 0.000 description 2
- 238000003809 water extraction Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 240000000797 Hibiscus cannabinus Species 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000013538 functional additive Substances 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000010908 plant waste Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- -1 rice hulls Chemical compound 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21B—FIBROUS RAW MATERIALS OR THEIR MECHANICAL TREATMENT
- D21B1/00—Fibrous raw materials or their mechanical treatment
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/03—Non-macromolecular organic compounds
- D21H17/05—Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
- D21H17/14—Carboxylic acids; Derivatives thereof
- D21H17/15—Polycarboxylic acids, e.g. maleic acid
- D21H17/16—Addition products thereof with hydrocarbons
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/03—Non-macromolecular organic compounds
- D21H17/05—Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
- D21H17/17—Ketenes, e.g. ketene dimers
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H21/00—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
- D21H21/14—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
- D21H21/16—Sizing or water-repelling agents
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H23/00—Processes or apparatus for adding material to the pulp or to the paper
- D21H23/02—Processes or apparatus for adding material to the pulp or to the paper characterised by the manner in which substances are added
- D21H23/04—Addition to the pulp; After-treatment of added substances in the pulp
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21J—FIBREBOARD; MANUFACTURE OF ARTICLES FROM CELLULOSIC FIBROUS SUSPENSIONS OR FROM PAPIER-MACHE
- D21J7/00—Manufacture of hollow articles from fibre suspensions or papier-mâché by deposition of fibres in or on a wire-net mould
Definitions
- This invention relates to a method of and an apparatus for improving the manufacturing of molded fiber shaped body.
- Products made of molded fiber are environmental friendly.
- Raw materials for manufacturing molded fiber products are derived from agriculture residues which are usually treated as waste. Unlike pulp, fibers from agriculture residues do not need to be rigorously treated before they are used. When molded fiber products are disposed, they are biodegradable and are emission neutral.
- Molded fiber shaped bodies can be used as packaging for food, industrial goods, consumer products and many others. It has very good cushioning property and is ready to be used without the need to cut, bend and fold. It is also light and stackable which reduce storage and shipping space. Molded fiber packaging is a cost economical and environmental friendly choice to replace existing plastics and paper packaging.
- Vacuum thermoforming method using low-consistency fiber slurry with water-based adhesive binder can be used for producing molded fiber shaped bodies (refer to patent application SG20016232-2).
- a low-consistency fiber slurry usually with less one percent (weight) of fiber in water, is poured into the vacuum-forming mold.
- Existing vacuum-forming molds consist of drilled holes evenly spaced out which allow fluids and air to pass through. The drilled holes are connected to vacuum means.
- a sieve must be placed over the vacuum-forming mold to ensure a uniform layer of fiber is deposited on its surface after the activation of the vacuum-forming process.
- the sieve is usually made of wire mesh shaped according to the mold. The sieve serves two main purposes. Firstly, to act as filter such that fibers are retained on the sieve while the fluid is drawn away by vacuum force; Secondly, to redistribute the vacuum force evenly over its entire surface so that the deposition of fiber is uniform.
- the deposited fibers are subject to curing by heat and pressure to produce the final product.
- the applied heat and pressure on the mold will also cause the sieve to deteriorate rapidly.
- the wire mesh sieve will be worn and torn after a limited number of cycles in the thermoforming process.
- fiber residues entangled on the sieve accumulate after every cycle reduces the vacuum efficiency and distribution. Eventually, the sieve will be choked and ceased to function.
- wire mesh sieve has been proven in the manufacturing of paper and molded pulp products.
- disadvantages such as frequent changing of the sieve is required due to wear and tear; the surface of the product in contact with the sieve is usually coarsely textured and may not be aesthetically acceptable to some users; the wire sieve needs to be secured onto the mold and this takes up valuable space on the mold. It is apparent that productivity is significantly affected due to the need to clean and eventually replace the wire mesh sieve.
- molded pulp shaped bodies has been using wire mesh sieve in the manufacturing process rather successfully, molded fiber is different in many aspects Fibers from agriculture residues are lignocelluloses. Molded fiber uses adhesive to bind fibers together produces a tough shaped body that is mechanically stronger than equivalent molded pulp. Molded pulp does not need external adhesive as cellulose fibers can be bonded to one another naturally. As a result, molded fiber manufacturing causes the wire mesh to wear out faster than molded pulp. Mold release is yet another problem to molded fiber manufacturing due to the use of adhesive. Alternative mold design and materials have to be sought in order to overcome the problems associated with the use of wire mesh sieve in the manufacturing of molded fiber shaped bodies.
- the energy consumption for producing molded pulp is considerably high. Much of the energy is consumed in drying the molded shaped body by heat.
- the drying tunnel technique takes up huge space and causes the molded shaped body to buckle.
- the dry-in-the-mold technique applies heat to the molded shaped body while it is still in the mold and hence produces products with better accuracy and performance. It also requires a smaller space.
- Most of the existing literatures addressed dry-in-the-mold as cure-in-the-mold. This is technically misleading as molded pulp does not need curing, it merely needs to be dried.
- Molded fiber on the other hand, needs thermal curing to chemically activate the adhesive and thus bind the lignocelluloses fibers together. Drying is a physical phenomenon whereas curing is a chemical phenomenon.
- US patent US6083447 titled "Fibrous Slurry vacuum-forming” discloses a method and an apparatus for producing molded pulp articles using porous mold that dips into a fibrous slurry. This invention does not resolve the thermoforming process where heat and pressure are applied. Mold release issue is not discussed and it is limited to molded pulp instead of molded plant fiber.
- US 5133834 discloses a method for converting plant waste products high in cellulose and silica, i.e. rice hulls, into a slurry of water and a silicate cross-linked cellulose polymer by digestion under heat and pressure in the presence of sodium ions and a sulfite.
- the present invention of manufacturing molded fiber shaped bodies discloses improved manufacturing method and apparatus using vacuum-forming and thermo-curing of low-consistency fiber slurry.
- Porous materials fabricated into the desired shape are used as mold inserts in the vacuum-forming molds and the thermo-curing molds to eliminate the use of sieves.
- production downtime is reduced as there is no longer a need to maintain and change sieves on the vacuum-forming and thermo-curing molds.
- the porous mold inserts have open and interconnected pores to allow fluids and air to pass through from one surface to another.
- the pore size of the porous mold insert range between 5 micrometer to 200 micrometer depending on the size distribution of the fiber material. It is preferred that the pore size is smaller than the smallest fiber size in order not to cause blockage to the pore channels.
- thermo-curing process uses a pair of mating molds where heat and pressure are applied. The applied heat and pressure produces steam and the steam must be released from the closed mating molds. At least one of the mating molds' inserts is made of porous material so that steam can be extracted away by vacuum means. In the case where only one mold has mold inserts that are made of porous material, then the other mold surface is to be sufficiently roughened to prevent the heat cured molded fiber shaped body from sticking to the mold.
- the porous mold surface and the roughened mold surface have a roughness in the range of 8 micrometer to 40 micrometer.
- the porous materials preferably porous metal, have sufficient mechanical strength to withstand the amount of heat and pressure applied in the thermo-curing process.
- the heating temperature ranges from 100 degree C to 200 degree C.
- the applied pressure is in the range of 0.5 MPa to 5 MPa.
- Yet another objective of the invention is to reduce the energy consumption in manufacturing molded fiber shaped body. Most of the energy is consumed in the thermo-curing process where large amount of thermal energy is used to dry excessive water in the wet fiber shaped body. It is understood that reducing the amount of water in the wet fiber shaped body will reduce the thermal energy.
- the present invention optimize the use of mechanical dewatering means to reduce the water content in the wet fiber shaped body formed by the vacuum-forming process.
- the vacuum-forming process uses a pair of matching molds namely top and bottom molds. The top and bottom molds are opened to allow the fiber slurry to be added. Water in the fiber slurry is extracted away by vacuum means through the porous mold inserts to form a uniform layer of wet fiber shaped body on the bottom mold.
- the top mold and bottom mold are closed and sealed to prevent air infiltration during vacuum dewatering of the wet fiber shaped body. Simultaneously, the top mold and bottom molds apply a slight pressure to the wet fiber shaped body. The mechanical dewatering process stops when the water content in the wet fiber shaped body reaches some pre-determined level, usually in the range of 20% to 50% (wt). It is to be noted that if the top and bottom molds are not sealed when closed, vacuum dewatering will not be effective as ambient air instead of water in the wet fiber shaped body will be extracted.
- Yet another objective of the present invention is to reduce maintenance by incorporating built-in self-cleaning means for the porous mold inserts.
- the self-cleaning means include the use of ultrasonic transducers and back-flushing.
- the vacuum-forming porous mold inserts are susceptible to clog due to fibers entrapped in the pores. Clogged vacuum-forming mold inserts will affect molded fiber shaped body uniformity and increase energy consumption. Eventually, the clogged vacuum-forming mold inserts will cease to function. According to the present invention, the vacuum-forming mold inserts are cleaned with ultrasonic meaning and back flushing.
- the improved molded fiber shaped body manufacturing process consists of four major steps. These are (1) fiber slurry preparation; (2) vacuum-forming and (3) thermo-curing and (4) post-processing.
- the manufacturing process begins with the preparation of fiber slurry.
- Sufficiently refined plant fibers such as fibers obtained from palm oil, coconut coir, hemp, kenaf and other fibrous plants are added to a mixer tank.
- the mixer tank can be pre-filled with water or water can be added simultaneously with the fiber.
- the amount of fiber is 0.1 to 5 percent (wt) with respect to 99.9 to 95 percent (wt) of water.
- the fibers are agitated by an agitator such as an impeller to disperse them in the water.
- the low consistency fiber mixture is sufficiently agitated until a homogenous slurry is obtained.
- Water based adhesive binder is then added to the mixer tank and the entire mixture is continuously agitated. The agitation action causes the adhesive binder to attach to the fiber.
- Functional additives such as sizing agent, wet strength agent and small amount of mold release agent such as paraffin wax are added to the slurry.
- the entire mixture is agitated until a homogenous mixture is obtained.
- the fiber mixture slurry is ready to be fed to the vacuum-forming process.
- the fiber mixture slurry is usually stored in a buffer tank with sufficient capacity for feeding to multiple vacuum-forming thermo-curing machines.
- the buffer tank is constantly agitated to ensure that the fiber slurry remains in a homogenous phase.
- the purpose of the vacuum-forming process 101 is to produce a wet fiber shaped body 10 from the fiber slurry 12.
- the wet fiber shaped body 10 is of the desired shape, thickness and uniformity.
- the water content in the wet fiber shaped body 10 is controlled such that it should not be too wet to consume too much of thermal energy in the thermo-curing stage; and it should not be too dry such that the thermo-curing process 102 cannot fully activate the adhesive to bind the fibers.
- the vacuum-forming station 101 consists of a top mold 30 and bottom mold 20.
- the top mold 30 is a male mold and the bottom mold 20 is a matching female mold with the desired shape contour.
- the top and bottom molds 30 & 20 are precisely fabricated and match one another when closed. Guiding means such as guide pins can be used to assist in the alignment of the top and bottom molds 20 & 30 during closing.
- the bottom mold 20 consists of three major parts: fiber slurry container 28, mold platform 21 and porous mold inserts 22.
- the fiber slurry container 28 is a water-tight container attached to the mold platform 21.
- the mold platform is made of non-porous material and sits on a vacuum chamber 23 connected to vacuum means 15 such as a vacuum pump.
- the vacuum chamber 23 can also allow compressed air to pass through when vacuum means 15 are not in use. Suitable sealing means are applied to ensure that mold platform 21 and the vacuum chamber 23 are joint together in an air-tight manner.
- the mold platform 21 has a plurality of openings 24 to house the mold inserts 22.
- the mold inserts 22 are fabricated into the desired shape contour and can be tightly inserted into the openings 24 on the mold platform 21. Positive attachment means such as screws can be used to fix the mold inserts 22 onto the mold platform 21.
- the porous mold inserts 22 have open pores that permit air and fluids to pass through from one side to another. In this case, the shaped contour surface of the porous mold inserts 22 is connected to the vacuum chamber 23 through the pores.
- the top mold 30 of the vacuum-forming station 101 is constructed in a similar manner as the bottom mold 20.
- the top mold also consists of two parts: the male porous mold inserts 31 and the mold platform 32.
- Vacuum chamber 33 is built into the mold platform 32. Vacuum means 15 is connected to the vacuum chambers 33.
- the mold platform 32 has a plurality of openings 36.
- the male porous mold inserts 31 are fixed onto the openings 36 of the mold platform 32.
- the porous mold inserts 31 are connected to the vacuum means 15 through the vacuum chamber 33.
- the vacuum chamber 33 also allows compressed air to pass through to the porous mold inserts 31.
- the mold platform 32 is made of non-porous material.
- the top mold 30 of the vacuum-forming station 101 is able to move vertically 39 so that the top mold 30 can be lowered and matched precisely with the bottom mold 20.
- Appropriate guiding means are built into the top and bottom molds 20 & 30 to assist in precision matching when the two molds are closing.
- the space 45 in between the two molds 20 & 30 is largely air tight.
- a slight pressure can be asserted on the closed molds 20 & 30 to assist in squeezing water from the wet fiber shaped body 10 while concurrent vacuum suction is applied.
- the air-tight space 45 enhances the effectiveness of vacuum dewatering since no ambient air infiltration takes place. It should be noted that vacuum dewatering is very energy efficient as compared to thermal dewatering. Without a proper air sealed between the top and bottom molds 20 & 30, vacuum energy will be wasted as ambient air instead of water in the wet fiber shaped body 10 will be extracted.
- a suitable amount of fiber slurry 12 is dispensed 29 into the slurry container 28 on the vacuum-forming station 101.
- the fiber slurry 12 fills up the slurry container 28 and covers the bottom mold 20.
- vacuum means 15 is activated to extract the water away. Under vacuum suction, the water in the fiber slurry 12 passes through the pores in the porous mold inserts 22 into the vacuum chamber 23 and out of the vacuum-forming station 101.
- a layer of wet fiber is then deposited on the surface of the mold insert 22 forming a wet fiber shaped body 10. Due to the average pore size of the porous mold is smaller than the fiber dimension, fibers are prevented from passing through the pores.
- the uniformly distributed pores help to distribute the vacuum suction evenly over the entire porous mold inserts 22 surface. This results in producing a uniform layer of wet fiber shaped body 10 on the mold inserts 22 surface.
- the wet fiber shaped body 10 usually contains more than 50% of water. The wet fiber shaped body 10 is not cured at this stage.
- the top mold 30 is then lowered and pressed the wet fiber shaped body 10 on the bottom mold 20.
- Vacuum means 15 is activated to draw further amount of water away from the wet fiber shaped body 10 through both the top and bottom porous mold inserts 31 & 22.
- a pressure of several atmospheres is applied to facilitate water extraction from the wet fiber shaped body 10 by vacuum suction 15 while the top and bottom molds 30 & 20 are tightly closed and air sealed 35 to prevent air infiltration.
- Vacuum dewatering is most effective without the infiltration of external air as vacuum suction is directed to remove the water molecules in the wet fiber shaped body 10. This process helps to reduce the amount of thermal energy required to dry the product in the subsequent thermo-curing stage 102. This also leads to a reduction of overall production cycle time due to the fact that less time is needed to cure the molded fiber shaped body 80.
- the wet fiber shaped bodies 10 are ready to be thermally cured to activate the adhesive in the wet fiber shaped body 10.
- the thermo-curing process also presses the molded fiber shaped body 80 to the desired thickness.
- the wet fiber shaped bodies 10 are picked up by the vacuum-forming top mold 30.
- vacuum 15 is applied to the top mold 30 while vacuum 15 is cut off from the bottom mold 20.
- compressed air is pumped through the vacuum chamber 23 and through the pores of the bottom mold inserts 22. The compressed air coming out of the bottom mold surface helps to propel the wet fiber shaped body 10 away.
- the pull action of the top mold 30 together with the push action of the bottom mold 20 ensure a smooth transfer of the wet fiber shaped body 10 to the top mold 30.
- the top mold 30 then moves in the necessary path to transfer the wet fiber shaped body 10 to the thermo-curing station 102.
- thermo-curing station 102 The purpose of the thermo-curing station 102 is to apply heat and pressure to cure the adhesive and hence bind the fibers together to form the final shape and size.
- the thermo-curing station 102 also consists of a pair of matched molds 50 & 60 similar to that of the vacuum-forming station 101. The fundamental differences are the ability of the thermo-curing molds in withstanding higher pressure and temperature than the vacuum-forming molds. Temperature in the range of 100 to 200 degree C is applied to the thermo-curing molds. The pressure applied is in the range of 0.5 MPa to 5 MPa.
- the pair of matched molds is thermo-curing top mold 60 and thermo-curing bottom mold 50.
- the thermo-curing bottom mold 50 consists of three major parts.
- thermo-curing mold base 51 consists of a plurality of cavities to house the mold inserts 52. Sufficient amount of holes 53 serving as air passage are built into the mold base 51 to connect the cavities to the vacuum means 15. These holes 53 also enable compressed air to pass through.
- the mold inserts 52 are preferably made of porous metals such as copper alloy (bronze) or aluminum alloy.
- the mold base 51 is heated by heating means 58. In one preferred embodiment, the heating means 58 are electric heating elements fixed to the base of the mold base 51.
- the heating means 58 can also be heating tubes containing heat transfer fluids that circulate in the mold base 51. Maximum surface contact between the heating means 58 and the mold base 51 must be ensured to obtain high thermal transfer efficiency. It is also equally important to ensure maximum surface contact between the mold base 51 and the porous mold inserts 52 for the similar reason.
- the major difference in design between the vacuum-forming mold and thermo-curing mold become obvious. Vacuum-forming molds 20 & 30 have large vacuum chambers 23 & 33 and channels to optimize vacuum transfer and water extraction; while the thermo-curing molds 50 & 60 have smaller vacuum channels 53 & 63 and have large surface contact between heating means 58 & 67 and mold inserts 52 & 62 to optimize heat transfer.
- the thermo-curing top mold 60 also consists of three major parts which are the mold base 61, mold inserts 62 and heating means 67.
- the top mold inserts 62 are precisely matched with the corresponding bottom mold inserts 52.
- Guiding means such as guiding pins can be used to assist in alignment of the top and bottom molds 60 & 50 during closing.
- An air-tight space is created between the two facing surfaces of the top and bottom molds 60 & 50. Vacuum is produced within this space and hence the temperature needed to vaporize the water content in the wet molded fiber shaped body 10 can be reduced. This is similar to the concept of vacuum oven.
- the applied heat and pressure cure the adhesive binder in the molded fiber shaped body and shaped it into the final desired shape and thickness.
- the steam due to vaporization of the water content in the molded fiber shaped bodies 80 escape through the vacuum channels 53 & 63 and out of the station 102.
- the top and bottom molds 60 & 50 then open to release the molded fiber shaped body 80.
- Compressed air blows through the vacuum chamber 54 helps to detach the molded fiber shaped body 80 from the mold insert 52.
- Either the thermo-curing top mold 60 or an addition pick and place means can be used to move the molded fiber shaped body 80 to the appropriate collection area.
- compressed air blow also helps to detach the molded fiber shaped body from the top mold inserts 62.
- Mold release is a major problem in molded fiber shaped body manufacturing.
- the present invention uses porous mold inserts and roughened surfaces to reduce the adhesion of the molded fiber shaped body to the mold surface. It is to be noted that the surface of a porous mold is sufficiently rough. In the case when the top mold inserts are not made of porous material, then the surface of the top mold inserts is to be sufficiently roughened.
- One of the commonly technique to roughen the mold surface is by sandblasting usually in the range of 8 to 40 micrometer roughness.
- the porous molds and roughened mold surfaces created random distributed microscopic air pockets between the molded fiber shaped body and the mold surface that drastically reduce their adhesion to one and another. With the further help of air purge coming out of the porous mold inserts, the molded fiber shaped body 80 can be easily detached from the mold.
- the porous mold inserts 22 on the vacuum-forming station 101 are susceptible to clog by fine fibers entrapped in the pores.
- the entrapped fibers with adhesives must be cleared to maintain the functionality of the porous mold inserts 22.
- the porous mold inserts 22 will lose their effectiveness after certain operating cycles.
- the present invention discloses the use of ultrasonic cleaning technique and back flushing for performing self-cleaning of the porous mold inserts. Without the incorporation of self-cleaning function, the usability of the porous molds will be limited due to the lost of porosity by fibers and impurities clogging.
- Ultrasonic transducers are installed on the fiber slurry container 28 of the vacuum-forming mold 20. Water is injected into the bottom mold slurry container 28 and sufficiently covers all the porous mold inserts 22. The ultrasonic transducers are then turned on. The ultrasonic transducer produces ultrasonic sound waves that generate microscopic bubbles which penetrate into the pores. These microscopic bubbles are generated and exploded continuously.
- back flushing is used. Back flushing is accomplished by pumping compressed air into the vacuum chamber which forces water, fibers and impurities to move out of the porous mold inserts.
- the combination of ultrasonic cleaning and back flushing restore the effectiveness of the vacuum-forming mold.
- the built-in self cleaning function described herein usually takes a few seconds to complete and needs only to be carried out once in several hundred cycles.
- the thermally cured molded fiber shaped body can be further processed by the post-processing station 103 such as coating, printing, trimming, sterilizing, and packing.
- post-processing station 103 such as coating, printing, trimming, sterilizing, and packing.
- the preferred embodiment of the present invention discloses the use of independent vacuum-forming station, thermo-curing station with each station uses porous mold inserts to enable mold release and improved molded fiber shaped body uniformity. It further disclosed the use of mechanical dewatering means especially vacuum dewatering to achieve high rate of water removal from the wet fiber shaped body which resulted in reducing energy consumption. It further enables self-clean of the porous mold inserts by incorporating ultrasonic transducers and introducing back flushing using compressed air. The preferred embodiment of the invention increases the overall productivity of manufacturing molded fiber shaped body.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Paper (AREA)
- Artificial Filaments (AREA)
Claims (18)
- Procédé amélioré de fabrication d'un corps mis en forme en fibres moulées (80), comprenant les étapes de :- soumettre une bouillie de fibres végétales de faible consistance (12) à une mise en forme sous vide (101) de manière à former un corps mis en forme de fibres mouillées (10) ; et- sécher à la chaleur (102) le corps mis en forme de fibres mouillées (10) de manière à produire le corps mis en forme en fibres moulées (80) ;caractérisé en ce que des matériaux poreux sont utilisés en qualité d'inserts de moule (22, 52) pour les processus de mise en forme sous vide et de séchage à la chaleur.
- Procédé amélioré de fabrication d'un corps mis en forme en fibres moulées tel que revendiqué dans la revendication 1, caractérisé en ce que le processus de mise en forme sous vide fait appel à deux moules correspondants (20, 30) comportant des inserts de moule poreux (22, 31) pour produire un corps mis en forme en fibres mouillées d'épaisseur uniforme par des moyens de mise sous vide.
- Procédé amélioré de fabrication d'un corps mis en forme en fibres moulées tel que revendiqué dans la revendication 2, caractérisé en ce que les moules de mise en forme sous vide (20, 30) sont efficacement scellés lorsqu'ils sont fermés de manière à obtenir une déshydratation sous vide hautement efficace du corps mis en forme en fibres mouillées (10).
- Procédé amélioré de fabrication d'un corps mis en forme en fibres moulées (80) tel que revendiqué dans la revendication 1, caractérisé en ce que le processus de séchage à la chaleur fait appel à deux moules correspondants (50, 60) comportant des inserts de moule poreux (52, 62) qui sont chauffés par des moyens de chauffage.
- Procédé amélioré de fabrication d'un corps mis en forme en fibres moulées (80) tel que revendiqué dans la revendication 4, caractérisé en ce que les moules de séchage à la chaleur (50, 60) sont efficacement scellés lorsqu'ils sont fermés de manière à réduire l'énergie de chauffage nécessaire pour sécher le corps mis en forme en fibres moulées (80).
- Procédé amélioré de fabrication d'un corps mis en forme en fibres moulées (80) tel que revendiqué dans la revendication 1, caractérisé en ce que les inserts de moule poreux (22, 31) dans les moules de mise en forme sous vide (20, 30) sont nettoyés par des ondes ultrasoniques et par un moyen de rinçage à contre-courant.
- Appareil pour fabriquer un corps mis en forme en fibres moulées, comprenant une station de préparation de bouillie de fibres (1), une station de mise en forme sous vide (101) et une station de séchage à la chaleur (102).
- Appareil pour fabriquer un corps mis en forme en fibres moulées tel que revendiqué dans la revendication 7, caractérisé en ce que la station de mise en forme sous vide (101) comprend deux moules correspondants (20, 30) disposés selon une configuration où l'un est en dessus et l'autre en dessous.
- Appareil pour fabriquer un corps mis en forme en fibres moulées tel que revendiqué dans la revendication 8, caractérisé en ce que le moule inférieur de mise en forme sous vide (20) comprend une plate-forme de moulage (21) avec des ouvertures pour installer les inserts de moule poreux (22), un conteneur de bouillie de fibres (28) et une chambre à vide (23) se connectant à un moyen de formation de vide (15) et à un moyen à air comprimé.
- Appareil pour fabriquer un corps mis en forme en fibres moulées tel que revendiqué dans la revendication 7, caractérisé en ce que le moule supérieur de mise en forme sous vide (30) comprend une plate-forme de moule (32) avec des ouvertures pour des inserts de moule (31) qui correspondent à la forme des inserts de moule inférieur (22).
- Appareil pour fabriquer un corps mis en forme en fibres moulées tel que revendiqué dans la revendication 10, caractérisé en ce que la plate-forme de moule supérieur de mise en forme sous vide (32) consiste en une chambre à vide (33) qui est connectée à un moyen de formation de vide (15) et à un moyen à air comprimé.
- Appareil pour fabriquer un corps mis en forme en fibres moulées tel que revendiqué dans la revendication 11, caractérisé en ce que les moules supérieur et inférieur sous vide (20, 30) peuvent se déplacer verticalement et sont fermés avec un joint étanche à l'air de manière à empêcher les infiltrations d'air ambiant vers le corps mis en forme en fibres mouillées (10) pendant le processus de déshydratation sous vide.
- Appareil pour fabriquer un corps mis en forme en fibres moulées tel que revendiqué dans la revendication 12, caractérisé en ce que des transducteurs ultrasoniques sont montés sur le conteneur de bouillie de fibres (28).
- Appareil pour fabriquer un corps mis en forme en fibres moulées tel que revendiqué dans la revendication 7, caractérisé en ce que les moules de séchage à la chaleur (50, 60) comprennent deux moules correspondants (50, 60) disposés selon une configuration où l'un est en dessus et l'autre en dessous.
- Appareil pour fabriquer un corps mis en forme en fibres moulées tel que revendiqué dans la revendication 14, caractérisé en ce que le moule supérieur de séchage à la chaleur (60) consiste en une base de moule non poreuse (61) avec un passage d'air optimisé (63) et des surfaces de contact de chauffage (67).
- Appareil pour fabriquer un corps mis en forme en fibres moulées tel que revendiqué dans la revendication 15, caractérisé en ce que le moule inférieur de séchage à la chaleur (50) consiste en une base de moule non poreuse (51) avec un passage d'air optimisé (53) et des surfaces de contact de chauffage (58).
- Appareil pour fabriquer un corps mis en forme en fibres moulées tel que revendiqué dans la revendication 16, caractérisé en ce que les moules supérieur et inférieur de séchage à la chaleur (50, 60) peuvent se déplacer verticalement et sont fermés de manière à appliquer de la chaleur et de la pression afin de sécher le corps mis en forme en fibres mouillées (10) de manière à produire le corps mis en forme en fibres moulées (80).
- Appareil pour fabriquer un corps mis en forme en fibres moulées tel que revendiqué dans la revendication 7, caractérisé en ce que les inserts de moule poreux (52, 62) pour la station de séchage à la chaleur (102) sont de préférence faits d'un métal poreux.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/SG2002/000030 WO2003074789A1 (fr) | 2002-02-26 | 2002-02-26 | Fabrication amelioree de fibres moulees |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1492926A1 EP1492926A1 (fr) | 2005-01-05 |
EP1492926B1 true EP1492926B1 (fr) | 2007-04-11 |
Family
ID=27786698
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02703036A Expired - Lifetime EP1492926B1 (fr) | 2002-02-26 | 2002-02-26 | Fabrication amelioree de fibres moulees |
Country Status (6)
Country | Link |
---|---|
US (1) | US20050150624A1 (fr) |
EP (1) | EP1492926B1 (fr) |
CN (1) | CN1623022A (fr) |
AT (1) | ATE359397T1 (fr) |
DE (1) | DE60219534T2 (fr) |
WO (1) | WO2003074789A1 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018217920A1 (fr) | 2017-05-26 | 2018-11-29 | Footprint International, Inc. | Procédés et appareil de découpe à l'emporte-pièce de récipients en pâte à papier formés sous vide |
WO2021133760A1 (fr) | 2019-12-23 | 2021-07-01 | Footprint International, LLC | Procédés, appareil et compositions chimiques pour le revêtement sélectif de récipients alimentaires à base de fibres |
WO2021236433A1 (fr) | 2020-05-18 | 2021-11-25 | Footprint International, LLC | Compositions chimiques à base d'acrylate et de non-acrylate pour le revêtement sélectif de récipients alimentaires à base de fibres |
US12037749B2 (en) | 2016-07-26 | 2024-07-16 | Footprint International, LLC | Acrylate and non-acrylate based chemical compositions for selectively coating fiber-based food containers |
Families Citing this family (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8756791B2 (en) * | 2001-10-17 | 2014-06-24 | Eveready Battery Company, Inc. | Tampon applicator |
MY137949A (en) * | 2003-08-01 | 2009-04-30 | Soon Seng Palm Products Sdn Bhd Now Known As Agro Bio Fibre Sdn Bhd | Device and manufacturing process for forming articles from plant fibre |
US8752730B2 (en) * | 2006-12-20 | 2014-06-17 | Momentive Performance Materials Inc. | Viscous material selective packet method |
TW200926450A (en) * | 2007-12-14 | 2009-06-16 | Silitek Electronic Gz Co Ltd | Optical semiconductor packaging structure and its packaging method |
CN101494178B (zh) * | 2008-01-23 | 2010-11-10 | 旭丽电子(广州)有限公司 | 光电半导体封装装置及封装方法 |
CN101644019B (zh) * | 2008-08-09 | 2012-02-22 | 郎旗 | 一种纸浆模塑中空制品成型装置 |
SE534318C2 (sv) * | 2009-11-13 | 2011-07-05 | Pakit Int Trading Co Inc | Massaform innefattande värmeanordning med sintrade halsar |
SE534319C2 (sv) * | 2009-11-13 | 2011-07-05 | Pakit Int Trading Co Inc | Massaform försedd med impermeabel yttre area |
US8584589B2 (en) * | 2010-03-18 | 2013-11-19 | Jakks Pacific, Inc. | Dehydrated, pulp-based projectile |
GB2479882A (en) * | 2010-04-27 | 2011-11-02 | Robert Cullen Ltd | Manufacturing pulp moulded articles |
WO2012033449A1 (fr) * | 2010-09-07 | 2012-03-15 | Pakit International Trading Company Inc. | Agencement de moule pour pâte |
CN102409578A (zh) * | 2010-09-21 | 2012-04-11 | 姜六平 | 纸浆模塑成型真空挤压低温干燥工艺及设备 |
US9322182B2 (en) | 2011-08-18 | 2016-04-26 | Henry Molded Products, Inc. | Facade covering panel member |
FR2987718B1 (fr) * | 2012-03-07 | 2014-03-14 | Fertil | Installation de sechage de pot biodegradable, installation de fabrication et procede de fabrication associe, et pot biodegradable obtenu selon l'invention |
US8561823B1 (en) | 2012-06-13 | 2013-10-22 | Ultra Green Packaging, Inc. | Food service container |
US9765484B2 (en) * | 2012-08-17 | 2017-09-19 | Jinhua Gaoyuan Mould & Machinery Co., Ltd | Method for preparing a pulp molded cup lid with buckles without overlapping curves on both surfaces |
US8636168B1 (en) | 2012-10-16 | 2014-01-28 | Ultra Green Packaging. Inc. | Biodegradable food service container |
CN103015273B (zh) * | 2012-12-19 | 2015-01-21 | 杭州欧亚环保工程有限公司 | 植物纤维模塑制品全自动制造方法及模塑成型切边一体机 |
TWI510692B (zh) * | 2013-07-05 | 2015-12-01 | Yu Chun Huang | 鞋盒的成形方法 |
CH708398A1 (de) * | 2013-07-26 | 2015-01-30 | Philippe Saint Ger Ag | Verfahren zur Herstellung von geformten Produkten. |
DE102014115940B4 (de) * | 2014-11-03 | 2016-06-02 | Cuylits Holding GmbH | Verfahren zur Herstellung eines Isolationsformteils, Isolationsformteil, hergestellt durch dieses Verfahren und Gusswerkzeug zur Herstellung eines Isolationsformteils unter Anwendung des Verfahrens |
CN104499380B (zh) * | 2014-12-18 | 2016-08-24 | 广西大学 | 一种利用纤维质固废物制备育苗容器的方法 |
CN104831590B (zh) * | 2015-05-12 | 2016-08-31 | 浙江舒康五金制品有限公司 | 一种纸浆模塑成型机 |
US11261569B2 (en) * | 2016-03-28 | 2022-03-01 | Deluxe Environmental Technology (Shanghai) Co., Ltd. | Automatic molding machine for molded product, manufacturing method, and finished product |
US11939129B2 (en) | 2016-07-26 | 2024-03-26 | Footprint International, LLC | Methods and apparatus for manufacturing high-strength fiber-based beverage holders |
US11654600B2 (en) | 2016-07-26 | 2023-05-23 | Footprint International, Inc. | Methods, apparatus, and chemical compositions for selectively coating fiber-based food containers |
US11686050B2 (en) | 2016-07-26 | 2023-06-27 | Footprint International, LLC | Methods, apparatus, and chemical compositions for selectively coating fiber-based food containers |
US10036126B2 (en) | 2016-07-26 | 2018-07-31 | Footprint International, LLC | Methods for manufacturing fiber-based beverage lids |
US20180030658A1 (en) | 2016-07-26 | 2018-02-01 | Footprint International, LLC | Methods and Apparatus For Manufacturing Fiber-Based Produce Containers |
US9988199B2 (en) | 2016-07-26 | 2018-06-05 | Footprint International, LLC | Methods and apparatus for manufacturing fiber-based microwavable food containers |
US10428467B2 (en) | 2016-07-26 | 2019-10-01 | Footprint International, LLC | Methods and apparatus for manufacturing fiber-based meat containers |
US20180079579A1 (en) * | 2016-09-19 | 2018-03-22 | Mianhong Chen | Combined molded pulp tray |
CN106567297A (zh) * | 2016-10-18 | 2017-04-19 | 上海英正辉环保设备有限公司 | 一种纸模塑匀浆及丝网自洁的工艺方法及模具结构 |
US10377547B2 (en) * | 2017-05-26 | 2019-08-13 | Footprint International, LLC | Methods and apparatus for in-line die cutting of vacuum formed molded pulp containers |
US10240286B2 (en) | 2017-05-26 | 2019-03-26 | Footprint International, LLC | Die press assembly for drying and cutting molded fiber parts |
CN108560327A (zh) * | 2018-06-20 | 2018-09-21 | 东莞三润田智能科技股份有限公司 | 餐盘湿坯成型机构 |
CN108716167A (zh) * | 2018-06-20 | 2018-10-30 | 东莞三润田智能科技股份有限公司 | 餐盘成型机 |
MX2021005094A (es) | 2018-11-02 | 2021-06-15 | Igloo Products Corp | Hielera desechable de una sola pared elaborada de material desechable, biodegradable y/o reciclable. |
EP3914772A4 (fr) * | 2019-01-24 | 2022-11-23 | Varden Process Pty Ltd | Appareil et procédé de formation de produit en fibres de pâte moulée |
US10889027B2 (en) * | 2019-03-12 | 2021-01-12 | JS Greenlife Technology Co., LTD. | Shaping mold for forming a porous starch container |
US20220242015A1 (en) * | 2019-05-06 | 2022-08-04 | Zume, Inc. | Systems and methods for producing molded fiber products |
US11306440B2 (en) | 2019-06-28 | 2022-04-19 | Footprint International, LLC | Methods and apparatus for manufacturing fiber-based meat containers |
CN110512470A (zh) * | 2019-08-07 | 2019-11-29 | 永发(江苏)模塑包装科技有限公司 | 一种纸浆模塑产品的模具恒温线圈加热装置及制备方法 |
US11703265B2 (en) | 2019-09-10 | 2023-07-18 | Igloo Products Corp. | Cooler with carry handle |
WO2021050298A1 (fr) * | 2019-09-10 | 2021-03-18 | Igloo Products Corp. | Refroidisseur à ajustement glissant à double paroi |
US11421388B1 (en) | 2019-11-01 | 2022-08-23 | Henry Molded Products, Inc. | Single-walled disposable cooler made of fiber-based material and method of making a single-walled disposable cooler made of fiber-based material |
TW202128407A (zh) * | 2019-11-11 | 2021-08-01 | 美商促美股份有限公司 | 利用流體修整操作之模製纖維產品生產線 |
CN111593616B (zh) * | 2020-05-15 | 2022-05-27 | 永发(河南)模塑科技发展有限公司 | 一种纸塑整体瓶子的挤压模具和挤压工艺 |
CN111593613B (zh) * | 2020-05-15 | 2022-05-27 | 永发(河南)模塑科技发展有限公司 | 一种纸塑整体瓶子的吸塑模具及其吸塑工艺 |
CN111593617B (zh) * | 2020-05-15 | 2022-06-07 | 永发(河南)模塑科技发展有限公司 | 一种纸塑整体瓶子的热压成型模具及其热压成型工艺 |
CN111593615B (zh) * | 2020-05-15 | 2022-05-27 | 永发(河南)模塑科技发展有限公司 | 一种纸塑整体瓶子、成型模具和生产工艺 |
WO2022066152A1 (fr) * | 2020-09-22 | 2022-03-31 | Hewlett-Packard Development Company, L.P. | Ensemble de formation et de transfert à changement rapide de machine de réduction en pâte |
FI129599B (en) | 2020-10-19 | 2022-05-31 | Valmet Technologies Oy | Transmission device for a production line for molded fiber products |
EP3985171A1 (fr) * | 2020-10-19 | 2022-04-20 | Valmet Technologies Oy | Ligne de production de produit fibreux moulé |
EP4079486A1 (fr) * | 2021-04-20 | 2022-10-26 | Metsä Spring Oy | Procédé de formation d'un produit fibreux moulé et produit fibreux moulé |
US20230131528A1 (en) * | 2021-10-27 | 2023-04-27 | Footprint International Llc | Marking systems and methods for fiber-based products |
WO2023182996A1 (fr) * | 2022-03-24 | 2023-09-28 | Hewlett-Packard Development Company, L.P. | Joints de transfert de pate a papier moulee |
DE102022108094A1 (de) | 2022-04-05 | 2023-10-05 | Kiefel Gmbh | Heisspress-werkzeughälfte, heisspresseinrichtung mit einem heisspresswerkzeug und verfahren zum heisspressen von vorformlingen aus einem faserhaltigen material |
SE2251424A1 (en) * | 2022-07-08 | 2024-01-09 | Additive Innovation And Mfg Sweden Ab | A tool for thermoforming a wet-molded fiber product |
CN115162057B (zh) * | 2022-07-25 | 2024-02-02 | 永发(江苏)模塑包装科技有限公司 | 一种纸浆模塑的超声波强化脱水设备及使用工艺 |
GB2628131A (en) * | 2023-03-14 | 2024-09-18 | Pulpex Ltd | Moulding of hollow moulded fibre products |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK167254B1 (da) * | 1988-07-21 | 1993-09-27 | Hartmann As Brdr | Fremgangsmaade til fremstilling af formede genstande af et fluidiseret cellulosefibermateriale |
US5133834A (en) * | 1988-11-08 | 1992-07-28 | Biofoam Industries, Inc. | Process of forming an expanded lightweight foamed product from rice hulls |
JP2836800B2 (ja) * | 1992-03-06 | 1998-12-14 | 日本碍子株式会社 | 繊維成形物の抄造型、抄造方法及び抄造装置、並びに抄造された繊維成形物 |
US5356518A (en) * | 1992-09-21 | 1994-10-18 | The Cin-Made Corporation | Method of producing molded paper pulp articles and articles produced thereby |
JP4296695B2 (ja) * | 2000-07-19 | 2009-07-15 | セイコーエプソン株式会社 | パルプ成形品およびその製造方法 |
-
2002
- 2002-02-26 US US10/505,728 patent/US20050150624A1/en not_active Abandoned
- 2002-02-26 WO PCT/SG2002/000030 patent/WO2003074789A1/fr active IP Right Grant
- 2002-02-26 DE DE60219534T patent/DE60219534T2/de not_active Expired - Fee Related
- 2002-02-26 CN CNA028286812A patent/CN1623022A/zh active Pending
- 2002-02-26 AT AT02703036T patent/ATE359397T1/de not_active IP Right Cessation
- 2002-02-26 EP EP02703036A patent/EP1492926B1/fr not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12037749B2 (en) | 2016-07-26 | 2024-07-16 | Footprint International, LLC | Acrylate and non-acrylate based chemical compositions for selectively coating fiber-based food containers |
WO2018217920A1 (fr) | 2017-05-26 | 2018-11-29 | Footprint International, Inc. | Procédés et appareil de découpe à l'emporte-pièce de récipients en pâte à papier formés sous vide |
EP4443089A2 (fr) | 2017-05-26 | 2024-10-09 | Footprint International, LLC | Procédés et appareil pour la découpe à l'emporte-pièce de contenants de pâte moulée formés sous vide |
WO2021133760A1 (fr) | 2019-12-23 | 2021-07-01 | Footprint International, LLC | Procédés, appareil et compositions chimiques pour le revêtement sélectif de récipients alimentaires à base de fibres |
WO2021236433A1 (fr) | 2020-05-18 | 2021-11-25 | Footprint International, LLC | Compositions chimiques à base d'acrylate et de non-acrylate pour le revêtement sélectif de récipients alimentaires à base de fibres |
Also Published As
Publication number | Publication date |
---|---|
DE60219534D1 (de) | 2007-05-24 |
US20050150624A1 (en) | 2005-07-14 |
WO2003074789A1 (fr) | 2003-09-12 |
CN1623022A (zh) | 2005-06-01 |
EP1492926A1 (fr) | 2005-01-05 |
DE60219534T2 (de) | 2007-12-27 |
ATE359397T1 (de) | 2007-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1492926B1 (fr) | Fabrication amelioree de fibres moulees | |
US20130206023A1 (en) | Method and apparatus for forming an article from pulped material | |
EP2198088B1 (fr) | Procédé et machine pour fabriquer un article moulé | |
EP1288369B1 (fr) | Procede de production de pieces moulees en pate agglomeree | |
CN102977625B (zh) | 植物纤维发泡包装板材及其加工工艺和模具 | |
AU2016281463B2 (en) | Large lightweight molded material and method for its manufacture | |
EP0223039B1 (fr) | Méthode pour produire une pièce en bois moulée | |
CN101440592A (zh) | 一次性纸餐具生产工艺 | |
JPH08189000A (ja) | パルプモ−ルド成形用型 | |
KR20060104919A (ko) | 압축하는 동안 펄프-성형된 산출물들의 잔여 수분을감소시키는 주형 공동부 장치 | |
CN111086278A (zh) | 纤维质纸塑盘型产品制造方法 | |
CN116601082A (zh) | 纸浆模塑成形品及其制造方法 | |
JP4837979B2 (ja) | パルプモールド成形体の製造方法および該製造方法に用いられる金型 | |
CN201559464U (zh) | 采用植物纤维成形的仿浮雕类制品 | |
US20200094509A1 (en) | Method for Manufacturing Fibrous Paper-plastic Disc-shaped Product | |
JP2003129400A (ja) | 繊維成形体製造用の雄型 | |
GB2416143A (en) | An apparatus and a method of producing pulp moulded products | |
TWI651180B (zh) | 纖維質紙塑盤型產品製造方法 | |
JP2011246869A (ja) | パルプモールド成形体の製造方法および該製造方法に用いられる金型 | |
JP2001123400A (ja) | パルプモールドの製造方法 | |
KR102244334B1 (ko) | 상이한 금속을 적용한 소진탄피 제조용 금형 | |
SE2230069A1 (en) | A tool for molding a fiber-based product | |
CA2069295A1 (fr) | Procede de fabrication d'articles faconnes a parois epaisses, servant notamment a des fins d'emballage | |
WO2024227560A1 (fr) | Procédé de formation à sec d'un produit cellulosique à partir de fibres de cellulose dans une unité de formation de produit et unité de formation de produit | |
JP2003020599A (ja) | 繊維成形体製造用の雄型 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040924 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070411 Ref country code: LI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070411 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070411 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 60219534 Country of ref document: DE Date of ref document: 20070524 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070711 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070722 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070911 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070411 |
|
EN | Fr: translation not filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070411 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070411 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070411 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20080114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071207 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070712 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070411 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20080229 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070411 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070411 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070411 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20110202 Year of fee payment: 10 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20120226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120226 |