EP1489361A2 - Verfahren zur berührungslosen Steuerung eines Garvorgangs bei einem Gargerät und Gargerät - Google Patents
Verfahren zur berührungslosen Steuerung eines Garvorgangs bei einem Gargerät und Gargerät Download PDFInfo
- Publication number
- EP1489361A2 EP1489361A2 EP04011882A EP04011882A EP1489361A2 EP 1489361 A2 EP1489361 A2 EP 1489361A2 EP 04011882 A EP04011882 A EP 04011882A EP 04011882 A EP04011882 A EP 04011882A EP 1489361 A2 EP1489361 A2 EP 1489361A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- cooking
- sensor
- time
- value
- evaluation circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24C—DOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
- F24C7/00—Stoves or ranges heated by electric energy
- F24C7/08—Arrangement or mounting of control or safety devices
Definitions
- the invention relates to a method for controlling a cooking process in a cooking appliance and a cooking device for performing the method
- the final cooking values for individual items to be cooked have previously been determined by tests.
- the Cooking space of conventional cooking appliances is flushed with ambient air during operation. Ambient air is blown through by means of a fan arranged in the cooking device Air intake openings sucked in and vapors from the cooking chamber via a vapor channel aspirated.
- the volume of the ambient air drawn through the cooking chamber is in each Case significantly larger than the volume of the food being cooked during the cooking process emitted gases.
- the sensor detects an instantaneous gas concentration detected because the gases generated by the cooking process are continuously produced by the fan suctioned off and thus removed from the cooking space. There is no one Concentration of these gases in the cooking space.
- a disadvantage of the known method is that the final cooking value depends on the amount of food to be cooked as well their distribution in the cooking space, for example due to use different forms of baking or roasting. Thus arise for yourself only recipe different cooking values from each other. This leads to a multitude of Cooking values, so that either a complex control is required to control the Detect the amount of food to be cooked and its distribution, or the user makes further entries must make what reduces the ease of use.
- DE 38 37 072 A1 describes another method for controlling an as Bread baking process known cooking. Because this procedure is strictly When it comes to bread baking processes, there is no need to determine the type of food to be cooked. With the known The bread baking process is determined using a gas sensor controlled temporal change in the gas density in the cooking space. Here, for example Radiator and blower switched off automatically and the bread baking process ended, as soon as the gas density is above a maximum value by a predetermined amount has decreased. Alternatively, it is provided that the change in the inclination of the gas density that is, the change in the first derivative of the gas density over time for the control of the Use bread baking process after the maximum gas density by the Gas sensor has been detected.
- the invention thus addresses the problem of a method for controlling a cooking process to specify, in which the control also for different food and for different Quantities and distributions of a food to be cooked in the cooking space are realized in a simple manner and regardless of the food to be treated, a remaining cooking time with a long time Accuracy and reproducibility can be determined.
- the method according to the invention can also be used for cooking processes in which cooking space temperatures different from one another are used for a cooking product, since the final cooking value does not depend on the quantity of food to be cooked, the distribution of the food to be cooked in the cooking chamber or the cooking chamber temperature for the cooking process, since this parameters that change from cooking process to cooking process can be compensated for by using a cooking quotient.
- the cooking quotient corresponds to the ratio of the first derivative of the output signal after the time to a first extreme value of the first derivative of the output signal after the time determined before and after the start of the cooking process.
- An advantageous development of the teaching according to the invention provides that the concentration an atmospheric gas, especially oxygen, nitrogen or carbon dioxide, through the Sensor is detected.
- the accuracy and repeatability of that with the Measured values determined according to the method of the invention and thus of the method of the invention Process further improved because the amount of an atmospheric gas throughout Is sufficiently large to ensure reliable measurement. by virtue of their high concentration in the atmosphere here are especially oxygen, nitrogen and To call carbon dioxide.
- the type and scope of the cooking device function to be triggered is widely suitable Limits selectable. Automatic switching off is expediently used as a cooking appliance function the heating source for heating the cooking space and / or an end of cooking signal is triggered.
- a particularly advantageous further development provides that after it has been reached for the first time an extreme value of the gas concentration or the first time derivative of the Gas concentration after the start of the cooking process the remaining cooking time depending on the Output signals from the sensor extrapolated and on a display element of the cooking device Advertisement is brought. As a result, the comfort for the user without additional components and thus further improved cost-effectively.
- the extreme value is a minimum value or a maximum value.
- the extreme value is expediently designed as a maximum value.
- a particularly advantageous development of the teaching according to the invention provides that the Output signal of the sensor in the evaluation circuit only after a previous one specified lead time after the start of the cooking process. This is Ensures that output signal perturbs during an initial period the beginning of the cooking process does not undesirably affect the processing of the Output signal can affect.
- the invention is also based on the problem of a cooking appliance for carrying out the specify method according to the invention.
- a cooking device is designed as an electric cooker.
- the Cooking appliance has a cooking chamber that can be closed by a door, one as an oxygen sensor trained sensor for detecting a gas concentration in the cooking space and a electronic control, which has an evaluation circuit with a timer and Memory contains and with the oxygen sensor and one as resistance heating trained heat source for heating the cooking chamber is in signal transmission connection.
- an amperometric one was used Solid-state zirconia-based electrolyte sensor used.
- the cooking space of the cooking device according to the invention is, as usual, with during operation Flushes ambient air. Ambient air is released in the cooking appliance arranged blower sucked through air inlet openings and vapors through a Vacuum channel extracted from the cooking space.
- the volume through the cooking space sucked ambient air in any case significantly larger than the volume of during the Gases released from the food to be cooked.
- a instantaneous gas concentration is detected because the gases generated by the cooking process continuously sucked off by the fan and thus removed from the cooking space. It there is no concentration of these gases in the cooking space.
- the cooking device according to the invention can optionally be equipped with or without a catalyst, the catalyst being arranged in the vapor channel in a manner known to those skilled in the art. If it is a cooking appliance with a catalyst, it is generally advantageous to put the sensor in Arrange flow direction after the catalytic converter, since that to the evaluation circuit forwarded output signal of the sensor is amplified in this way. This is the case because the oxidizing gas molecules escaping from the food through the action of the catalyst oxidize and so the number of gas molecules that the atmospheric gases displace after the catalyst rises. This consumes oxygen.
- an oxygen sensor is used, so the Oxygen concentration in the flow direction behind the catalyst to a greater extent reduced than when installing the oxygen sensor in the flow direction before Catalyst.
- sensors used that detect gases during the cooking process arise and are released from the food to be cooked their output signal is due to the Increase in the number of gas molecules also increased. On the one hand, this means that Evaluation of the output signal and thus the control of the cooking process further improved.
- the installation of the sensor downstream of the catalytic converter is basically for everyone suitable sensors possible and useful for the reasons mentioned above.
- the concentration of these gases from an initial value or zero to one Extreme value increases or decreases and the time at which this extreme value is reached with coincides with the end of the cooking time, the carbon dioxide concentration exceeds during the Cooking process a maximum value, then drops again and reaches at the time of the End of cooking time is zero.
- the course of the carbon dioxide concentration thus corresponds qualitatively the courses of the first time derivatives of the other gas concentrations.
- Carbon dioxide is additionally formed by the catalyst, so that the arrangement of the Carbon dioxide sensor in the flow direction after the catalyst to the output signal Control of the cooking process in contrast to the other gases is not reinforced, but in is falsified in an undesired manner. Because of decomposition reactions on Catalyst then still recorded a carbon dioxide concentration, although the actual one The end of the cooking time would have been reached.
- control in FIG Control and display elements provided for signal transmission connection.
- the Operating and display elements serve, for example, to activate the cooking appliance function to be triggered, such as "rapid cooling", by automatically switching on the fan or the automatic increase of the fan speed, or "keep warm”, by the automatic Reduction of the heating power of the heating source, to be set manually. It is also conceivable that this automatically by selecting a recipe stored in a memory of the cooking device he follows.
- Fig. 1 is a temperature-time diagram for the inventive method with two shown exemplary temperature profiles. It is the temperature curve of each lowest temperature in the dough, i.e. the core temperature.
- the curve a shows that Temperature curve for a dough spread out on a baking sheet and curve b shows the temperature curve for a piece of beef placed on a baking sheet.
- the dough on the baking sheet and the piece of beef are placed in the cooking space and the door is closed. Both samples are freshly prepared, so that the food is cooked Room temperature, i.e. about 20 ° C.
- the control element started, i.e. the heating source switched on, the temperature in the dough on the Baking sheet faster to a maximum temperature than the temperature in the piece of beef, see curves a, b.
- the maximum temperature for all baking processes is around 98 ° C
- the maximum core temperature varies for meat.
- the Maximum temperature for beef is about 85 ° C and for pork about 75 ° C.
- the heating source can be switched off automatically by the user or by means of the control.
- a good cooking result can be achieved, for example, if the heating source is switched off, as soon as the value of the cooking quotient after the start of the cooking process and with that associated heating of the food falls below a final cooking value.
- the cooking quotient corresponds to the ratio of the first derivative of the output signal over time a first time determined before and after the start of the cooking process Extreme value of the first derivative of the output signal over time.
- the extreme value would be formed as a minimum if an oxygen sensor was used be, because the oxygen in the cooking space at the beginning of the cooking process during the Cooking process on the one hand displaced by gases and moisture escaping from the food and secondly is consumed during the cooking process by chemical reactions. Deviating from this would be the measurement of gases escaping from the food Extreme value can be designed as a maximum. The same applies to the escaping from the food Moisture, i.e. water vapor.
- FIG. 2 shows an exemplary time course of the function f (1-O2) or the first derivative of the function f after the time, f '.
- the function f has an initial value that only depends on the Oxygen concentration in the environment is dependent.
- the sinks during the cooking process Oxygen concentration, as already described above, so that the value of f increases.
- the Function f passes through a turning point, i.e. the maximum of the slope of f is crossed, and continues to rise up to a maximum value.
- f ' 0.
- the value of f 'and increases during the cooking process reaches a maximum value at the time f passes the inflection point. While the cooking process continues, the value of f 'decreases again and reaches to that Point in time the value zero at which f reaches the maximum value.
- the cooking process is finished, i.e. the end of cooking time t end is reached as soon as the value of the cooking quotient falls below the end of cooking value.
- a cooking end value is assigned to each item to be cooked and stored in the memory of the electronic control.
- food to be cooked also means different recipes, for example the final state of beef.
- the cooking quotient corresponds to the ratio of the first derivative of the output signal over time to a first extreme value, in this case maximum value, determined before and after the start of the cooking process, the first derivative of the output signal after time, the cooking quotient can only be determined after passing through this extreme value .
- the cooking space is heated either according to a cooking program entered by the user or according to a heating program previously defined for all cooking programs, for example a gentle heating program suitable for all food items. If the cooking device according to the invention is equipped with automatic food recognition, this takes place during this first heating phase, that is until the extreme value of the first derivative of the output signal is reached over time.
- the automatic food recognition is explained in more detail below with reference to FIGS. 3 and 4.
- Another possible embodiment provides that the output signal of the sensor in the Evaluation circuit only after a predetermined lead time after the start of the Cooking process is processed. This ensures that there is interference in the output signal during an initial period after the start of the cooking process can undesirably affect the processing of the output signal. For example, disturbances in the output signal due to rapid heating, that is, a Heating up with the maximum heating output, or by switching on a forced air fan be conditional. The result is local extreme values, i.e. local minimum and maximum values. there For example, the time period for the lead time can be determined and determined by experiments become.
- the final cooking value G can be positive, zero or negative.
- the further course of f is no longer relevant for controlling the cooking process.
- An advantage of using f instead of f is that after passing through the extreme value for f ', the remaining cooking time depending on the output signal of the sensor can be extrapolated with high accuracy and reproducibility in the evaluation circuit and displayed on the display element, since the Time at which the value of f 'becomes extreme lies far before the end of cooking time t end .
- the display it is also conceivable, for example, to trigger an acoustic signal.
- the end of the cooking time t end is the point in time at which the food to be cooked is completely cooked in its core.
- the surface browning of the food depends on the selected cooking space temperature. If the user enters a high cooking space temperature via the control and display elements or if this is automatically determined by selecting a recipe for the cooking process, the surface browning of the food at the end of the cooking time t end will be stronger than at a lower cooking space temperature.
- the heat source of the cooking appliance is switched off and a cake tin with dough is in the Cooking space set.
- the door is closed.
- the output signal of the oxygen sensor for example an electrical one which is dependent on the oxygen concentration in the environment Voltage is sent to the electronic evaluation circuit via an electrical line Control transmitted.
- the output signal is by means of the timing element of the evaluation circuit assigned time information.
- the concentration of gases escaping from the food increases, so that the oxygen concentration and thus the electrical output signal is reduced.
- the value for f 'generated in the evaluation circuit increases to a maximum value. This is automatically recognized by the electronic control by the continuous comparison of the stored value pairs with the value pair currently formed in the evaluation circuit. Then the value of f 'drops again.
- the output signals transmitted from the oxygen sensor to the evaluation circuit are used to extrapolate the remaining cooking time by the evaluation circuit and display it on the display element.
- concentrations of gases produced by the cooking process or by other atmospheric gases in particular Nitrogen or carbon dioxide.
- a special case is water vapor, because there is water vapor in the atmosphere and also in all baking processes is generated or released.
- the The heating source can also trigger other cooking device functions. For example, that Reaching the end of the cooking time are displayed on the display element of the cooking device and / or the heating power of the heating source can be reduced such that a Keeping temperature prevails. Furthermore, triggering rapid cooling of the Cooking space or the food to be cooked.
- the user can use the Select controls manually.
- the food to be cooked for the specific cooking process is automatically recognized via food recognition.
- the cooking appliance has at least two further sensors, the individual additional sensors with respect to the detectable gas types at least in one Differentiate gas type from each other.
- the cooking appliance according to the invention thus has a total at least three sensors S1, S2 and S3 to detect gas concentrations, see Fig. 3. The more sensors used for food recognition, the more precisely this can be done specific food to be cooked.
- the individual output signals of sensors S1, S2 and S3 are, in analogy to the above explanations, for processing to the electronic Transfer control.
- the result of the overview of the output signals for each food is a characteristic pattern M1 and M2.
- These patterns M1, M2 become temporal beforehand, for example by experiments, assigned to individual items to be cooked and in the memory stored in the electronic control. By comparing the during heating current output signals transmitted to the evaluation circuit with the previous ones stored output signals can then be the specific food of the current cooking process be determined.
- the senor is simultaneously another Sensor S1 designed for food recognition.
- the latter embodiment of the automatic food detection would therefore be sufficient a single sensor with which to one automatically recognizes the food and on the other one in the memory Saved cooking value can be determined depending on the automatically recognized food would.
- the invention is not restricted to the aforementioned embodiments.
- that is Method according to the invention and the cooking device for performing the inventive Procedure for controlling the cooking process not based on a selection of recipes or Cooking items, operating modes or oven temperatures are limited.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electric Ovens (AREA)
Abstract
Description
- Figur 1
- ein Temperatur-Zeit-Diagramm zu dem erfindungsgemäßen Verfahren und
- Figur 2
- einen zeitlichen Verlauf der Funktion f (1-O2) bzw. der ersten Ableitung der Funktion f nach der Zeit, f',
- Figur 3
- ein Schaubild eines ersten Ausführungsbeispiels einer automatischen Garguterkennung zu dem erfindungsgemäßen Verfahren und
- Figur 4
- einen zeitlichen Verlauf zu einem zweiten Ausführungsbeispiel einer automatischen Garguterkennung zu dem erfindungsgemäßen Verfahren.
Claims (9)
- Verfahren zur Steuerung eines Garvorgangs bei einem Gargerät mit einem Garraum, an bzw. in dem eine Heizquelle zur Beheizung des Garraums angeordnet ist, mit einem Sensor zur Erfassung einer Gaskonzentration in dem Garraum und einer elektrischen oder elektronischen Steuerung, die eine Auswerteschaltung und einen Speicher aufweist und mit dem Sensor in Signalübertragungsverbindung steht, wobei das Verfahren die folgenden Verfahrensschritte aufweist:Erstens, Ermittlung eines in dem Speicher abgespeicherten Garendewerts in Abhängigkeit eines manuell ausgewählten bzw. automatisch erkannten Garguts, mittels der Auswerteschaltung,zweitens, Verarbeitung des Ausgangssignals des Sensors in der Auswerteschaltung zur Erzeugung eines Garquotienten, wobei der Garquotient dem Verhältnis der ersten Ableitung des Ausgangssignals nach der Zeit (f') zu einem zeitlich vorher und nach dem Beginn des Garvorgangs ermittelten erstmaligen Extremwert der ersten Ableitung des Ausgangssignals nach der Zeit (f(extrem)) entspricht,drittens, Vergleich des Werts des Garquotienten mit dem Garendewert (G) in der Auswerteschaltung undviertens, Auslösen einer Gargerätfunktion erfolgt, sobald der Wert des Garquotienten nach dem Beginn des Garvorgangs den Garendewert (G) unterschreitet.
- Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass die Konzentration eines Atmosphärengases, insbesondere Sauerstoff, Stickstoff oder Kohlendioxid, durch den Sensor erfasst wird. - Verfahren nach mindestens einem der Ansprüche 1 oder 2,
dadurch gekennzeichnet, dass als Gargerätfunktion das automatische Abschalten der Heizquelle zur Beheizung des Garraums und/oder ein Garzeitendesignal ausgelöst wird. - Verfahren nach mindestens einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, dass nach dem erstmaligen Erreichen eines Extremwerts der Gaskonzentration oder der ersten zeitlichen Ableitung der Gaskonzentration (f(extrem)) nach dem Beginn des Garvorgangs die Restgarzeit in Abhängigkeit der Ausgangssignale des Sensors extrapoliert und auf einem Anzeigeelement des Gargeräts zur Anzeige gebracht wird. - Verfahren nach mindestens einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet, dass der Extremwert ein Maximalwert ist. - Verfahren nach mindestens einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet, dass das Ausgangssignal des Sensors in der Auswerteschaltung erst nach Ablauf einer vorher festgelegten Vorlaufzeit nach dem Beginn des Garvorgangs verarbeitet wird. - Gargerät zur Durchführung eines Verfahrens nach mindestens einem der Ansprüche 1 bis 6, mit einem Garraum, an bzw. in dem eine Heizquelle zur Beheizung des Garraums angeordnet ist, mit einem Sensor zur Erfassung einer Gaskonzentration in dem Garraum und einer elektrischen oder elektronischen Steuerung, die eine Auswerteschaltung und einen Speicher aufweist und mit dem Sensor in Signalübertragungsverbindung steht.
- Gargerät nach Anspruch 7,
dadurch gekennzeichnet, dass das Gargerät wenigstens zwei weitere Sensoren (S1, S2, S3) aufweist, wobei sich die einzelnen weiteren Sensoren (S1, S2, S3) hinsichtlich der detektierbaren Gasarten wenigstens in einer Gasart voneinander unterscheiden. - Gargerät nach mindestens einem der Ansprüche 7 oder 8,
dadurch gekennzeichnet, dass der Sensor gleichzeitig als ein weiterer Sensor (S1) ausgebildet ist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10327861 | 2003-06-18 | ||
DE10327861A DE10327861B4 (de) | 2003-06-18 | 2003-06-18 | Verfahren zur Steuerung eines Garvorgangs bei einem Gargerät und Gargerät |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1489361A2 true EP1489361A2 (de) | 2004-12-22 |
EP1489361A3 EP1489361A3 (de) | 2013-03-27 |
Family
ID=33394910
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04011882A Withdrawn EP1489361A3 (de) | 2003-06-18 | 2004-05-19 | Verfahren zur berührungslosen Steuerung eines Garvorgangs bei einem Gargerät und Gargerät |
Country Status (3)
Country | Link |
---|---|
US (1) | US7075041B2 (de) |
EP (1) | EP1489361A3 (de) |
DE (1) | DE10327861B4 (de) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006094658A1 (de) * | 2005-03-07 | 2006-09-14 | E.G.O. Elektro-Gerätebau GmbH | Verfahren und vorrichtung zur regelung von garvorgängen in einem garraum |
WO2008086946A3 (de) * | 2007-01-15 | 2009-01-29 | Ego Elektro Geraetebau Gmbh | Verfahren und gargerät zur regelung von garvorgängen in einem garraum |
RU2473579C2 (ru) * | 2007-04-16 | 2013-01-27 | Алтана Электрикал Инсулейшн Гмбх | Наномодифицированные эмали для проводов и соответственно эмалированные провода |
DE102016206331A1 (de) | 2016-04-14 | 2017-10-19 | BSH Hausgeräte GmbH | Haushalts-Gargerät mit Garsensor |
EP3511629A1 (de) * | 2018-01-12 | 2019-07-17 | Rational International AG | Verfahren zur bestimmung der temperaturempfindlichkeit eines gargutes sowie gargerät |
WO2020156928A1 (de) * | 2019-02-01 | 2020-08-06 | BSH Hausgeräte GmbH | Haushalts-gargerät und verfahren zum betreiben eines haushalts-gargeräts |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10324881A1 (de) * | 2003-05-30 | 2004-12-30 | Demag Cranes & Components Gmbh | Schnittstellenschaltung für die Ansteuerung eines elektrischen Verbrauchers und Schaltungsanordnung für die Ansteuerung eines Elektromotors hiermit |
US7143769B2 (en) * | 2003-08-11 | 2006-12-05 | Richard Stoltz | Controlling pulse energy of an optical amplifier by controlling pump diode current |
US20060188638A1 (en) * | 2005-02-18 | 2006-08-24 | Joseph Ponnattu K | Fabricated food product made from fresh potato mash |
US20060188639A1 (en) | 2005-02-18 | 2006-08-24 | Joseph Ponnattu K | Fabricated food product made from fresh potato mash |
DE102005019082A1 (de) * | 2005-04-23 | 2006-10-26 | Neuenkirchener Maschinenfabrik Emil Kemper Gmbh | Misch- und Knetanordnung |
US20070215599A1 (en) * | 2006-03-17 | 2007-09-20 | W.C. Bradley Company | Systems and methods for predicting the time to change the temperature of an object |
DE102006041767B3 (de) | 2006-09-04 | 2007-10-04 | Miele & Cie. Kg | Verfahren zur Brandfallerkennung in einem Garraum eines Backofens |
DE102007016501A1 (de) | 2007-03-26 | 2008-10-02 | E.G.O. Elektro-Gerätebau GmbH | Verfahren und Dampfgargerät zur Regelung von Garvorgängen in einem Garraum |
DE102012222166A1 (de) | 2012-12-04 | 2014-06-05 | BSH Bosch und Siemens Hausgeräte GmbH | Gargerät |
DE102012222165A1 (de) | 2012-12-04 | 2014-06-05 | BSH Bosch und Siemens Hausgeräte GmbH | Gargerät |
CN105764385A (zh) * | 2013-11-14 | 2016-07-13 | 皇家飞利浦有限公司 | 智能烹调设备和方法 |
US10009965B2 (en) * | 2015-01-28 | 2018-06-26 | Samsung Electronics Co., Ltd. | Gas detection apparatus, cooking apparatus, and method of controlling the apparatuses |
KR102327881B1 (ko) * | 2015-01-28 | 2021-11-18 | 삼성전자주식회사 | 가스 검출 장치, 조리 장치 및 그 제어 방법 |
US20170130968A1 (en) * | 2015-11-10 | 2017-05-11 | General Electric Company | Method for Monitoring Cooking in an Oven Appliance |
US10599994B2 (en) | 2016-05-24 | 2020-03-24 | International Business Machines Corporation | Predicting a chromatic identity of an existing recipe and modifying the existing recipe to meet a desired set of colors by adding new elements to the recipe |
US10332276B2 (en) | 2016-05-24 | 2019-06-25 | International Business Machines Corporation | Predicting a chromatic identity of an existing recipe and modifying the existing recipe to meet a desired set of colors by replacing existing elements of the recipe |
DE102016215650A1 (de) * | 2016-08-19 | 2018-02-22 | BSH Hausgeräte GmbH | Haushaltsgargerät |
DE102018204879A1 (de) | 2018-03-29 | 2019-10-02 | BSH Hausgeräte GmbH | Bestimmen eines Garzeitendes von Gargut |
DE102019107828B4 (de) * | 2019-03-27 | 2022-07-28 | Miele & Cie. Kg | Verfahren zum Betreiben eines Gargeräts und Gargerät |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0074764A1 (de) * | 1981-09-03 | 1983-03-23 | Sharp Kabushiki Kaisha | Gerät zum Erhitzen von Lebensmitteln |
US4496817A (en) * | 1983-07-07 | 1985-01-29 | General Electric Company | Automatic fire detection for a microwave oven |
EP0455169A2 (de) * | 1990-04-28 | 1991-11-06 | Kabushiki Kaisha Toshiba | Kochstelle |
EP0615400A2 (de) * | 1993-03-11 | 1994-09-14 | Kabushiki Kaisha Toshiba | Mikrowellenofen und Verfahren zur Bestimmung des Lebenmittelproduktes |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4379964A (en) * | 1979-07-20 | 1983-04-12 | Matsushita Electric Industrial Co., Ltd. | Method of food heating control by detecting liberated gas or vapor and temperature of food |
DE3837072A1 (de) * | 1987-10-31 | 1989-05-11 | Toshiba Kawasaki Kk | Automatik-backvorrichtung |
DE4022964C2 (de) * | 1990-07-19 | 1994-11-10 | Werner & Pfleiderer | Meßwerterfassungs- und Speichergerät für Feuchtigkeit und Temperatur |
GB2293027A (en) * | 1994-09-07 | 1996-03-13 | Sharp Kk | Apparatus for and method of controlling a microwave oven |
KR20040047083A (ko) * | 2002-11-29 | 2004-06-05 | 삼성전자주식회사 | 전자레인지 및 그 제어방법 |
-
2003
- 2003-06-18 DE DE10327861A patent/DE10327861B4/de not_active Expired - Fee Related
-
2004
- 2004-05-19 EP EP04011882A patent/EP1489361A3/de not_active Withdrawn
- 2004-06-17 US US10/871,652 patent/US7075041B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0074764A1 (de) * | 1981-09-03 | 1983-03-23 | Sharp Kabushiki Kaisha | Gerät zum Erhitzen von Lebensmitteln |
US4496817A (en) * | 1983-07-07 | 1985-01-29 | General Electric Company | Automatic fire detection for a microwave oven |
EP0455169A2 (de) * | 1990-04-28 | 1991-11-06 | Kabushiki Kaisha Toshiba | Kochstelle |
EP0615400A2 (de) * | 1993-03-11 | 1994-09-14 | Kabushiki Kaisha Toshiba | Mikrowellenofen und Verfahren zur Bestimmung des Lebenmittelproduktes |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006094658A1 (de) * | 2005-03-07 | 2006-09-14 | E.G.O. Elektro-Gerätebau GmbH | Verfahren und vorrichtung zur regelung von garvorgängen in einem garraum |
WO2008086946A3 (de) * | 2007-01-15 | 2009-01-29 | Ego Elektro Geraetebau Gmbh | Verfahren und gargerät zur regelung von garvorgängen in einem garraum |
RU2473579C2 (ru) * | 2007-04-16 | 2013-01-27 | Алтана Электрикал Инсулейшн Гмбх | Наномодифицированные эмали для проводов и соответственно эмалированные провода |
DE102016206331A1 (de) | 2016-04-14 | 2017-10-19 | BSH Hausgeräte GmbH | Haushalts-Gargerät mit Garsensor |
EP3258176A1 (de) | 2016-04-14 | 2017-12-20 | BSH Hausgeräte GmbH | Haushalts-gargerät mit garsensor |
EP3511629A1 (de) * | 2018-01-12 | 2019-07-17 | Rational International AG | Verfahren zur bestimmung der temperaturempfindlichkeit eines gargutes sowie gargerät |
WO2020156928A1 (de) * | 2019-02-01 | 2020-08-06 | BSH Hausgeräte GmbH | Haushalts-gargerät und verfahren zum betreiben eines haushalts-gargeräts |
Also Published As
Publication number | Publication date |
---|---|
DE10327861A1 (de) | 2005-01-27 |
EP1489361A3 (de) | 2013-03-27 |
US20050061799A1 (en) | 2005-03-24 |
US7075041B2 (en) | 2006-07-11 |
DE10327861B4 (de) | 2006-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1489361A2 (de) | Verfahren zur berührungslosen Steuerung eines Garvorgangs bei einem Gargerät und Gargerät | |
EP1800065B1 (de) | Verfahren zur steuerung eines garvorgangs bei einem gargerät | |
DE3822590C2 (de) | Mikrowellenkochgerät | |
EP1831608B1 (de) | Gargerät mit mindestens einem gassensorarray, probenahmesystem für solch ein gerät, verfahren zum garen mit solch einem gargerät und verfahren zum reinigen solch eines gargeräts | |
DE69306530T2 (de) | Heizapparat | |
DE3544205C2 (de) | ||
EP1956301B1 (de) | Verfahren zum Führen eines Garprozesses | |
DE3883417T2 (de) | Automatischer Heizapparat. | |
EP1906096B1 (de) | Verfahren zur Regelung des Abluftvolumenstromes aus einem Garraum eines Backofens | |
EP1761729A2 (de) | Stellvorrichtung mit einem zumindest zweidimensionalen sensorbereich | |
DE19758860B4 (de) | Verfahren zur Steuerung eines Pyrolysereinigungsvorganges | |
DE102007039027A1 (de) | Verfahren zur Bestimmung der Kerntemperatur eines Garguts und Gargerät zur Durchführung solch eines Verfahrens | |
DE102008036683B4 (de) | Gargerät und Verfahren zum Steuern eines Garprozesses | |
DE3879971T2 (de) | Kochgerät. | |
DE102006041767B3 (de) | Verfahren zur Brandfallerkennung in einem Garraum eines Backofens | |
WO2018033385A1 (de) | Entfeuchten eines garraums | |
WO2008064898A1 (de) | Verfahren zum erzeugen, verarbeiten und auswerten eines mit der temperatur korrelierten signals und entsprechende vorrichtung | |
EP1599097B1 (de) | Verfahren zum steuern eines garprozesses | |
EP1619443A2 (de) | Gargerät mit steuerbarer Entlüftung | |
BE1029128A1 (de) | Verfahren zum Betreiben eines Gargeräts und Gargerät | |
DE102006013093B3 (de) | Verfahren zur Steuerung eines Pyrolysereinigungsvorgangs bei einem Backofen | |
DE10327864B4 (de) | Verfahren zur berührungslosen Steuerung eines Garvorgangs bei einem Gargerät und Gargerät | |
DE3834909A1 (de) | Automatisches kochsteuersystem fuer einen mikrowellenherd | |
DE10021235A1 (de) | Haushaltsbackofen mit Räucherfunktion | |
DE69501965T2 (de) | Haushaltskochofen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL HR LT LV MK |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL HR LT LV MK |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F24C 7/08 20060101AFI20130215BHEP |
|
17P | Request for examination filed |
Effective date: 20130927 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20131016 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20140429 |