EP1485061A1 - ÖLPHASEN FüR KOSMETISCHE MITTEL - Google Patents

ÖLPHASEN FüR KOSMETISCHE MITTEL

Info

Publication number
EP1485061A1
EP1485061A1 EP03706611A EP03706611A EP1485061A1 EP 1485061 A1 EP1485061 A1 EP 1485061A1 EP 03706611 A EP03706611 A EP 03706611A EP 03706611 A EP03706611 A EP 03706611A EP 1485061 A1 EP1485061 A1 EP 1485061A1
Authority
EP
European Patent Office
Prior art keywords
oil
acid
compounds
formula
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03706611A
Other languages
English (en)
French (fr)
Inventor
Daniela Prinz
David Herault
Anne-Sophie Wavreille
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cognis IP Management GmbH
Original Assignee
Cognis Deutschland GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Deutschland GmbH and Co KG filed Critical Cognis Deutschland GmbH and Co KG
Publication of EP1485061A1 publication Critical patent/EP1485061A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/58Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing atoms other than carbon, hydrogen, halogen, oxygen, nitrogen, sulfur or phosphorus
    • A61K8/585Organosilicon compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin

Definitions

  • the invention relates to novel oil bodies based on certain silane derivatives which can be easily incorporated into cosmetic preparations and which enable the production of storage-stable emulsions.
  • Preparations that are used to clean and care for human skin and hair usually contain a number of surface-active substances, especially oil and water.
  • surface-active substances especially oil and water.
  • hydrocarbons, ester oils and vegetable and animal oils / fats / waxes are used as oil bodies / emollients.
  • new oil bodies and emulsifier mixtures are continuously being developed and tested.
  • the object of the present invention was to provide new emollients for cosmetic applications, which in particular enables the production of storage-stable products.
  • the invention therefore relates to cosmetic compositions comprising an aqueous phase and an oil phase, the oil phase completely or partially containing compounds of the general formula (I) RO-Si (R ') 2- OR in the R for a branched or unbranched, saturated or unsaturated Alkyl or alkenyl radical having 8 to 22 carbon atoms and R 'is an alkyl radical having 1 to 4 carbon atoms.
  • DE-OS-21 18 378 discloses the use of compounds of the general formula (I) as a protective agent against skin damage to dog paws.
  • the specifically disclosed formulations do not contain water; rather, solutions of the compounds of the formula (I) in halogenated aliphatic hydrocarbons or isopropanol or with blowing agents such as nitrogen or carbon dioxide are disclosed.
  • Another object is the use of compounds of formula (I) as an oil phase in aqueous cosmetic products.
  • the compounds of formula (I) act as emollients, ie they have the property of making the skin softer and more supple.
  • the compounds of formula (I) as such are known. They can be obtained in the usual ways of synthetic organic chemistry. One way of synthesizing them is, for example, via the dihalodimethylsilanes, preferably via dichlorodimethylsilane, which is reacted with alcohols in the presence of bases. In the end, the largely acid-free compounds of the formula (I) are obtained.
  • the variation of the radical R is consequently carried out by selection of the alcohol component, monofunctional, saturated alcohols with chain lengths of 8 to 22 carbon atoms being preferred. In principle, however, unsaturated alcohols can also be reacted.
  • the radical R preferably contains 10 to 16 and in particular 12 to 14 carbon atoms.
  • radical R in the formula (I) is branched.
  • R 'represents a methyl radical are particularly preferred.
  • Compounds of the formula (I) whose radical R is based on butyl octanol have proven to be particularly suitable oil components for the purposes of the present invention.
  • the compounds of formula (I) used according to the invention allow the production of stable cosmetic emulsions.
  • These are preferably personal care formulations, e.g. B. creams, milks, lotions, sprayable emulsions, products for eliminating body odor etc.
  • the compounds of the invention can also be used in surfactant-containing formulations such. B. use foam and shower baths, hair shampoos and conditioners.
  • cosmetic products are products that are used to beautify the skin, face and body. Accordingly, cosmetics are understood to mean all measures on the skin, its appendix organs and the perceivable mucous membranes for cleaning (including deodorization and antiperspiration), for preserving, preventive and improving care (including dental and oral care), for beautification, decoration or coloring (including the use of perfumes) and the plast. Surgery.
  • the cosmetic formulations contain a number of other auxiliaries and additives, such as, for example, surfactants, other oil bodies, emulsifiers, pearlescent waxes, consistency agents, thickeners, superfatting agents, stabilizers, polymers, silicone compounds, fats, waxes, lecithins, phospholipids, biogenic active ingredients, UV Light protection factors, antioxidants, deodorants, antiperspirants, antidandruff agents, film formers, swelling agents, insect repellents, Self-tanners, tyrosinase inhibitors (depigmenting agents), hydrotropes, solubilizers, preservatives, perfume oils, dyes etc., which are listed below as examples.
  • auxiliaries and additives such as, for example, surfactants, other oil bodies, emulsifiers, pearlescent waxes, consistency agents, thickeners, superfatting agents, stabilizers, polymers, silicone compounds, fats, waxes, lecithins, phospholipids
  • the agents can preferably in particular contain emulsifiers.
  • suitable emulsifiers are non-ionic surfactants from at least one of the following groups:
  • alkyl glucosides e.g. methyl glucoside, butyl glucoside, lauryl glucoside
  • polyglucosides e.g. cellulose
  • alkyl glucosides e.g. methyl glucoside, butyl glucoside, lauryl glucoside
  • polyglucosides e.g. cellulose
  • adducts of ethylene oxide and / or of propylene oxide with fatty alcohols, fatty acids, alkylphenols or with castor oil are known, commercially available products. These are mixtures of homologs whose average degree of alkoxylation is the ratio of the amounts of ethylene oxide and / or propylene oxide and substrate, with which the addition reaction is carried out.
  • Ci2 / ⁇ fatty acid monoesters and diesters of adducts of ethylene oxide with glycerol are known as refatting agents for cosmetic preparations.
  • sorbitan sorbitan As sorbitan sorbitan, sorbitan sesquiisostearate, sorbitan diisostearate, sorbitan triisostearate, sorbitan monooleate, sorbitan dioleate, trioleate, sorbitan come monoerucate, Sorbitansesquierucat, Sorbitandierucat, Sorbitantherucat, Sorbitanmonoricinoleat, sorting bitansesquiricinoleat, Sorbitandiricinoleat, Sorbitantriricinoleat, Sorbitanmonohydroxystearat, sorbitan sesquihydroxystearat, Sorbitandihydroxystearat, Sorbitan trihydroxystearate, sorbitan monotartrate, sorbitan sesquitartrate, sorbitan ditartrate, sorbitan tritartrate, sorbitan monocitrate, sorbitan sesquicitrate, sorbitan t
  • polyglycerol esters are polyglyceryl-2 dipolyhydroxystearates (Dehymuls® PGPH), polyglycerol-3-diisostearates (Lameform® TGI), polyglyceryl-4 isostearates (Isolan® Gl 34), polyglyceryl-3 oleates, diisostearoyl polyglyearylate-3 (Isolan® PDI), Polyglyceryl-3 Methylglucose Distearate (Tego Care® 450), Polyglyceryl-3 Beeswax (Cera Bel-ina®), Polyglyceryl-4 Caprate (Polyglycerol Caprate T2010 / 90), Polyglyceryl-3 Cetyl Ether (Chimexane® NL), Polyglyceryl-3 Distearate (Cremophor® GS 32) and Polyglyceryl Polyricinoleate (Admul® WOL 1403) Polyglyceryl Dimerate Isost
  • polystyrene resin examples include the mono-, di- and triesters of trimethylolpropane or pentaerythritol with lauric acid, coconut fatty acid, taig fatty acid, palmitic acid, stearic acid, oleic acid, behenic acid and the like which are optionally reacted with 1 to 30 mol of ethylene oxide.
  • Anionic emulsifiers are the mono-, di- and triesters of trimethylolpropane or pentaerythritol with lauric acid, coconut fatty acid, taig fatty acid, palmitic acid, stearic acid, oleic acid, behenic acid and the like which are optionally reacted with 1 to 30 mol of ethylene oxide.
  • Anionic emulsifiers examples include the mono-, di- and triesters of trimethylolpropane or pentaerythritol with lauric acid, coconut fatty acid,
  • Typical anionic emulsifiers are aliphatic fatty acids with 12 to 22 carbon atoms such as palmitic acid, stearic acid or behenic acid and dicarboxylic acids with 12 to 22 carbon atoms such as azelaic acid or sebacic acid.
  • Zwitterionic surfactants can also be used as emulsifiers.
  • Zwitterionic surfactants are surface-active compounds that contain at least one quaternary ammonium group and at least one carboxylate and one sulfonate group in the molecule.
  • Particularly suitable zwitterionic surfactants are the so-called betaines such as the N-alkyl-N, N-dimethylammonium glycinate, for example coconut alkyldimethylammonium glycinate, N-acylaminopropyl-N, N-dimethylammonium glycinate, for example coconut acylamino-propyldimethylammonium glycinate, and 2 -Alkyl-3-carboxylmethyl-3-hydroxyethylimidazolines each having 8 to 18 carbon atoms in the alkyl or acyl group and the cocoacylaminoethylhydroxyethylcarboxymethylglycinate.
  • betaines such as the N-alkyl-N, N-dimethylammonium glycinate, for example coconut alkyldimethylammonium glycinate, N-acylaminopropyl-N, N-dimethylammonium glyc
  • Suitable emulsifiers are ampholytic surfactants.
  • Ampholytic surfactants are surface-active compounds which, in addition to a Cs / i ⁇ -alkyl or acyl group, contain at least one free amino group and at least one -COOH or -S ⁇ 3H group in the molecule and are capable of forming internal salts.
  • ampholytic surfactants are N-alkylglycines, N-alkylpropionic acids, N-alkylaminobutyric acids, N-alkyliminodipropionic acids, N-hydroxyethyl-N-alkylamidopropylglycines, N-alkyltaurines, N-alkylsarcosines, 2-alkylaminopropionic acids and alkylaminoacetic acids each with about 8 to 18 carbon atoms in the alkyl group.
  • Particularly preferred ampholytic surfactants are N-coconut alkyl aminopropionate, coconut acylaminoethyl aminopropionate and Ci ⁇ -acyl sarcosine.
  • cationic surfactants are also suitable as emulsifiers, those of the esterquat type, preferably methylquaternized difatty acid triethanolamine ester salts, being particularly preferred.
  • the agents according to the invention can contain individual emulsifiers or mixtures of different emulsifiers.
  • the emulsifiers are present in the compositions according to the invention in total from 1 to 50% by weight, preferably 5 to 40 and in particular 10 to 30% by weight. It is further preferred if the quantitative ratio of compounds of the formula (I) to the emulsifiers is in the range from 2: 1 to 1: 1.
  • Preferred agents are those which contain 40 to 80% by weight of water, 10 to 50% by weight of compounds of the formula (I) and 10 to 30% by weight of emulsifiers. surfactants
  • surfactants can be contained in the agents according to the invention. These are selected from the group of anionic, nonionic, cationic and / or amphoteric or zwitterionic surfactants.
  • Cosmetic preparations containing surfactants such as shower gels, foam baths, shampoos, etc., preferably contain at least one anionic surfactant.
  • the proportion of surfactants here is usually about 1 to 30, preferably 5 to 25 and in particular 10 to 20% by weight.
  • anionic surfactants are sulfonates, soaps, alkyl benzenesulfonates, alkanesulfonates, olefin, alkyl ether sulfonates, glycerol ether, methyl ester sulfonates, sulfofatty acids, alkyl sulfates, fatty alcohol ether sulfates, Glycerol ether, Fettklareethersulfate, Hydroxymischethersulfate, monoglyceride (ether) sulfates, fatty acid amide (ether) sulfates, mono - And dialkyl sulfosuccinates, mono- and dialkyl sulfosuccinamates, sulfotriglycerides, amide soaps, ether carboxylic acids and their salts, fatty acid ethionates, fatty acid sarcosinates, fatty acid taurides, N-acyl amino
  • anionic surfactants contain polyglycol ether chains, they can have a conventional, but preferably a narrow, homolog distribution.
  • Typical examples of nonionic surfactants are fatty alcohol polyglycol ethers, alkylphenol polyglycol ethers, fatty acid polyglycol esters, fatty acid amide polyglycol ethers, fatty amine polyglycol ethers, alkoxylated triglycerides, mixed ethers or mixed formals, optionally partially oxidized alk (en) yl oligoglycosides or especially glucoronic acid protein derivatives, fatty acid glucoronic acid protein derivatives, and fatty acid glucoronic acid derivatives, vegetable glucoronic acid derivatives, and fatty acid glucoronic acid derivatives, vegetable glucoronic acid derivatives, and fatty acid glucoronic acid derivatives, vegetable glucoronic acid derivatives, and fatty acid glucoronic acid derivatives Wheat-based products), polyol fatty acid
  • nonionic surfactants contain polyglycol ether chains, they can have a conventional, but preferably a narrow, homolog distribution.
  • cationic surfactants are quaternary ammonium compounds, such as, for example, dimethyldistearylammonium chloride, and esterquats, in particular quaternized fatty acid trialkanolamine ester salts.
  • amphoteric or zwitterionic surfactants are alkyl betaines, alkyl amido betaines, aminopropionates, aminoglycinates, imidazolinium betaines and sulfobetaines. The surfactants mentioned are exclusively known compounds.
  • Typical examples of particularly suitable mild, ie particularly skin-compatible, surfactants are fatty alcohol polyglycol ether sulfates, monoglyceride sulfates, mono- and / or dialkyl sulfosuccinates, fatty acid isethionates, fatty acid sarcosinates, fatty acid taurides, fatty acid regulatamates, ⁇ -olefin sulfonates, ether carboxylic acids, alkyl oligoglucosides, fatty acid glucamides, alkyl amido betaines, amphoacetals and / or protein fatty acid condensates, the latter preferably based on wheat proteins.
  • aqueous compositions usually contain a number of other oils and emollients that help to further optimize the sensory properties.
  • the oil bodies or phases are preferably contained in the aqueous compositions according to the invention in a total amount of 1-50% by weight, preferably 5-25% by weight and in particular 5-15% by weight.
  • Additional compounds which may be considered as additional oil bodies are, for example, Guerbet alcohols based on fatty alcohols having 6 to 18, preferably 8 to 10 carbon atoms, esters of linear C ⁇ -C22 fatty acids with linear or branched C6-C22 fatty alcohols or esters of branched C6-C13 - Carboxylic acids with linear or branched C6-C22 fatty alcohols, such as. B.
  • esters of linear C ⁇ -C ⁇ fatty acids with branched alcohols in particular 2-ethylhexanol
  • esters of Ci8-C38-alkylhydroxycarboxylic acids with linear or branched C6-C22 fatty alcohols in particular dioctyl malates
  • esters of linear and / or branched Fatty acids with polyhydric alcohols such as propylene glycol, dimer diol or trimer triol
  • triglycerides based on C ⁇ -Cio fatty acids liquid mono- / di-triglyceride mixtures based on C6-Ci8 fatty acids
  • esters of C6- C22 fatty alcohols and / or Guerbet alcohols with aromatic carboxylic acids especially benzoic acid, esters of C2-C12 dicarboxylic acids with linear or branched alcohols with 1 to 22 carbon atoms or polyols with 2 to 10 carbon atoms and
  • dicaprylyl ether (Cetiol® OE), ring opening products of epoxidized fatty acid esters with polyols, silicone oils (cyclomethicones, silicon methicone types, etc.) and / or aliphatic or naphthenic hydrocarbons, such as. B. as squalane, squalene or dialkylcyclohexane.
  • Fats and waxes are added to the personal care products as care substances and also to increase the consistency of the cosmetics.
  • Typical examples of fats are glycerides, i.e. H. solid or liquid vegetable or animal products consisting essentially of mixed glycerol esters of higher fatty acids.
  • Fatty acid partial glycerides i.e. H. Technical mono- and / or diesters of glycerol with fatty acids with 12 to 18 carbon atoms, such as glycone mono / dilaurate, palmitate or stearate, are suitable for this.
  • waxes come u. a. natural waxes such as B.
  • lecithins In addition to fats, fat-like substances such as lecithins and phospholipids can also be used as additives.
  • lecithins to mean those glycerophospholipids which are formed from fatty acids, glycerol, phosphoric acid and choline by esterification. Lecithins are therefore often referred to in the professional world as phosphatidylcholines (PC).
  • PC phosphatidylcholines
  • Examples of natural lecithins are the cephalins, which are also referred to as phosphatidic acids and are derivatives of 1,2-diacyl-sn-glycerol-3-phosphoric acids.
  • phospholipids are usually understood to be mono- and preferably diesters of phosphoric acid with glycerol (glycerol phosphates), which are generally classed as fats.
  • glycerol phosphates glycerol phosphates
  • sphingosines or sphingolipids are also suitable.
  • Pearlescent waxes are: alkylene glycol esters, especially ethylene glycol distearate; Fatty acid alkanolamides, especially coconut fatty acid diethanolamide; Partial glycerides, especially stearic acid monoglyceride; Esters of polyvalent, optionally hydroxy-substituted carboxylic acids with fatty alcohols having 6 to 22 carbon atoms, especially long-chain esters of tartaric acid; Fatty substances such as fatty alcohols, fatty ketones, fatty aldehydes, fatty ethers and fatty carbonates, which in total min.
  • Other possible consistency agents are primarily fatty alcohols or hydroxyfatty alcohols with 12 to 22 and preferably 16 to 18 carbon atoms and, in addition, partial glycerides, fatty acids or hydroxy fatty acids.
  • a combination of these substances with alkyl oligoglucosides and / or fatty acid N-methylglucamides of the same chain length and / or polyglycerol poly-12-hydroxy stearates is preferred.
  • Suitable thickeners are, for example, Aerosil types (hydrophilic silicas), polysaccharides, in particular xanthan gum, guar guar, agar agar, alginates and tyloses, carboxymethyl cellulose and hydroxyethyl and hydroxypropyl cellulose, and also higher molecular weight polyethylene glycol mono- and - diesters of fatty acids, polyacrylates (e.g. Carbopole® and Pemulen types from Goodrich; Synthalene® from Sigma; Keltrol types from Kelco; Sepigel types from Seppic; Salcare types from Allied Colloids), polyacrylamides, polymers, polyvinyl alcohol and polyvinyl pyrrolidone.
  • Aerosil types hydrophilic silicas
  • polysaccharides in particular xanthan gum, guar guar, agar agar, alginates and tyloses, carboxymethyl cellulose and hydroxyethyl and hydroxypropyl
  • Bentonites such as, for example, have also proven particularly effective.
  • Surfactants such as ethoxylated fatty acid glycerides, esters of fatty acids with polyols such as pentaerythritol or trimethylolpropane, fatty alcohol ethoxylates with a narrow homolog distribution or alkyl oligoglucosides as well as electrolytes such as table salt and ammonium chloride are also suitable.
  • Substances such as lanolin and lecithin as well as polyethoxylated or acylated lanolin and lecithin derivatives, polyol fatty acid esters, monoglycerides and fatty acid alkanolamides can be used as superfatting agents, the latter simultaneously serving as foam stabilizers.
  • Metal salts of fatty acids such as. B. magnesium, aluminum and / or
  • Zinc stearate or ricinoleate can be used.
  • Suitable cationic polymers are, for example, cationic cellulose derivatives, such as. B. a quaternized hydroxyethyl cellulose, which is available under the name Polymer JR 400® from Amerchol, cationic starch, copolymers of diallylammonium salts and acrylamides, quaternized vinyl pyrrolidone / vinyl imidazole polymers, such as. B.
  • cationic cellulose derivatives such as. B. a quaternized hydroxyethyl cellulose, which is available under the name Polymer JR 400® from Amerchol, cationic starch, copolymers of diallylammonium salts and acrylamides, quaternized vinyl pyrrolidone / vinyl imidazole polymers, such as. B.
  • Luviquat® condensation products of polyglycols and amines, quaternized collagen polypeptides, such as lauryldimonium hydroxypropyl hydrolyzed collagen (Lamequat®IJGrünau), quaternized wheat polypeptides, polyethyleneimine, cationic silicone polymers, such as. B.
  • amodimethicones copolymers of adipic acid and dimethylaminohydroxypropyldiethylenetriamine (Cartaretine® / Sandoz), copolymers of acrylic acid with dimethyl-diallylammonium chloride (Merquat® 550 / Chemviron), polyaminopolyamides and their crosslinked water-soluble polymers, cationic chitin derivatives such as, for example, quaternized chitro-derivatives, such as quaternized chitro-derivatives , Condensation products from dihaloalkylene, such as. B. dibromobutane with bisdialkylamines, such as. B.
  • Anionic, zwitterionic, amphoteric and nonionic polymers include, for example, vinyl acetate / crotonic acid copolymers, vinyl pyrrolidone / vinyl acrylate copolymers, vinyl acetate / butyl maleate / isobomylacrylate copolymers, methyl vinyl ether / maleic anhydride copolymers and their esters, uncrosslinked cross-linked polyacrylic acids, acrylamidopropyltrimethylammonium chloride / acrylate copolymers, octylacrylamide / methyl methacrylate / tert.
  • the agents according to the invention may also contain further silicon-containing components.
  • Suitable silicone compounds are, for example, dimethylpolysiloxanes, methylphenylpolysiloxanes, cyclic silicones and amino, fatty acid, alcohol, polyether, epoxy, fluorine, glycoside and / or alkyl-modified silicone compounds which can be both liquid and resinous at room temperature.
  • Simethicones which are mixtures of dimethicones with an average chain length of 200 to 300 dimethylsiloxane units and hydrogenated silicates, are also suitable.
  • UV light protection filters and antioxidants are also suitable.
  • UV light protection factors are understood to mean, for example, liquid or crystalline organic substances (light protection filters) present at room temperature, which are able to absorb ultraviolet rays and absorb the energy absorbed in the form of longer-wave radiation, e.g. B. to release heat again.
  • UVB filters can be oil-soluble or water-soluble. As oil-soluble substances such. B. To name:
  • esters of cinnamic acid preferably 2-ethylhexyl 4-methoxycinnamate, propyl 4-methoxycinnamate, 2-cyano-3,3-phenylcinnamic acid 2-ethylhexyl 4-methoxycinnamate (octocylenes)
  • esters of salicylic acid preferably 2-ethylhexyl salicylate, 4-iso-propylbenzyl salicylate, homomethyl salicylate
  • benzophenone preferably 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-4'-methylbenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone
  • esters of benzalmalonic acid preferably 4-methoxybenzmalonic acid di-2-ethylhexyl ester
  • Triazine derivatives such as. B. 2,4,6-trianilino- (p-carbo-2'-ethyl-1'-hexyloxy) -1, 3,5-triazine and octyl-triazone, or dioctyl butamido triazone (Uvasorb® HEB)
  • benzoylmethane such as 1- (4'-tert-butylphenyl) -3- (4'-methoxyphenyl) propane-1, 3-dione, 4-tert-butyl
  • benzoylmethane such as 1- (4'-tert-butylphenyl) -3- (4'-methoxyphenyl) propane-1, 3-dione, 4-tert-butyl
  • typical UV-A filters 4'-methoxy-dibenzoyl methane (Parsol® 1789), 1-phenyl-3- (4'-isopropylphenyl) propane-1, 3-dione and enamine compounds as described in DE 19712033 A1 (BASF).
  • the UV-A and UV-B filters can of course also be used in mixtures.
  • Particularly favorable combinations consist of the derivatives of benzoylmethane, e.g. B.
  • insoluble light protection pigments namely finely dispersed metal oxides or salts
  • suitable metal oxides are, in particular, zinc oxide and titanium dioxide and, in addition, oxides of iron, zirconium, silicon, manganese, aluminum and cerium and mixtures thereof.
  • Silicates (talc), barium sulfate or zinc stearate can be used as salts.
  • the oxides and salts are used in the form of the pigments for skin-care and skin-protecting emulsions and decorative cosmetics.
  • the particles should have an average diameter of less than 100 nm, preferably between 5 and 50 nm and in particular between 15 and 30 nm.
  • the pigments can have a spherical shape, but it is also possible to use particles which have an ellipsoidal shape or shape which differs from the spherical shape in some other way.
  • the pigments can also be surface treated, i.e. H. are hydrophilized or hydrophobized.
  • Typical examples are coated titanium dioxide, such as. B. Titanium dioxide T 805 (Degussa) or Eusolex® T2000 (Merck). Silicones, and in particular trialkoxyoctylsilanes or simethicones, are particularly suitable as hydrophobic coating agents. So-called micro- or nanopigments are preferably used in sunscreens. Micronized zinc oxide is preferably used.
  • secondary light stabilizers of the antioxidant type can also be used, which interrupt the photochemical reaction chain which is triggered when UV radiation penetrates the skin.
  • Typical examples are amino acids (e.g. glycine, histidine, tyrosine, tryptophan) and their derivatives, imidazoles (e.g. urocanic acid) and their derivatives, peptides such as D, L-camosine, D-camosine, L-carnosine and their derivatives (e.g. anserine), carotenoids, carotenes (e.g.
  • thioredoxin glutathione, cysteine, cystine, cystamine and their glycosyl, N-acetyl, methyl, ethyl, propyl, amyl, butyl and lauryl, palmitoyl) , Oleyl, ⁇ -linoleyl, cholesteryl and glyceryl esters) and their salts, dilauryl thiodipropionate, distearyl thiodipropionate, thiodipropionic acid and their derivatives (esters, ethers, peptides, lipids, nucleotides, nucleosides and salts) as well as sulfoximine compounds (e.g.
  • Buthioninsulfoximine, homocysteine sulfoximine, Butioninsulfone, penta-, hexa-, heptathioninsulfoximine) in very low tolerable doses e.g. pmol to ⁇ mol / kg
  • metal chelators e.g. ⁇ -hydroxy fatty acids, palmitic acid, Phytic acid, lactoferrin
  • ⁇ -hydroxy acids e.g. citric acid, lactic acid, malic acid
  • humic acid bile acid, bile extracts, bilirubin, biliverdin, EDTA, EGTA and their derivatives, unsaturated fatty acids and their derivatives (e.g.
  • ⁇ -Linolenic acid linoleic acid, oil acid
  • folic acid and its derivatives ubiquinone and ubiquinol and their derivatives
  • vitamin C and derivatives e.g. As ascorbyl palmitate, Mg ascorbyl phosphate, ascorbyl acetate
  • tocopherols and derivatives e.g.
  • vitamin E acetate
  • vitamin A and derivatives vitamin A palmitate
  • stilbene eg selenium-methionine
  • stilbene and their derivatives eg stilbene oxide, trans-stilbene oxide
  • derivatives suitable according to the invention salts, esters, ethers, sugars, nucleotides, nucleosides, peptides and lipids
  • biogenic active substances include tocopherol, tocopherol acetate, tocopherol palmitate, ascorbic acid, (deoxy) ribonucleic acid and its fragmentation products, ß-glucans, retinol, bisabolol, allantoin, phytantriol, panthenol, AHA acids, amino acids, ceramides, pseudocleamides, extracts of essential oils, essential extracts such as B. Prunus extract, Bambaranus extract and vitamin complexes to understand.
  • deodorants counteract, mask or eliminate body odors.
  • Body odors arise from the action of skin bacteria on apocrine sweat, whereby unpleasant smelling breakdown products are formed. Accordingly, deodorants contain active ingredients which act as germ-inhibiting agents, enzyme inhibitors, odor absorbers or odor maskers. Anti-germ agents
  • germ-inhibiting agents such as.
  • Esterase inhibitors are suitable as enzyme inhibitors. These are preferably trialkyl citrates such as trimethyl citrate, tripropyl citrate, triisopropyl citrate, tributyl citrate and in particular triethyl citrate (Hydagen® CAT).
  • the substances inhibit enzyme activity and thereby reduce odor.
  • esterase inhibitors include sterol sulfates or phosphates, such as, for example, lanosterol, cholesterol, campesteric, stigmasterol and sitosterol sulfate or phosphate, dicarboxylic acids and their esters, such as, for example, giutaric acid, glutaric acid monoethyl ester, glutaric acid diethyl ester, adipic acid, Adipic acid monoethyl ester, adipic acid diethyl ester, malonic acid and malonic acid diethyl ester, hydroxycarboxylic acids and their esters such as citric acid, malic acid, tartaric acid or tartaric acid diethyl ester, and zinc glycinate.
  • dicarboxylic acids and their esters such as, for example, giutaric acid, glutaric acid monoethyl ester, glutaric acid diethyl ester, adipic acid, Adipic acid monoethyl ester
  • Suitable odor absorbers are substances that absorb odor-forming compounds and can retain them to a large extent. They lower the partial pressure of the individual components and thus also reduce their speed of propagation. It is important that perfumes must remain unaffected. Odor absorbers are not effective against bacteria. They contain, for example, a complex zinc salt of ricinoleic acid or special, largely odorless fragrances, which are known to the person skilled in the art as "fixators", such as, for example, the main component. B. extracts of Labdanum or Styrax or certain abietic acid derivatives. Fragrances or perfume oils act as odor maskers, which in addition to their function as odor maskers Deodorants give their respective fragrance.
  • Perfume oils are, for example, mixtures of natural and synthetic fragrances. Natural fragrances are extracts of flowers, stems and leaves, fruits, fruit peels, roots, woods, herbs and grasses, needles and branches as well as resins and balms. Animal raw materials, such as civet and castoreum, are also suitable. Typical synthetic fragrance compounds are products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type. Fragrance compounds of the ester type are e.g. B.
  • the ethers include, for example, benzyl ethyl ether, the aldehydes z. B.
  • the linear alkanals with 8 to 18 carbon atoms citral, citronellal, citronellyloxyacetal dehyde, cyclamenaldehyde, hydroxycitronellal, lilial and bourgeonal, to the ketones z.
  • the joonone and methyl cedryl ketone the alcohols anethole, citronellol, eugenol, isoeugenol, geraniol, linalool, phenylethyl alcohol and terpineol
  • the hydrocarbons mainly include the terpenes and balsams.
  • perfume oils e.g. B. sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil, labdanum oil and lavandin oil.
  • Antiperspirants reduce sweat formation by influencing the activity of the eccrine sweat glands and thus counteract armpit wetness and body odor.
  • Aqueous or anhydrous formulations of antiperspirants typically contain the following ingredients:
  • non-aqueous solvents such as As ethanol, propylene glycol and / or glycerin.
  • Salts of aluminum, zirconium or zinc are particularly suitable as astringent antiperspirant active ingredients.
  • suitable antiperspirant active ingredients are e.g. B. aluminum chloride, aluminum chlorohydrate, aluminum dichlorohydrate, aluminum sesquichlorohydrate and their complex compounds z.
  • B. with amino acids such as Glycine.
  • conventional oil-soluble and water-soluble auxiliaries can be present in smaller amounts in antiperspirants.
  • oil-soluble aids can e.g. B. be: anti-inflammatory, skin-protecting or fragrant essential oils
  • Usual water-soluble additives are e.g. B. preservatives, water-soluble fragrances, pH adjusting agents, for. B. buffer mixtures, water-soluble thickeners, e.g. B. water-soluble natural or synthetic polymers such. B. xanthan gum, hydroxyethyl cellulose, polyvinyl pyrrolidone or high molecular weight polyethylene oxides.
  • Common film formers are, for example, chitosan, microcrystalline chitosan, quaternized chitosan, polyvinylpyrrolidone, vinylpyrrolidone-vinyl acetate copolymers, polymers of the acrylic acid series, quaternary cellulose derivatives, collagen, hyaluronic acid or its salts and similar compounds.
  • Montmorillonites, clay minerals, pemulene and alkyl-modified carbopol types can serve as swelling agents for aqueous phases.
  • insect repellents are N, N-diethyl-m-toluamide, 1, 2-pentanediol or 3- (Nn-butyl-N-acetylamino) propionic acid-ethyl ester), which is known as Insect Repellent® 3535 is marketed by Merck KGaA, as well as butylacetylaminopropionate.
  • Dihydroxyacetone is suitable as a self-tanner.
  • Arbutin, ferulic acid, kojic acid, coumaric acid and ascorbic acid (vitamin C) can be used as tyrosine inhibitors, which prevent the formation of melanin and are used in depigmenting agents.
  • Hydrotropes such as ethanol, isopropyl alcohol, or polyols can also be used to improve the flow behavior.
  • Polyols that come into consideration here preferably have 2 to 15 carbon atoms and at least two hydroxyl groups.
  • the polyols can also contain further functional groups, in particular amino groups, or be modified with nitrogen. Typical examples are:
  • Alkylene glycols such as ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, hexylene glycol and polyethylene glycols with an average molecular weight of 100 to 1,000 daltons > technical oligoglycerol mixtures with a degree of self-condensation of 1.5 to 10 such as technical diglycerol mixtures with a diglycerol content of 40 to 50% by weight
  • Methyl compounds such as in particular trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol and dipentaerythritol
  • Dialcohol amines such as diethanolamine or 2-amino-1, 3-propanediol.
  • Suitable preservatives are, for example, phenoxyethanol, formaldehyde solution, parabens, pentanediol or sorbic acid, as well as the silver complexes known under the name Surfacine® and the other classes of substances listed in Appendix 6, Parts A and B of the Cosmetics Ordinance.
  • Perfume oils include mixtures of natural and synthetic fragrances. Natural fragrances are extracts of flowers (lily, lavender, roses, jasmine, neroli, ylang-ylang), stems and leaves (geranium, patchouli, petitgrain), fruits (anise, coriander, caraway, juniper), fruit peel (bergamot, lemon, Oranges), roots (mace, angelica, celery, cardamom, costus, iris, calmus), wood (pine, sandal, guaiac, cedar, rosewood), herbs and grasses (tarragon, lemongrass, sage, thyme), Needles and twigs (spruce, fir, pine, mountain pine), resins and balms (galbanum, elemi, benzoin, myrrh, olibanum, opoponax).
  • Typical synthetic fragrance compounds are products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type. Fragrance compounds of the ester type are e.g. B.
  • the ethers include, for example, benzyl ethyl ether, the aldehydes z. B.
  • the linear alkanals with 8 to 18 carbon atoms citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, hydroxycitronellal, lilial and bourgeonal, to the ketones z.
  • the Jonone, ⁇ -isomethylionon and methylcedryl ketone to the alcohols anethole, citronellol, eugenol, isoeugenol, geraniol, linalool, phenylethyl alcohol and terpineol
  • the hydrocarbons mainly include the terpenes and bal- same. However, preference is given to using mixtures of different fragrances which together produce an appealing fragrance.
  • perfume oils e.g. B. sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil, labolanum oil and lavandin oil.
  • Suitable flavors are, for example, peppermint oil, spearmint oil, anise oil, stemanis oil, caraway oil, eucalyptus oil, fennel oil, lemon oil, wintergreen oil, clove oil, menthol and the like.
  • the dyes which can be used are those which are suitable and approved for cosmetic purposes. Examples are Kochillerot A (Cl 16255), patent blue V (C.1.42051), indigotine (C.1.73015), chlorophylline (C.1.75810), quinoline yellow (CI47005), titanium dioxide (C.1.77891), indanthrene blue RS (Cl 69800) and madder varnish (CI58000). Luminol may also be present as the luminescent dye. These dyes are usually used in concentrations of 0.001 to 0.1% by weight, based on the mixture as a whole.
  • the cosmetic compositions can be produced in all ways known to the person skilled in the art.
  • the compounds of formula (I) according to the invention are self-emulsifying, i.e. a stable emulsion can be produced by simply mechanically mixing the oil and water phases, if necessary with the addition of suitable emulsifiers.
  • the agents according to the invention can be designed as an O / W or a W / O emulsion.
  • Some of the compounds of the formula (I) have very low Brookfield viscosities (less than / equal to 10 mPa s) and are therefore particularly preferred for use in cosmetic products.
  • Another aspect of the present teaching relates to the use of the compounds of the formula (I) in non-aqueous cosmetic preparations, preferably in skin, care and baby oils.
  • Such Agents either contain only the oil component alone, but preferably in a mixture with lower alcohols R "-OH, in which R represents an alkyl radical having 1 to 6 carbon atoms.
  • R represents an alkyl radical having 1 to 6 carbon atoms.
  • ethanol and / or propanol or isopropanol is also used.
  • the weight ratio of Compounds of the formula (I) for the lower alcohols are in the range from 75:25 to 95: 5 and preferably from 80:20 to 90:10.
  • Non-aqueous formulations mean that only small amounts of water, as brought in by the raw materials, are contained. This typically means 0.01 to a maximum of 2% by weight of water in the respective formulations, preferably 0.1 to 1.0% by weight and in particular less than 0.5% by weight of water.
  • the teaching of the present application therefore generally includes the use of the compounds of the formula (I) for the care of human skin.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Cosmetics (AREA)

Abstract

Beschrieben werden kosmetisches Mittel, enthaltend eine wässerige und eine Ölphase, wobei die Öl­phase vollständig oder teilweise Verbindungen der allgemeinen Formel (I), RO-Si(R')2-OR, enthält in der R für einen verzweigten oder unverzweigten, gesättigten oder ungesättigten Alkyl- bzw. Alkenylrest mit 8 bis 22 C-Atomen bedeutet und R' für einen Alkylrest mit 1 bis 4 C-Atomen steht.

Description

Ölphasen für kosmetische Mittel
Die Erfindung betrifft neuartige Ölkörper auf Basis von bestimmten Silanderivaten, die leicht in kosmetische Zubereitungen einarbeitbar sind und die Herstellung lagerstabiler Emulsionen ermöglichen.
Im Bereich kosmetischer Emulsionen für die Haut- und Haarpflege werden vom Verbraucher eine Vielzahl von Anforderungen gestellt: Abgesehen von den reinigenden und pflegenden Effekten, die den Anwendungszweck bestimmen, wird Wert auf so unterschiedliche Parameter wie höchstmögliche dermatologische Verträglichkeit, gute rϋckfettende Eigenschaften, elegantes Erscheinungsbild, optimaler sensorischer Eindruck und Lagerstabilität gelegt.
Zubereitungen, die zur Reinigung und Pflege der menschlichen Haut und der Haare eingesetzt werden, enthalten in der Regel neben einer Reihe von oberflächenaktiven Substanzen, vor allem Ölkörper und Wasser. Als Olkörper/Emollients werden beispielsweise Kohlenwasserstoffe, Esteröle sowie pflanzliche und tierische Öle/Fette/Wachse eingesetzt. Um die hohen Anforderungen des Marktes bezüglich sensorischer Eigenschaften und optimaler dermatologischer Verträglichkeit zu erfüllen, werden kontinuierlich neue Ölkörper und Emulgator-Gemische entwickelt und getestet.
Aufgabe der vorliegenden Erfindung war es, neue Emollients für kosmetische Applikationen zur Verfügung zu stellen, die insbesondere die Herstellung lagerstabiler Produkte ermöglicht.
Gegenstand der Erfindung sind daher kosmetische Mittel, enthaltend eine wässerige und eine Olphase, wobei die Olphase vollständig oder teilweise Verbindungen der allgemeinen Formel (I) RO-Si(R')2- ORenthält in der R für einen verzweigten oder unverzweigten, gesättigten oder ungesättigten Alkyl- bzw. Alkenylrest mit 8 bis 22 C-Atomen bedeutet und R' für einen Alkylrest mit 1 bis 4 C-Atomen steht.
Aus der DE-OS-21 18 378 ist die Verwendung von Verbindungen der allgemeinen Formel (I) als Schutzmittel gegen Hautschäden an Hundepfoten bekannt. Die konkret offenbarten Rezepturen enthalten allerdings kein Wasser, vielmehr werden Lösungen der Verbindungen der Formel (I) in haloge- nierten aliphatischen Kohlenwasserstoffen bzw. Isopropanol oder mit Treibmitteln, wie Stickstoff oder Kohlendioxid offenbart. Ein weiterer Gegenstand ist die Verwendung von Verbindungen der Formel (I) als Olphase in wässerigen kosmetischen Mitteln. Dabei wirken die Verbindungen der Formel (I) als Emollients, d.h. sie haben die Eigenschaft die Haut weicher und geschmeidiger zu machen.
Die Verbindungen der Formel (I) als solche sind bekannt. Sie können auf üblichen Wegen der synthetischen organischen Chemie erhalten werden. Ein Weg zu deren Synthese führt beispielsweise über die Dihalogen-dimethylsilane, vorzugsweise über Dichlordimethylsilan, welche mit Alkoholen in Gegenwart von Basen zur Reaktion gebracht wird. Am Ende werden die weitgehend säurefreien Verbindungen der Formel (I) erhalten. Die Variation des Restes R erfolgt folgerichtig durch Auswahl der Alkoholkomponente, wobei monofunktionelle, gesättigte Alkohole mit Kettenlängen von 8 bis 22 C-Atomen bevorzugt sind. Prinzipiell können aber auch ungesättigte Alkohole zur Reaktion gebracht werden. Vorzugsweise enthält der Rest R 10 bis 16 und insbesondere 12 bis 14 C-Atome. Des weiteren ist es bevorzugt, dass der Rest R in der Formel (I) verzweigt ist. Besonders bevorzugt sind Verbindungen der Formel (I) in der R' für einen Methylrest steht. Als besonders geeignete Ölkomponente im Sinne der vorliegenden Erfindung haben sich Verbindungen der Formel (I) erwiesen, deren Rest R auf Butyloctanol basiert.
Die erfindungsgemäß verwendeten Verbindungen der Formel (I) erlauben die Herstellung stabiler kosmetischer Emulsionen. Vorzugsweise handelt es sich hierbei um Formulierungen zur Körperpflege, z. B. Cremes, Milchen, Lotionen, sprühbare Emulsionen, Produkte zur Eliminierung des Körpergeruchs etc. Die erfindungsgemäßen Verbindungen lassen sich auch in tensidhaltigen Formulierungen wie z. B. Schaum- und Duschbädern, Haarshampoos und Pflegespülungen einsetzen.
Bei kosmetischen Mitteln handelt es sich, gemäß der Definition der CIDESCO, um Mittel, die eingesetzt werden, um eine Verschönerung der Haut, des Gesichts und des Körpers zu Erreichen. Demnach versteht man unter Kosmetik alle Maßnahmen an der Haut, ihren Anhangsorganen und den wahrnehmbaren Schleimhäuten zur Reinigung (einschließlich der Desodorierung und Antitranspiration), zur erhaltenden, vorbeugenden und verbessernden Pflege (einschließlich der Zahn- und Mundpflege), zur Verschönerung, Dekorierung od. Färbung (einschließlich der Verw. von Parfüms) sowie die plast. Chirurgie. Je nach Applikationszweck enthalten die kosmetischen Formulierungen eine Reihe weiterer Hilfs- und Zusatzstoffe, wie beispielsweise Tenside, weitere Ölkörper, Emulgatoren, Perlglanzwachse, Konsistenzgeber, Verdickungsmittel, Überfettungsmittel, Stabilisatoren, Polymere, Siliconverbindungen, Fette, Wachse, Lecithine, Phospholipide, biogene Wirkstoffe, UV-Lichtschutzfaktoren, Antioxidantien, Deodo- rantien, Antitranspirantien, Antischuppenmittel, Filmbildner, Quellmittel, I nsekten repellentien , Selbstbräuner, Tyrosinaseinhibitoren (Depigmentierungsmittel), Hydrotrope, Solubilisatoren, Konservierungsmittel, Parfümöle, Farbstoffe etc., die nachstehend exemplarisch aufgelistet sind.
Neben den erfindungsgemäßen Emollients können die Mittel vorzugsweise insbesondere Emulgatoren enthalten. Als Emulgatoren kommen beispielsweise nicht-ionogene Tenside aus mindestens einer der folgenden Gruppen in Frage:
a) Anlagerungsprodukte von 2 bis 30 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C-Atomen, an Alkylphenole mitδ bis 15 C-Atomen in der Alkylgruppe sowie Alkylamine mit 8 bis 22 Kohlenstoffatomen im Alkylrest b) Alkyloligoglykoside mit 8 bis 22 Kohlenstoffatomen im Alkylrest und deren ethoxylierte Analoga c) Anlagerungsprodukte von 1 bis 15 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl d) Anlagerungsprodukte von 15 bis 60 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl e) Partialester von Glycerin und/oder Sorbitan mit ungesättigten, linearen oder gesättigten, verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxycarbonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol Ethylenoxid f) Partialester von Polyglycerin (durchschnittlicher Eigenkondensationsgrad 2 bis 8), Polyethylenglycol (Molekulargewicht 400 bis 5000), Trimethylolpropan, Pentaerythrit, Zuckeralkoholen (z. B. Sorbit), Alkylglucosiden (z. B. Methylglucosid, Butylglucosid, Laurylglucosid) sowie Polyglucosiden (z. B. Cellulose) mit gesättigten und/oder ungesättigten, linearen oder verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxycarbonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol Ethylenoxid g) Mischester aus Pentaerythrit, Fettsäuren, Citronensäure und Fettalkohol und/oder Mischester von Fettsäuren mit 6 bis 22 Kohlenstoffatomen, Methylglucose und Polyolen, vorzugsweise Glycerin oder Polyglycerin h) Mono-, Di- und Trialkylphosphate sowie Mono-, Di- und/oder Tri-PEG-alkylphosphate und deren
Salze i) Wollwachsalkohole j) Polysiloxan-Polyalkyl-Polyether-Copolymere bzw. entsprechende Derivate k) Block-Copolymere z. B. Polyethylenglycol-30 Dipolyhydroxystearate I) Polymeremulgatoren, z. B. Pemulen-Typen (TR-1 ,TR-2) von Goodrich m) Polyalkylenglycole sowie n) Glycerincarbonat. Ethylenoxidanlaqerunqsprodukte
Die Anlagerungsprodukte von Ethylenoxid und/oder von Propylenoxid an Fettalkohole, Fettsäuren, Alkylphenole oder an Ricinusöl stellen bekannte, im Handel erhältliche Produkte dar. Es handelt sich dabei um Homologengemische, deren mittlerer Alkoxylierungsgrad dem Verhältnis der Stoffmengen von Ethylenoxid und/ oder Propylenoxid und Substrat, mit denen die Anlagerungsreaktion durchgeführt wird, entspricht. Ci2/ιβ-Fettsäuremono- und -diester von Anlagerungsprodukten von Ethylenoxid an Glycerin sind als Rückfettungsmittel für kosmetische Zubereitungen bekannt.
Sorbitanester
Als Sorbitanester kommen Sorbitanmonoisostearat, Sorbitansesquiisostearat, Sorbitan-diisostearat, Sorbitantriisostearat, Sorbitanmonooleat, Sorbitansesquioleat, Sorbitan-dioleat, Sorbitantrioleat, Sorbitan monoerucat, Sorbitansesquierucat, Sorbitandierucat, Sorbitantherucat, Sorbitanmonoricinoleat, Sor- bitansesquiricinoleat, Sorbitandiricinoleat, Sorbitantriricinoleat, Sorbitanmonohydroxystearat, Sorbitan- sesquihydroxystearat, Sorbitandihydroxystearat, Sorbitantrihydroxystearat, Sorbitanmonotartrat, Sorbi- tansesquitartrat, Sorbitanditartrat, Sorbitantritartrat, Sorbitanmonocitrat, Sorbitansesquicitrat, Sorbi- tandicitrat, Sorbitantricitrat, Sorbitanmonomaleat, Sorbitansesquimaleat, Sorbitan-dimaleat, Sorbitantri- maleat sowie deren technische Gemische. Ebenfalls geeignet sind Anlagerungsprodukte von 1 bis 30, vorzugsweise 5 bis 10 Mol Ethylenoxid an die genannten Sorbitanester.
Polvqlycerinester
Typische Beispiele für geeignete Polyglycerinester sind Polyglyceryl-2 Dipolyhydroxystearate (Dehy- muls® PGPH), Polyglycerin-3-Diisostearate (Lameform® TGI), Polyglyceryl-4 Isostearate (Isolan® Gl 34), Polyglyceryl-3 Oleate, Diisostearoyl Polyglyceryl-3 Diisostearate (Isolan® PDI), Polyglyceryl-3 Methylglucose Distearate (Tego Care® 450), Polyglyceryl-3 Beeswax (Cera Bel-ina®), Polyglyceryl-4 Caprate (Polyglycerol Caprate T2010/90), Polyglyceryl-3 Cetyl Ether (Chimexane® NL), Polyglyceryl-3 Distearate (Cremophor® GS 32) und Polyglyceryl Polyricinoleate (Admul® WOL 1403) Polyglyceryl Dimerate Isostearate sowie deren Gemische. Beispiele für weitere geeignete Polyolester sind die gegebenenfalls mit 1 bis 30 Mol Ethylenoxid umgesetzten Mono-, Di- und Triester von Trimethylolpropan oder Pentaerythrit mit Laurinsäure, Kokosfettsäure, Taigfettsäure, Palmitinsäure, Stearinsäure, Ölsäure, Behensäure und dergleichen. Anionische Emulgatoren
Typische anionische Emulgatoren sind aliphatische Fettsäuren mit 12 bis 22 Kohlenstoffatomen wie beispielsweise Palmitinsäure, Stearinsäure oder Behensäure sowie Dicarbonsäuren mit 12 bis 22 Kohlenstoffatomen wie beispielsweise Azelainsäure oder Sebacinsäure.
Amphothere und kationische Emulgatoren
Weiterhin können als Emulgatoren zwitterionische Tenside verwendet werden. Als zwitterionische Tenside werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine Carboxylat- und eine Sulfonatgruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N, N-dimethylam- moniumglycinate, beispielsweise das Kokosalkyldimethylammoniumgly-cinat, N-Acylaminopropyl-N,N- dimethylammonium-glycinate, beispielsweise das Kokosacylamino-propyldimethyl-ammoniumglycinat, und 2-Alkyl-3-carboxylmethyl-3-hydroxyethylimidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacylaminoethylhydroxy-ethylcarboxymethylglycinat. Besonders bevorzugt ist das unter der CTFA-Bezeichnung Cocamidopropyl Betaine bekannte Fettsäureamid-Derivat. Ebenfalls geeignete Emulgatoren sind ampholy-tische Tenside. Unter ampholytischen Tensiden werden solche oberflächenaktiven Verbindungen verstanden, die außer einer Cs/iβ-Alkyl- oder Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine -COOH- oder -Sθ3H-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N- Alkylglycine, N-Alkylpropionsäuren, N-Alkylaminobuttersäuren, N-Alkyliminodipropionsäuren, N-Hy- droxyethyl-N-alkylamidopropylglycine, N-Alkyltaurine, N-Alkylsarcosine, 2-Alkylaminopropionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 18 C-Atomen in der Alkylgruppe. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylaminopropionat, das Kokosacylaminoethylaminopropionat und das Ci∑ -Acylsarcosin. Schließlich kommen auch Kationtenside als Emulgatoren in Betracht, wobei solche vom Typ der Esterquats, vorzugsweise methylquaternierte Difettsäuretriethanolaminester- Salze, besonders bevorzugt sind.
Die erfindungsgemäßen Mittel können einzelne Emulgatoren oder Mischungen verschiedener Emulgatoren enthalten. Die Emulgatoren sind dabei insgesamt in Mengen von 1 bis 50 Gew.-%, vorzugsweise 5 bis 40 und insbesondere 10 bis 30 Gew.-% in den erfindungsgemäßen Mitteln enthalten. Weiterhin ist es bevorzugt, wenn das Mengenverhältnis von Verbindungen der Formel (I) zu den Emulgatoren im Beriech von 2 : 1 bis 1 :1 liegt. Bevorzugt sind solche Mittel, die 40 bis 80 Gew.-% Wasser, 10 bis 50 Gew.-% an Verbindungen der Formel (I) und 10 bis 30 Gew.-% an Emulgatoren enthalten. Tenside
Des weiteren können in den erfindungsgemäßen Mitteln Tenside enthalten sein. Diese sind ausgewählt aus der Gruppe der anionische, nichtionische, kationische und/oder amphotere bzw. zwitterionische Tenside. In tensidhaltigen kosmetischen Zubereitungen, wie beispielsweise Duschgelen, Schaumbädern, Shampoos etc. ist vorzugsweise wenigstens ein anionisches Tensid enthalten. Der Anteil der Tenside liegt hier üblicherweise bei etwa 1 bis 30, vorzugsweise 5 bis 25 und insbesondere 10 bis 20 Gew.-%.
Typische Beispiele für anionische Tenside sind Seifen, Alkylbenzolsulfonate, Alkansulfonate, Olefin- sulfonate, Alkylethersulfonate, Glycerinethersulfonate, -Methylestersulfonate, Sulfofettsäuren, Alkyl- sulfate, Fettalkoholethersulfate, Glycerinethersulfate, Fettsäureethersulfate, Hydroxymischethersulfate, Monoglycerid(ether)sulfate, Fettsäureamid(ether)sulfate, Mono- und Dialkylsulfosuccinate, Mono- und Dialkylsulfosuccinamate, Sulfotriglyceride, Amidseifen, Ethercarbonsäuren und deren Salze, Fettsäurei- sethionate, Fettsäuresarcosinate, Fettsäuretauride, N-Acylaminosäuren, wie beispielsweise Acyllacty- late, Acyltartrate, Acylglutamate und Acylaspartate, Alkyloligoglucosidsulfate, Proteinfettsäurekondensate (insbesondere pflanzliche Produkte auf Weizenbasis) und Alkyl(ether)phosphate. Sofern die anionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für nichtionische Tenside sind Fettalkoholpolyglycolether, Alkylphenolpolyglycolether, Fettsäurepolyglycolester, Fettsäureamid- polyglycolether, Fettaminpolyglycolether, alkoxylierte Triglyceride, Mischether bzw. Mischformale, gegebenenfalls partiell oxidierte Alk(en)yloligoglykoside bzw. Glucoronsäurederivate, Fettsäure-N-alkylglu- camide, Proteinhydrolysate (insbesondere pflanzliche Produkte auf Weizenbasis), Polyolfettsäureester, Zuckerester, Sorbitanester, Polysorbate und Aminoxide. Sofern die nichtionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für kationische Tenside sind quartäre Ammoniumverbindungen, wie beispielsweise das Dimethyldistearylammoniumchlorid, und Esterquats, insbesondere quaternierte Fettsäuretrialkanolaminestersalze. Typische Beispiele für amphotere bzw. zwitterionische Tenside sind Alkylbetaine, Alkylamidobetaine, Aminopropionate, Aminoglycinate, Imidazo- liniumbetaine und Sulfobetaine. Bei den genannten Tensiden handelt es sich ausschließlich um bekannte Verbindungen. Hinsichtlich Struktur und Herstellung dieser Stoffe sei auf einschlägige Übersichtsarbeiten auf diesem Gebiet verwiesen. Typische Beispiele für besonders geeignete milde, d. h. besonders hautverträgliche Tenside sind Fettalkoholpolyglycolethersulfate, Monoglyceridsulfate, Mono- und/oder Dialkylsulfosuccinate, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, Fettsäu- reglutamate, α-Olefinsulfonate, Ethercarbonsäuren, Alkyloligoglucoside, Fettsäureglucamide, Al- kylamidobetaine, Amphoacetale und/oder Proteinfettsäurekondensate, letztere vorzugsweise auf Basis von Weizenproteinen.
Körperpflegemittel, wie Cremes, Lotionen und Milchen, enthalten üblicherweise eine Reihe weiterer Ölkörper und Emollients, die dazu beitragen, die sensorischen Eigenschaften weiter zu optimieren. Die Ölkörper bzw. -phasen sind vorzugsweise in den erfindungsgemäßen, wässerigen Mitteln in einer Gesamtmenge von 1 - 50 Gew.-%, vorzugsweise 5 - 25 Gew.-% und insbesondere 5 - 15 Gew.-% enthalten.
Ölkörper
Als zusätzliche Ölkörper kommen weitere Verbindungen in Frage, beispielsweise Guerbetalkohole auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 Kohlenstoffatomen, Ester von linearenCβ- C22-Fettsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen bzw. Ester von verzweigten C6-C13- Carbonsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen, wie z. B. Myristylmyristat, Myristyl- palmitat, Myristylstearat, Myristylisostearat, Myristyloleat, Myristylbehenat, Myristylerucat, Cetylmyristat, Cetylpalmitat, Cetylstearat, Cetylisostearat, Cetyloleat, Cetylbehenat, Cetylerucat, Stearylmyristat, Stea- rylpalmitat, Stearylstearat, Stearylisostearat, Stearyloleat, Stearylbehenat, Stearylerucat, Isostearylmy- ristat, Isostearylpalmitat, Isostearylstearat, Isostearylisostearat, Isostearyloleat, Isostearylbehenat, I- sostearyloleat, Oleylmyristat, Oleylpalmitat, Oleylstearat, Oleylisostearat, Oleyloleat, Oleylbehenat, 0- leylerucat, Behenylmyristat, Behenylpalmitat, Behenylstearat, Behenylisostearat, Behenyloleat, Behe- nylbehenat, Behenylerucat, Erucylmyristat, Erucylpalmitat, Erucylstearat, Erucylisostearat, Eru-cyloleat, Erucylbehenat und Erucylerucat. Daneben eignen sich Ester von linearen Cθ-C∑∑-Fettsäuren mit verzweigten Alkoholen, insbesondere 2-Ethylhexanol, Ester von Ci8-C38-Alkylhydroxycarbonsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen, insbesondere Dioctyl Malate, Ester von linearen und/oder verzweigten Fettsäuren mit mehrwertigen Alkoholen (wie z. B. Propylenglycol, Dimerdiol oder Trimertriol) und/oder Guerbetalkoholen, Triglyceride auf Basis Cε-Cio-Fettsäuren, flüssige Mono-/Di- Triglyceridmischungen auf Basis von C6-Ci8-Fettsäuren, Ester von C6-C22-Fettalkoholen und/oder Guerbetalkoholen mit aromatischen Carbonsäuren, insbesondere Benzoesäure, Ester von C2-C12- Dicarbonsäuren mit linearen oder verzweigten Alkoholen mit 1 bis 22 Kohlenstoffatomen oder Polyolen mit 2 bis 10 Kohlenstoffatomen und 2 bis 6 Hydroxylgruppen, pflanzliche Öle, verzweigte primäre Alkohole, substituierte Cyclohexane, lineare und verzweigte C6-C22-Fettalkoholcarbonate, wie z. B. Dica- prylyl Carbonate (Cetiol® CC), Guerbetcarbonate auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 C Atomen, Ester der Benzoesäure mit linearen und/oder verzweigten C6-C22-Alkoholen (z. B. Finsolv® TN), lineare oder verzweigte, symmetrische oder unsymmetrische Dialkylether mit 6 bis 22 Kohlenstoffatomen pro Alkylgruppe, wie z. B. Dicaprylyl Ether (Cetiol® OE), Ringöffnungsprodukte von epoxidierten Fettsäureestern mit Polyolen, Siliconöle (Cyclomethicone, Siliciummethicontypen u.a.) und/oder aliphatische bzw. naphthenische Kohlenwasserstoffe, wie z. B. wie Squalan, Squalen oder Dialkylcyclohexane in Betracht.
Fette und Wachse
Fette und Wachse werden den Körperpflegeprodukten als Pflegestoffe zugesetzt und auch, um die Konsistenz der Kosmetika zu erhöhen. Typische Beispiele für Fette sind Glyceride, d. h. feste oder flüssige pflanzliche oder tierische Produkte, die im wesentlichen aus gemischten Glycerinestern höherer Fettsäuren bestehen. Auch Fettsäurepartialglyceride, d. h. technische Mono- und/oder Diester des Gly- cerins mit Fettsäuren mit 12 bis 18 Kohlenstoffatomen wie etwa Glyce nmono/dilaurat, -palmitat oder - stearat kommen hierfür in Frage. Als Wachse kommen u. a. natürliche Wachse, wie z. B. Candelilla- wachs, Carnaubawachs, Japanwachs, Espartograswachs, Korkwachs, Guarumawachs, Reiskeimöl- wachs, Zuckerrohrwachs, Ouricurywachs, Montanwachs, Bienenwachs, Schellackwachs, Walrat, Lanolin (Wollwachs), Bürzelfett, Ceresin, Ozokerit (Erdwachs), Petrolatum, Paraffinwachse, Mikrowachse; chemisch modifizierte Wachse (Hartwachse), wie z. B. Montanesterwachse, Sasolwachse, hydrierte Jojobawachse sowie synthetische Wachse, wie z. B. Polyalkylenwachse und Polyethylenglycolwachse in Frage. Neben den Fetten kommen als Zusatzstoffe auch fettähnliche Substanzen, wie Lecithine und Phospholipide in Frage. Unter der Bezeichnung Lecithine versteht der Fachmann diejenigen Glycero- Phospholipide, die sich aus Fettsäuren, Glycerin, Phosphorsäure und Cholin durch Veresterung bilden. Lecithine werden in der Fachwelt daher auch häufig als Phosphatidylcholine (PC) bezeichnet. Als Beispiele für natürliche Lecithine seien die Kephaline genannt, die auch als Phosphatidsäuren bezeichnet werden und Derivate der 1 ,2-Diacyl-sn-glycerin-3-phosphorsäuren darstellen. Dem gegenüber versteht man unter Phospholipiden gewöhnlich Mono- und vorzugsweise Diester der Phosphorsäure mit Glycerin (Glycerinphosphate), die allgemein zu den Fetten gerechnet werden. Daneben kommen auch Sphingo- sine bzw. Sphingolipide in Frage.
Perlqlanzwachse
Als Perlglanzwachse kommen beispielsweise in Frage: Alkylenglycolester, speziell Ethylenglycoldi- stearat; Fettsäurealkanolamide, speziell Kokosfettsäurediethanolamid; Partialglyceride, speziell Stea- rinsäuremonoglycerid; Ester von mehrwertigen, gegebenenfalls hydroxy-substituierte Carbonsäuren mit Fettalkoholen mit 6 bis 22 Kohlenstoffatomen, speziell langkettige Ester der Weinsäure; Fettstoffe, wie beispielsweise Fettalkohole, Fettketone, Fettaldehyde, Fettether und Fettcarbonate, die in Summe min- destens 24 Kohlenstoffatome aufweisen, speziell Lauron und Distearylether; Fettsäuren wie Stearinsäure, Hydroxystearinsäure oder Behensäure, Ringöffnungsprodukte von Olefinepoxiden mit 12 bis 22 Kohlenstoffatomen mit Fettalkoholen mit 12 bis 22 Kohlenstoffatomen und/oder Polyolen mit 2 bis 15 Kohlenstoffatomen und 2 bis 10 Hydroxylgruppen sowie deren Mischungen.
Konsistenzqeber und Verdickungsmittel
Als weitere Konsistenzgeber kommen in erster Linie Fettalkohole oder Hydroxyfettalkohole mit 12 bis 22 und vorzugsweise 16 bis 18 Kohlenstoffatomen und daneben Partialglyceride, Fettsäuren oder Hydro- xyfettsäuren in Betracht. Bevorzugt ist eine Kombination dieser Stoffe mit Alkyloligoglucosiden und/oder Fettsäure-N-methylglucamiden gleicher Kettenlänge und/oder Polyglycerinpoly-12-hydroxy-stearaten. Geeignete Verdickungsmittel sind beispielsweise Aerosil-Typen (hydrophile Kieselsäuren), Polysaccha- ride, insbesondere Xanthan-Gum, Guar-Guar, Agar-Agar, Alginate und Tylosen, Carboxymethyl- cellulose und Hydroxyethyl- und Hydroxypropylcellulose, ferner höhermolekulare Polyethylenglycolmo- no- und -diester von Fettsäuren, Polyacrylate, (z. B. Carbopole® und Pemulen-Typen von Goodrich; Synthalene® von Sigma; Keltrol-Typen von Kelco; Sepigel-Typen von Seppic; Salcare-Typen von Allied Colloids), Polyacrylamide, Polymere, Polyvinylalkohol und Polyvinylpyrrolidon. Als besonders wirkungsvoll haben sich auch Bentonite, wie z. B. Bentone® Gel VS-5PC (Rheox) erwiesen, bei dem es sich um eine Mischung aus Cyclopentasiloxan, Disteardimonium Hectoht und Propylencarbonat handelt. Weiter in Frage kommen Tenside, wie beispielsweise ethoxylierte Fettsäureglyceride, Ester von Fettsäuren mit Polyolen wie beispielsweise Pentaerythrit oder Trimethylolpropan, Fettalkoholethoxylate mit eingeengter Homologenverteilung oder Alkyloligoglucoside sowie Elektrolyte wie Kochsalz und Ammoniumchlorid.
Überfettungsmittel
Als Überfettungsmittel können Substanzen wie beipielsweise Lanolin und Lecithin sowie polyethoxy- lierte oder acylierte Lanolin- und Lecithinderivate, Polyolfettsäureester, Monoglyceride und Fettsäureal- kanolamide verwendet werden, wobei die letzteren gleichzeitig als Schaumstabilisatoren dienen.
Stabilisatoren
Als Stabilisatoren können Metallsalze von Fettsäuren, wie z. B. Magnesium-, Aluminium- und/oder
Zinkstearat bzw. -ricinoleat eingesetzt werden. Polymere
Geeignete kationische Polymere sind beispielsweise kationische Cellulosederivate, wie z. B. eine qua- ternierte Hydroxyethylcellulose, die unter der Bezeichnung Polymer JR 400® von Amerchol erhältlich ist, kationische Stärke, Copolymere von Diallylammoniumsalzen und Acrylamiden, quaternierte Vinyl- pyrrolidon/Vinylimidazol-Polymere, wie z. B. Luviquat® (BASF), Kondensationsprodukte von Poly- glycolen und Aminen, quaternierte Kollagenpolypeptide, wie beispielsweise Lauryldimonium Hydro- xypropyl Hydrolyzed Collagen (Lamequat®IJGrünau), quaternierte Weizenpolypeptide, Polyethyleni- min, kationische Siliconpolymere, wie z. B. Amodimethicone, Copolymere der Adipinsäure und Di- methylaminohydroxypropyldiethylentriamin (Cartaretine®/Sandoz), Copolymere der Acrylsäure mit Dimethyl-diallylammoniumchlorid (Merquat® 550/Chemviron), Polyaminopolyamide sowie deren vernetzte wasserlöslichen Polymere, kationische Chitinderivate wie beispielsweise quatemiertes Chitosan, gegebenenfalls mikrokristallin verteilt, Kondensationsprodukte aus Dihalogenalkylen, wie z. B. Dibrom- butan mit Bisdialkylaminen, wie z. B. Bis-Dimethylamino-1 ,3-propan, kationischer Guar-Gum, wie z. B. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 der Firma Celanese, quaternierte Ammoniumsalz- Polymere, wie z. B. Mirapol® A-15, Mirapol® AD-1 , Mirapol® AZ-1 der Firma Miranol.
Als anionische, zwitterionische, amphotere und nichtionische Polymere kommen beispielsweise Vinyl- acetat/Crotonsäure-Copolymere, Vinylpyrrolidon/Vinylacrylat-Copolymere, Vinylacetat/Butylmaleat/Iso- bomylacrylat-Copolymere, Methylvinylether/Maleinsäureanhydrid-Copolymere und deren Ester, unver- netzte und mit Polyolen vernetzte Polyacrylsäuren, Acrylamidopropyltrimethylammoniumchlorid/Acrylat- Copolymere, Octylacrylamid/Methylmeth-acrylat/tert. Butylaminoethylmethacrylat/2-Hydroxypropyl- methacrylat-Copolymere, Polyvinylpyrrolidon, Vinylpyrrolidon/Vinylacetat-Copolymere, Vinylpyrrolidon/ Dimethylaminoethylmethacrylat/Vinylcaprolactam-Terpolymere sowie gegebenenfalls derivatisierte Celluloseether und Silicone in Frage.
Siliconverbindungen
Neben den erfindungsgemäßen Verbindungen der Formel (I) können die erfindungsgemäßen Mittel noch weitere Silicium-haltigen Komponenten enthalten. Geeignete Siliconverbindungen sind beispielsweise Dimethylpolysiloxane, Methylphenylpolysiloxane, cyclische Silicone sowie amino-, fettsäure-, alkohol-, polyether-, epoxy-, fluor-, glykosid- und/oder alkyl-modifizierte Siliconverbindungen, die bei Raumtemperatur sowohl flüssig als auch harzförmig vorliegen können. Weiterhin geeignet sind Simethi- cone, bei denen es sich um Mischungen aus Dimethiconen mit einer durchschnittlichen Kettenlänge von 200 bis 300 Dimethylsiloxan-Einheiten und hydrierten Silicaten handelt. UV-Lichtschutzfilter und Antioxidantien
Unter UV-Lichtschutzfaktoren sind beispielsweise bei Raumtemperatur flüssig oder kristallin vorliegende organische Substanzen (Lichtschutzfilter) zu verstehen, die in der Lage sind, ultraviolette Strahlen zu absorbieren und die aufgenommene Energie in Form längerwelliger Strahlung, z. B. Wärme wieder abzugeben. UVB-Filter können öllöslich oder wasserlöslich sein. Als öllösliche Substanzen sind z. B. zu nennen:
> 3-Benzylidencampher bzw. 3-Benzylidennorcampher und dessen Derivate, z. B. 3-(4-Methylbenzy- liden)campher.
> 4-Aminobenzoesäurederivate, vorzugsweise 4-(Dimethylamino)benzoesäure-2-ethyl-hexylester, 4- (Dimethylamino)benzoesäure-2-octylester und 4-(Dimethylamino)benzoe-säureamylester
> Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure-2-ethylhexylester, 4-Methoxyzimtsäure-pro- pylester, 4-Methoxyzimtsäureisoamylester 2-Cyano-3,3-phenylzimtsäure-2-ethylhexylester (Octoc- rylene)
> Ester der Salicylsäure, vorzugsweise Salicylsäure-2-ethylhexylester, Salicylsäure-4-iso-propylben- zylester, Salicylsäurehomomenthylester
> Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4-methoxybenzophenon, 2-Hydroxy-4-me- thoxy-4'-methylbenzophenon, 2,2'-Dihydroxy-4-methoxybenzophenon
> Ester der Benzalmalonsäure, vorzugsweise 4-Methoxybenzmalonsäuredi-2-ethylhexyl-ester
> Triazinderivate, wie z. B. 2,4,6-Trianilino-(p-carbo-2'-ethyl-1'-hexyloxy)-1 ,3,5-triazin und Octyl- Tria- zon, oder Dioctyl Butamido Triazone (Uvasorb® HEB)
> Propan-1 ,3-dione, wie z. B. 1-(4-tert.Butylphenyl)-3-(4'methoxyphenyl)propan-1 ,3-dion
> Ketotricyclo(5.2.1.0)decan-Derivate.
Als wasserlösliche Substanzen kommen in Frage:
> 2-Phenylbenzimidazol-5-sulfonsäure und deren Alkali-, Erdalkali-, Ammonium-, Alkylammonium-, Alkanolammonium- und Glucammoniumsalze
> Sulfonsäurederivate von Benzophenonen, vorzugsweise 2-Hydroxy-4-methoxybenzo-phenon-5- sulfonsäure und ihre Salze
> Sulfonsäurederivate des 3-Benzylidencamphers, wie z. B. 4-(2-Oxo-3-bornylidenmethyl) benzolsul- fonsäure und 2-Methyl-5-(2-oxo-3-bomyliden)sulfonsäure und deren Salze.
Als typische UV-A-Filter kommen insbesondere Derivate des Benzoylmethans in Frage, wie beispielsweise 1-(4'-tert.Butylphenyl)-3-(4'-methoxyphenyl)propan-1 ,3-dion, 4-tert.-Butyl-4'-methoxy-dibenzoyl- methan (Parsol® 1789), 1 -Phenyl-3-(4'-isopropylphenyl)-propan-1 ,3-dion sowie Enaminverbindungen, wie beschrieben in der DE 19712033 A1 (BASF). Die UV-A und UV-B-Filter können selbstverständlich auch in Mischungen eingesetzt werden. Besonders günstige Kombinationen bestehen aus den Derivate des Benzoylmethans,, z. B. 4-tert.-Butyl-4'-methoxydibenzoylmethan (Parsol® 1789) und 2-Cyano-3,3- phenylzimtsäure-2-ethyl-hexylester (Octocrylene) in Kombination mit Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure-2-ethylhexylester und/oder 4-Methoxyzimtsäurepropylester und/oder 4- Methoxyzimtsäureisoamylester. Vorteilhaft werden derartige Kombinationen mit wasserlöslichen Filtern wie z. B. 2-Phenylbenzimidazol-5-sulfonsäure und deren Alkali-, Erdalkali-, Ammonium-, Alkylammoni- um-, Alkanolammonium- und Glucammoniumsalze kombiniert.
Neben den genannten löslichen Stoffen kommen für diesen Zweck auch unlösliche Lichtschutzpigmente, nämlich feindisperse Metalloxide bzw. Salze in Frage. Beispiele für geeignete Metalloxide sind insbesondere Zinkoxid und Titandioxid und daneben Oxide des Eisens, Zirkoniums, Siliciums, Mangans, Aluminiums und Cers sowie deren Gemische. Als Salze können Silicate (Talk), Bariumsulfat oder Zinkstearat eingesetzt werden. Die Oxide und Salze werden in Form der Pigmente für hautpflegende und hautschützende Emulsionen und dekorative Kosmetik verwendet. Die Partikel sollten dabei einen mittleren Durchmesser von weniger als 100 nm, vorzugsweise zwischen 5 und 50 nm und insbesondere zwischen 15 und 30 nm aufweisen. Sie können eine sphärische Form aufweisen, es können jedoch auch solche Partikel zum Einsatz kommen, die eine ellipsoide oder in sonstiger Weise von der sphärischen Gestalt abweichende Form besitzen. Die Pigmente können auch oberflächenbehandelt, d. h. hydrophilisiert oder hydrophobiert vorliegen. Typische Beispiele sind gecoatete Titandioxide, wie z. B. Titandioxid T 805 (Degussa) oder Eusolex® T2000 (Merck). Als hydrophobe Coatingmittel kommen dabei vor allem Silicone und dabei speziell Trialkoxyoctylsilane oder Simethicone in Frage. In Sonnenschutzmitteln werden bevorzugt sogenannte Mikro- oder Nanopigmente eingesetzt. Vorzugsweise wird mikronisiertes Zinkoxid verwendet.
Neben den beiden vorgenannten Gruppen primärer Lichtschutzstoffe können auch sekundäre Lichtschutzmittel vom Typ der Antioxidantien eingesetzt werden, die die photochemische Reaktionskette unterbrechen, welche ausgelöst wird, wenn UV-Strahlung in die Haut eindringt. Typische Beispiele hierfür sind Aminosäuren (z. B. Glycin, Histidin, Tyrosin, Tryptophan) und deren Derivate, Imidazole (z. B. Urocaninsäure) und deren Derivate, Peptide wie D,L-Camosin, D-Camosin, L-Carnosin und deren Derivate (z. B. Anserin), Carotinoide, Carotine (z. B. α-Carotin, ß-Carotin, Lycopin) und deren Derivate, Chlorogensäure und deren Derivate, Liponsäure und deren Derivate (z. B. Dihydroliponsäure), Auro- thioglucose, Propylthiouracil und andere Thiole (z. B. Thioredoxin, Glutathion, Cystein, Cystin, Cystamin und deren Glycosyl-, N-Acetyl-, Methyl-, Ethyl-, Propyl-, Amyl-, Butyl- und Lauryl-, Palmitoyl-, Oleyl-, γ- Linoleyl-, Cholesteryl- und Glycerylester) sowie deren Salze, Dilaurylthiodipropionat, Distearylthiodipro- pionat, Thiodipropionsäure und deren Derivate (Ester, Ether, Peptide, Lipide, Nukleotide, Nukleoside und Salze) sowie Sulfoximinverbindungen (z. B. Buthioninsulfoximine, Homocysteinsulfoximin, Butionin- sulfone, Penta-, Hexa-, Heptathioninsulfoximin) in sehr geringen verträglichen Dosierungen (z. B. pmol bis μmol/kg), ferner (Metall)-Chelatoren (z. B. α-Hydroxyfettsäuren, Palmitinsäure, Phytinsäure, Lac- toferrin), α-Hydroxysäuren (z. B. Citronensäure, Milchsäure, Äpfelsäure), Huminsäure, Gallensäure, Gallenextrakte, Bilirubin, Biliverdin, EDTA, EGTA und deren Derivate, ungesättigte Fettsäuren und deren Derivate (z. B. γ-Linolensäure, Linolsäure, Ölsäure), Folsäure und deren Derivate, Ubichinon und Ubichinol und deren Derivate, Vitamin C und Derivate (z. B. Ascorbylpalmitat, Mg-Ascorbylphosphat, Ascorbylacetat), Tocopherole und Derivate (z. B. Vitamin-E-acetat), Vitamin A und Derivate (Vitamin-A- palmitat) sowie Koniferylbenzoat des Benzoeharzes, Rutinsäure und deren Derivate, α-Glycosylrutin, Ferulasäure, Furfurylidenglucitol, Carnosin, Butylhydroxytoluol, Butylhydroxyanisol, Nordihydroguajak- harzsäure, Nordihydroguajaretsäure, Trihydroxybutyrophenon, Harnsäure und deren Derivate, Mannose und deren Derivate, Superoxid-Dismutase, Zink und dessen Derivate (z. B. ZnO, ZnS0 ) Selen und dessen Derivate (z. B. Selen-Methionin), Stilbene und deren Derivate (z. B. Stilbenoxid, trans-Stil- benoxid) und die erfindungsgemäß geeigneten Derivate (Salze, Ester, Ether, Zucker, Nukleotide, Nukleoside, Peptide und Lipide) dieser genannten Wirkstoffe.
Bioqene Wirkstoffe
Unter biogenen Wirkstoffen sind beispielsweise Tocopherol, Tocopherolacetat, Tocopherolpalmitat, Ascorbinsäure, (Desoxy)Ribonucleinsäure und deren Fragmentierungsprodukte, ß-Glucane, Retinol, Bisabolol, Allantoin, Phytantriol, Panthenol, AHA-Säuren, Aminosäuren, Ceramide, Pseudoceramide, essentielle Öle, Pflanzenextrakte, wie z. B. Prunusextrakt, Bambaranussextrakt und Vitaminkomplexe zu verstehen.
Deodorantien und keimhemmende Mittel
Kosmetische Deodorantien (Desodorantien) wirken Körpergerüchen entgegen, überdecken oder beseitigen sie. Körpergerüche entstehen durch die Einwirkung von Hautbakterien auf apokrinen Schweiß, wobei unangenehm riechende Abbauprodukte gebildet werden. Dementsprechend enthalten Deodorantien Wirkstoffe, die als keimhemmende Mittel, Enzyminhibitoren, Geruchsabsorber oder Geruchsüber- decker fungieren. Keimhemmende Mittel
Als keimhemmende Mittel sind grundsätzlich alle gegen grampositive Bakterien wirksamen Stoffe geeignet, wie z. B. 4-Hydroxybenzoesäure und ihre Salze und Ester, N-(4-Chlorphenyl)-N'-(3,4- dichlorphenyl)hamstoff, 2,4,4 '-Trichlor-2'-hydroxy-diphenylether (Triclosan), 4-Chlor-3,5-dimethyl- phenol, 2,2'-Methylen-bis(6-brom-4-chlorphenol), 3-Methyl-4-(1-methylethyl)-phenol, 2-Benzyl-4- chlorphenol, 3-(4-Chlorphenoxy)-1 ,2-propandiol, 3-lod-2-propinylbutylcarbamat, Chlorhexidin, 3,4,4'-Trichlorcarbanilid (TTC), antibakterielle Riechstoffe, Thymol, Thymianöl, Eugenol, Nelkenöl, Menthol, Minzöl, Famesol, Phenoxyethanol, Glycerinmonocaprinat, Glycerinmonocaprylat, Glyce- rinmonolaurat (GML), Diglycerinmonocaprinat (DMC), Salicylsäure-N-alkylamide wie z. B. Salicyl- säure-n-octylamid oder Salicylsäure-n-decylamid.
> Enzyminhibitoren
Als Enzyminhibitoren sind beispielsweise Esteraseinhibitoren geeignet. Hierbei handelt es sich vorzugsweise um Trialkylcitrate wie Trimethylcitrat, Tripropylcitrat, Triisopropylcitrat, Tributylcitrat und insbesondere Triethylcitrat (Hydagen® CAT). Die Stoffe inhibieren die Enzymaktivität und reduzieren dadurch die Geruchsbildung. Weitere Stoffe, die als Esteraseinhibitoren in Betracht kommen, sind Sterolsulfate oder -phosphate, wie beispielsweise Lanosterin-, Cholesterin-, Campesterin-, Stigmasterin- und Sitosterinsulfat bzw -phosphat, Dicarbonsäuren und deren Ester, wie beispielsweise Giutarsäure, Glutarsäuremonoethylester, Glutarsäurediethylester, Adipinsäure, Adipinsäu- remonoethylester, Adipinsäurediethylester, Malonsäure und Malonsäurediethylester, Hydroxycarbonsäuren und deren Ester wie beispielsweise Citronensäure, Äpfelsäure, Weinsäure oder Wein- säurediethylester, sowie Zinkglycinat.
> Geruchsabsorber
Als Geruchsabsorber eignen sich Stoffe, die geruchsbildende Verbindungen aufnehmen und weitgehend festhalten können. Sie senken den Partialdruck der einzelnen Komponenten und verringern so auch ihre Ausbreitungsgeschwindigkeit. Wichtig ist, dass dabei Parfüms unbeeinträchtigt bleiben müssen. Geruchsabsorber haben keine Wirksamkeit gegen Bakterien. Sie enthalten beispielsweise als Hauptbestandteil ein komplexes Zinksalz der Ricinolsäure oder spezielle, weitgehend geruchsneutrale Duftstoffe, die dem Fachmann als "Fixateure" bekannt sind, wie z. B. Extrakte von Labdanum bzw. Styrax oder bestimmte Abietinsäurederivate. Als Geruchsüberdecker fungieren Riechstoffe oder Parfümöle, die zusätzlich zu ihrer Funktion als Geruchsüberdecker den Deodorantien ihre jeweilige Duftnote verleihen. Als Parfümöle seien beispielsweise genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten, Stengeln und Blättern, Früchten, Fruchtschalen, Wurzeln, Hölzern, Kräutern und Gräsern, Nadeln und Zweigen sowie Harzen und Balsamen. Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z. B. Benzylacetat, p-tert.-Butylcyclohexylacetat, Linaly- lacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Allylcyclohexylpropionat, Styrallylpropio- nat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z. B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetal- dehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z. B. die Jo- none und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z. B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeren- öl, Vetiveröl, Olibanöl, Galbanumöl, Labdanumöl und Lavandinöl. Vorzugsweise werden Berga- motteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, ß-Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Fixolide NP, Evernyl, Iraldein gamma, Phenylessigsaure, Geranylacetat, Benzylacetat, Rosenoxid, Romilat, Irotyl und Floramat allein oder in Mischungen, eingesetzt.
Antitranspirantien
Antitranspirantien (Antiperspirantien) reduzieren durch Beeinflussung der Aktivität der ekkrinen Schweißdrüsen die Schweißbildung, und wirken somit Achselnässe und Körpergeruch entgegen. Wässrige oder wasserfreie Formulierungen von Antitranspirantien enthalten typischerweise folgende Inhaltsstoffe:
> adstringierende Wirkstoffe
> Ölkomponenten > nichtionische Emulgatoren
> Coemulgatoren
> Konsistenzgeber
> Hilfsstoffe wie z. B. Verdicker oder Komplexierungsmittel und/oder
> nichtwässrige Lösungsmittel wie z. B. Ethanol, Propylenglykol und/oder Glycerin.
Als adstringierende Antitranspirant-Wirkstoffe eignen sich vor allem Salze des Aluminiums, Zirkoniums oder des Zinks. Solche geeigneten antihydrotisch wirksamen Wirkstoffe sind z. B. Aluminiumchlorid, Aluminiumchlorhydrat, Aluminiumdichlorhydrat, Aluminiumsesquichlorhydrat und deren Komplexverbindungen z. B. mit Propylenglycol-1 ,2. Aluminiumhydroxyallantoinat, Aluminiumchlo- ridtartrat, Aluminium-Zirkonium-Trichlorohydrat, Aluminium-Zirkonium-tetrachlorofiydrat, Alumini- um-Zirkonium-pentachlorohydrat und deren Komplexverbindungen z. B. mit Aminosäuren wie Gly- cin. Daneben können in Antitranspirantien übliche öllösliche und wasserlösliche Hilfsmittel in geringeren Mengen enthalten sein.
Solche öllöslichen Hilfsmittel können z. B. sein: entzündungshemmende, hautschützende oder wohlriechende ätherische Öle
> synthetische hautschützende Wirkstoffe und/oder
> öllösliche Parfümöle.
Übliche wasserlösliche Zusätze sind z. B. Konservierungsmittel, wasserlösliche Duftstoffe, pH-Wert- Stellmittel, z. B. Puffergemische, wasserlösliche Verdickungsmittel, z. B. wasserlösliche natürliche oder synthetische Polymere wie z. B. Xanthan-Gum, Hydroxyethylcellulose, Polyvinylpyrrolidon oder hochmolekulare Polyethylenoxide.
Filmbildner
Gebräuchliche Filmbildner sind beispielsweise Chitosan, mikrokristallines Chitosan, quaterniertes Chito- san, Polyvinylpyrrolidon, Vinylpyrrolidon-Vinylacetat-Copolymerisate, Polymere der Acrylsäurereihe, quaternäre Cellulose-Derivate, Kollagen, Hyaluronsäure bzw. deren Salze und ähnliche Verbindungen.
Antischuppenwirkstoffe
Als Antischuppenwirkstoffe kommen Pirocton Olamin (1-Hydroxy-4-methyl-6-(2,4,4-trimythylpentyl)-2-
(I H)-pyridinonmonoethanolaminsalz), Baypival® (Climbazole), Ketoconazol®, (4-Acety I- 1 - { -4-[2-(2.4- dichlorphenyl) r-2-(1 H-imidazol-1-ylmethyl)-1 ,3-dioxylan-c-4-ylmethoxyphenyl}piperazin, Ketoconazol, Elubiol, Selendisulfid, Schwefel kolloidal, Schwefelpolyehtylenglykolsorbitanmonooleat, Schwefelrizinol- polyehtoxylat, Schwfel-teer Destillate, Salicylsäure (bzw. in Kombination mit Hexachlorophen), Undexy- lensäure Monoethanolamid Sulfosuccinat Na-Salz, Lamepon® UD (Protein-Undecylensäurekon- densat), Zinkpyrithion, Aluminiumpyrithion und Magnesiumpyrithion / Dipyrithion-Magnesiumsulfat in Frage.
Quellmittel
Als Quellmittel für wässrige Phasen können Montmorillonite, Clay Mineralstoffe, Pemulen sowie alkyl- modifizierte Carbopoltypen (Goodrich) dienen.
Insekten-Repellentien
Als Insekten-Repellentien kommen beispielsweise N,N-Diethyl-m-toluamid, 1 ,2-Pentandiol oder 3-(N-n- Butyl-N-acetyl-amino)-propionic acid-ethyl ester), welches unter der Bezeichnung Insect Repellent® 3535 von der Merck KGaA vertrieben wird, sowie Butylacetylaminopropionate in Frage.
Selbstbräuner und Depiqmentierungsmittel
Als Selbstbräuner eignet sich Dihydroxyaceton. Als Tyrosinhinbitoren, die die Bildung von Melanin verhindern und Anwendung in Depigmentierungsmitteln finden, kommen beispielsweise Arbutin, Ferula- säure, Kojisäure, Cumarinsäure und Ascorbinsäure (Vitamin C) in Frage.
Hydrotrope
Zur Verbesserung des Fließverhaltens können ferner Hydrotrope, wie beispielsweise Ethanol, Isopro- pylalkohol, oder Polyole eingesetzt werden. Polyole, die hier in Betracht kommen, besitzen vorzugsweise 2 bis 15 Kohlenstoffatome und mindestens zwei Hydroxylgruppen. Die Polyole können noch weitere funktioneile Gruppen, insbesondere Aminogruppen, enthalten bzw. mit Stickstoff modifiziert sein. Typische Beispiele sind:
> Glycerin
> Alkylenglycole, wie beispielsweise Ethylenglycol, Diethylenglycol, Propylenglycol, Butylenglycol, Hexylenglycol sowie Polyethylenglycole mit einem durchschnittlichen Molekulargewicht von 100 bis 1.000 Dalton > technische Oligoglyceringemische mit einem Eigenkondensationsgrad von 1,5 bis 10 wie etwa technische Diglyceringemische mit einem Diglyceringehalt von 40 bis 50 Gew.-%
> Methyolverbindungen, wie insbesondere Trimethylolethan, Trimethylolpropan, Trimethylolbutan, Pentaerythrit und Dipentaerythrit
> Niedrigalkylglucoside, insbesondere solche mit 1 bis 8 Kohlenstoffen im Alkylrest, wie beispielsweise Methyl- und Butylglucosid
> Zuckeralkohole mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Sorbit oder Mannit
> Zucker mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Glucose oder Saccharose
> Aminozucker, wie beispielsweise Glucamin
> Dialkoholamine, wie Diethanolamin oder 2-Amino-1 ,3-propandiol.
Konservierungsmittel
Als Konservierungsmittel eignen sich beispielsweise Phenoxyethanol, Formaldehydlösung, Parabene, Pentandiol oder Sorbinsäure sowie die unter der Bezeichnung Surfacine® bekannten Silberkomplexe und die in Anlage 6, Teil A und B der Kosmetikverordnung aufgeführten weiteren Stoffklassen.
Parfümöle und Aromen
Als Parfümöle seien genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten (Lilie, Lavendel, Rosen, Jasmin, Neroli, Ylang-Ylang), Stengeln und Blättern (Geranium, Patchouli, Petitgrain), Früchten (Anis, Koriander, Kümmel, Wacholder), Fruchtschalen (Bergamotte, Zitrone, Orangen), Wurzeln (Macis, Angelica, Sellerie, Kardamon, Costus, Iris, Calmus), Hölzern (Pinien-, Sandel-, Guajak-, Zedern-, Rosenholz), Kräutern und Gräsern (Estragon, Lemongras, Salbei, Thymian), Nadeln und Zweigen (Fichte, Tanne, Kiefer, Latschen), Harzen und Balsamen (Galbanum, Elemi, Benzoe, Myrrhe, Olibanum, Opoponax). Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z. B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Bu- tylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzyl- salicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z. B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z. B. die Jonone, α-lsomethylionon und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Bal- same. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z. B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanu- möl, Labolanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, ß-Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iraldein gamma, Phenylessigsaure, Geranylacetat, Benzylacetat, Rosenoxid, Romilllat, Irotyl und Floramat allein oder in Mischungen, eingesetzt.
Als Aromen kommen beispielsweise Pfefferminzöl, Krauseminzöl, Anisöl, Stemanisöl, Kümmelöl, Eukalyptusöl, Fenchelöl, Citronenöl, Wintergrünöl, Nelkenöl, Menthol und dergleichen in Frage.
Farbstoffe
Als Farbstoffe können die für kosmetische Zwecke geeigneten und zugelassenen Substanzen verwendet werden. Beispiele sind Kochenillerot A (C.l. 16255), Patentblau V (C.1.42051), Indigotin (C.1.73015), Chlorophyllin (C.1.75810), Chinolingelb (C.I.47005), Titandioxid (C.1.77891), Indanthrenblau RS (C.l. 69800) und Krapplack (C.I.58000). Als Lumineszenzfarbstoff kann auch Luminol enthalten sein. Diese Farbstoffe werden üblicherweise in Konzentrationen von 0,001 bis 0,1 Gew.-%, bezogen auf die gesamte Mischung, eingesetzt.
Die Herstellung der kosmetischen Mittel kann auf allen dem Fachmann bekanten Wegen geschehen. Die erfindungsgemäßen Verbindungen der Formel (I) sind allerdings selbstemulgierend, d.h. es kann durch einfaches mechanisches Vermischen von Öl- und Wasserphase, ggf. bei Zusatz geeigneter E- mulgatoren eine stabile Emulsion hergestellt werden. Die erfindungsgemäßen Mittel können dabei als O/W oder als W/O-Emulsion ausgebildet sein. Die Verbindungen der Formel (I) weisen teilweise sehr geringe Brookfield-Viskositäten auf (kleiner/gleich 10 mPa s), und sind so zur Verwendung in kosmetischen Mittel besonders bevorzugt.
Ein weiterer Aspekt der vorliegenden Lehre betrifft die Verwendung der Verbindungen der Formel (I) in nicht-wässerigen kosmetischen Zubereitungen, vorzugsweise in Haut-, Pflege- und Babyölen. Solche Mittel enthalten entweder nur die Ölkomponente alleine, vorzugsweise aber in Abmischung mit niederen Alkoholen R"-OH, in denen R für einen Alkylrest mit 1 bis 6 C-Atomen steht. Vorzugsweise wird Ethanol und/oder Propanol bzw. Isopropanol mitverwendet. Das Gewichtsverhältnis von Verbindungen der Formel (I) zu den niederen Alkoholen liegt im Bereich von 75 : 25 bis 95 : 5 und vorzugsweise von 80 : 20 bis 90 : 10. Bei der Verwendung in Haut-, Pflege- und Babyölen können noch weitere, dem Fachmann bekannte Inhaltsstoffe für derartige Mittel mitverwendet werden, beispielsweise pflegende Pflanzenextrakte, vorzugsweise Aloe Vera, andere Hautpflegende Sunstanzen, beispielsweise To- copherolacetat, Vitamine oder Parfümöle. Weiterhin kann es vorteilhaft sein, die Verbindungen der Formel (I) mit anderen Ölkörpern zu nicht-wässerigen Formulierungen zu mischen. Dazu eignen sich neben den oben in diesem Absatz bezeichneten Alkoholen alle anderen dem Fachmann bekannten Ölkörper oder Emollients. Insbesondere auch die weiter oben im Text aufgeführten Verbindungen im Abschnitt "Ölkörper". Vorteilhaft kann insbesondere auch die Mitverwendung von Mineralölen sein. Dabei können diese Mischungen die Verbindungen der Formel (I) im Mengenverhältnis mit den anderen Ölphasen von 99 : 1 bis 1 : 99 enthalten, vorzugsweise von 80 : 20 bis 20 : 80 und insbesondere 50 : 50. Nicht-wässerige Formulierungen bedeutet dabei, daß nur geringe Mengen an Wasser, wie sie durch die Rohstoffe eingebracht werden, enthalten sind. Typischerweise bedeutet das 0,01 bis maximal 2 Gew.-% Wasser in den jeweiligen Formulierungen, vorzugsweise 0,1 bis 1 ,0 Gew.-% und insbesondere weniger als 0,5 Gew.-% Wasser.
Die Lehre der vorliegenden Anmeldung umfasst daher allgemein die Verwendung der Verbindungen gemäß Formel (I) zur Pflege der menschlichen Haut.
Beispiel
Es wurden vier O/W-Emulsionen hergestellt, deren Olphasen jeweils die folgende Zusammensetzung aufwiesen:
5,0g erfindungsgemäße Verbindung gemäß Formel (I), in der R' für Methyl und R jeweils für eine Butyloctanoyl-Rest (C12) steht.
5,0g Emulgator Dioctylether (Cetiol OE, Fa. Cognis)
0,6g Emulgator Cetylstearylalkohol+20-EO (Eumulgin B2, Fa. Cognis)
Zur Herstellung einer Emulsion und gleichzeitig zur Einstellung des pH-Wertes wurde jeweils 10 g einer wässerigen Pufferlösung zugegeben, wobei für die vier unterschiedlichen Emulsionen pH-Werte von 3, 5, 7 und 11 eingestellt werden konnten. Anschließend wurden die Emulsionen homogenisiert und bei 40°C gelagert. Die vier Emulsionen erwiesen sich bei Lagerung über 50 Tage als stabil. Eine Phasentrennung wurde nicht beobachtet.

Claims

Patentansprüche
1. Kosmetisches Mittel, enthaltend eine wässerige und eine Olphase, dadurch gekennzeichnet, daß die Olphase vollständig oder teilweise Verbindungen der allgemeinen Formel (I)
RO-Si(R')2-OR (I)
enthält in der R für einen verzweigten oder unverzweigten, gesättigten oder ungesättigten Alkyl- bzw. Alkenylrest mit 8 bis 22 C-Atomen bedeutet und R' für einen Alkylrest mit 1 bis 4 C-Atomen steht.
2. Mittel nach Anspruch 1 , dadurch gekennzeichnet, daß R' in der Formel (I) für einen Methylrest steht.
3. Mittel nach den Ansprüchen 1 bis 2, dadurch gekennzeichnet, daß R in der Formel (I) für verzweigte Alkylreste steht.
4. Mittel nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß R in der Formel (I) für einen Alkyl- bzw. Alkenylrest mit 8 bis 22, vorzugsweise 10 bis 16 und insbesondere mit 12 bis 14 C- Atomen steht.
5. Mittel nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß R in der Formel (I) für einen Butyloctanoylrest steht.
6. Mittel nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß es 99 bis 50 Gew.-% Wasser und 1 bis 50 Gew.-% der Olphase enthält.
7. Mittel nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß es als W/O oder als O/W- Emulsion vorliegt.
8. Mittel nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß es zusätzlich Emulgatoren enthält.
. Mittel nach den Ansprüchen 1 bis 8, dadurch gekennzeichnet, daß es Emulgatoren in Mengen von 1 bis 50 Gew.-%, vorzugsweise 5 bis 40 und insbesondere 10 bis 30 Gew.-% enthält.
10. Mittel nach den Ansprüchen 1 bis 9, dadurch gekennzeichnet, daß es 40 bis 80 Gew.-% Wasser, 10 bis 50 Gew.-% an Verbindungen der Formel (I) und 10 bis 30 Gew.-% an Emulgatoren enthält.
11. Mittel nach den Ansprüchen 1 bis 10, dadurch gekennzeichnet, daß es die Verbindungen der Formel (I) und die Emulgatoren im Mengenverhältnis von 2 :1 bis 1 : 1 enthält.
12. Verwendung von Verbindungen der Formel (I) gemäß Anspruch 1 als Olphase in kosmetischen wässerigen Mitteln.
13. Verwendung von Verbindungen der Formel (I) in nicht-wässerigen Hautpflegemitteln.
14. Verwendung nach Anspruch 13, dadurch gekennzeichnet, daß die Verbindungen der Formel (I) in Abmischung mit niederen Alkoholen, vorzugsweise Ethanol und /oder Isopropanol verwendet werden.
15. Verwendung nach den Ansprüchen 13 und 14, dadurch gekennzeichnet, daß Mischung von Verbindungen der Formel (I) und niederen Alkoholen im Gewichtsverhältnis 75 : 25 bis 95 : 5, vorzugsweise 80 : 20 bis 90 : 10 eingesetzt werden.
16. Verwendung nach Anspruch 13, dadurch gekennzeichnet, daß die Verbindungen der Formel (I) in Abmischung mit anderen Ölkörpern eingesetzt werden.
17. Verwendung nach Anspruch 16, dadurch gekennzeichnet, daß man die Verbindungen der Formel (I) mit anderen Ölkörpern im Gewichtsverhältnis von 99 : 1 bis 1 : 99 einsetzt, vorzugsweise in einem Gewichtsverhältnis von 80 : 20 bis 20 : 80 und insbesondere 50 : 50.
18. Verwendung von Verbindungen der Formel (I) zur Pflege der menschlichen Haut.
EP03706611A 2002-03-21 2003-03-12 ÖLPHASEN FüR KOSMETISCHE MITTEL Withdrawn EP1485061A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10212528A DE10212528A1 (de) 2002-03-21 2002-03-21 Ölphasen für kosmetische Mittel
DE10212528 2002-03-21
PCT/EP2003/002508 WO2003080013A1 (de) 2002-03-21 2003-03-12 Ölphasen für kosmetische mittel

Publications (1)

Publication Number Publication Date
EP1485061A1 true EP1485061A1 (de) 2004-12-15

Family

ID=27798000

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03706611A Withdrawn EP1485061A1 (de) 2002-03-21 2003-03-12 ÖLPHASEN FüR KOSMETISCHE MITTEL

Country Status (6)

Country Link
US (1) US20060008482A1 (de)
EP (1) EP1485061A1 (de)
JP (1) JP2005526782A (de)
AU (1) AU2003208705A1 (de)
DE (1) DE10212528A1 (de)
WO (1) WO2003080013A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007055595A1 (de) 2007-11-20 2009-05-28 Cognis Oleochemicals Gmbh Verfahren zur Herstellung einer organischen Zusammensetzung beinhaltend einen N-Nonylester
DE102007055594A1 (de) 2007-11-20 2009-05-28 Cognis Oleochemicals Gmbh Verfahren zur Herstellung einer organischen Zusammensetzung beinhaltend einen N-Nonylether
DE102009060881A1 (de) 2009-12-30 2011-07-07 Emery Oleochemicals GmbH, 40589 Wärmetauscher in Verfahren und Vorrichtung zur Herstellung eines Esters
WO2011079952A2 (en) 2009-12-30 2011-07-07 Emery Oleochemicals Gmbh Catalyst system for the preparation of an ester and processes employing this ester
DE102009060851A1 (de) 2009-12-30 2011-07-07 Emery Oleochemicals GmbH, 40589 Esterherstellung mit Nachbehandlung

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2410587T3 (es) * 2004-01-22 2013-07-02 University Of Miami Formulaciones tópicas de coenzima Q10 y métodos de uso
EP2136787B1 (de) 2007-03-22 2019-08-21 Berg LLC Topische formulierungen mit erhöhter bioverfügbarkeit
US20100300694A1 (en) * 2007-11-20 2010-12-02 Anja Vonderhagen Method for producing an organic composition containing an n-nonyl ether
US20100294501A1 (en) * 2007-11-20 2010-11-25 Peter Daute Process for the preparation of an organic composition comprising an n-nonyl ester
CN103462896A (zh) 2008-04-11 2013-12-25 细胞研究有限公司 诱导癌细胞凋亡的方法和应用
WO2010132479A2 (en) 2009-05-11 2010-11-18 Cytotech Labs, Llc Methods for the diagnosis of metabolic disorders using epimetabolic shifters, multidimensional intracellular molecules, or environmental influencers
PL2480090T3 (pl) 2009-09-24 2014-04-30 Unilever Nv Środek dezynfekujący zawierający eugenol, terpineol oraz tymol
SG10202010355PA (en) 2010-03-12 2020-11-27 Berg Llc Intravenous formulations of coenzyme q10 (coq10) and methods of use thereof
CN103354741B (zh) 2010-12-07 2016-01-13 荷兰联合利华有限公司 口腔护理组合物
CA2832324C (en) 2011-04-04 2022-03-15 Berg Llc Methods of treating central nervous system tumors
EA201490047A1 (ru) 2011-06-17 2014-08-29 Берг Ллк Ингаляционные фармацевтические композиции
WO2013064360A2 (en) 2011-11-03 2013-05-10 Unilever N.V. A personal cleaning composition
US9655821B2 (en) 2013-04-05 2017-05-23 The Procter & Gamble Company Personal care composition comprising a pre-emulsified formulation
KR102279451B1 (ko) 2013-04-08 2021-07-19 버그 엘엘씨 코엔자임 q10 병용 요법을 이용한 암 치료
KR102370843B1 (ko) 2013-09-04 2022-03-04 버그 엘엘씨 코엔자임 q10의 연속주입에 의한 암치료 방법
US10806688B2 (en) 2014-10-03 2020-10-20 The Procter And Gamble Company Method of achieving improved volume and combability using an anti-dandruff personal care composition comprising a pre-emulsified formulation
US9993404B2 (en) 2015-01-15 2018-06-12 The Procter & Gamble Company Translucent hair conditioning composition
WO2017127344A1 (en) 2016-01-20 2017-07-27 The Procter & Gamble Company Hair conditioning composition comprising monoalkyl glyceryl ether

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1046259B (de) * 1956-04-23 1958-12-11 Wella Ag Verfahren zur Herstellung therapeutisch anwendbarer schwefelhaltiger Praeparate
US3554910A (en) * 1968-10-17 1971-01-12 Dow Corning Organosilane mold lubricants
DE2118378A1 (de) * 1971-04-15 1972-11-09
ES2246501T3 (es) * 1996-11-29 2006-02-16 Basf Aktiengesellschaft Preparados cosmeticos y farmaceuticos que contienen filtros uv-a fotoestables.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03080013A1 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007055595A1 (de) 2007-11-20 2009-05-28 Cognis Oleochemicals Gmbh Verfahren zur Herstellung einer organischen Zusammensetzung beinhaltend einen N-Nonylester
DE102007055594A1 (de) 2007-11-20 2009-05-28 Cognis Oleochemicals Gmbh Verfahren zur Herstellung einer organischen Zusammensetzung beinhaltend einen N-Nonylether
DE102009060881A1 (de) 2009-12-30 2011-07-07 Emery Oleochemicals GmbH, 40589 Wärmetauscher in Verfahren und Vorrichtung zur Herstellung eines Esters
WO2011079951A2 (en) 2009-12-30 2011-07-07 Emery Oleochemicals Gmbh Heat exchanger in a process and device for the preparation of an ester
WO2011079952A2 (en) 2009-12-30 2011-07-07 Emery Oleochemicals Gmbh Catalyst system for the preparation of an ester and processes employing this ester
DE102009060851A1 (de) 2009-12-30 2011-07-07 Emery Oleochemicals GmbH, 40589 Esterherstellung mit Nachbehandlung
WO2011079953A2 (en) 2009-12-30 2011-07-07 Emery Oleochemicals Gmbh Ester preparation with after-treatment
DE102009060813A1 (de) 2009-12-30 2011-07-07 Emery Oleochemicals GmbH, 40589 Katalysatorsystem zur Herstellung eines Esters und diesen Ester einsetzende Verfahren

Also Published As

Publication number Publication date
WO2003080013A1 (de) 2003-10-02
JP2005526782A (ja) 2005-09-08
US20060008482A1 (en) 2006-01-12
DE10212528A1 (de) 2003-10-02
AU2003208705A1 (en) 2003-10-08

Similar Documents

Publication Publication Date Title
EP1453473B1 (de) Emollients und kosmetische zusammensetzungen enthaltend 2-methyl-1,3-propandioldiester
WO2003080013A1 (de) Ölphasen für kosmetische mittel
EP1341518A2 (de) Kosmetische und/oder pharmazeutische emulsionen
EP1286758A2 (de) Emulgatoren
EP1485063B1 (de) Ölkörper für kosmetische zusammensetzungen enthaltend cyclohexylcyclohexan
WO2002034216A1 (de) Verwendung von fettalkoholen als solubilisierungsmittel
EP1414881A2 (de) Verdickungsmittel
EP1472211B1 (de) Weichmacher und kosmetische zusammensetzungen
WO2001074302A1 (de) Pro-liposomal verkapselte zubereitungen
EP1421929A2 (de) Emollients und kosmetische Zubereitungen
WO2003035025A1 (de) Zusammensetzung auf ölbasis mit einem gehalt an sterinen
WO2002087535A2 (de) Verwendung von esterquats
EP1446220A1 (de) Emulgator-gemisch
WO2002100522A1 (de) Verwendung von alkyl(ether)phosphaten (i)
WO2002087537A1 (de) Verwendung von kationischen zubereitungen
WO2002013778A2 (de) Kosmetische zubereitungen die dicarbonsäuren enthalten
EP1264632A1 (de) Verwendung von Alkyl(ether)phosphaten(III)
WO2002088150A1 (de) Phosphorsäureester
WO2004000258A1 (de) Hochviskose ölhaltige zubereitungen
WO2002100523A1 (de) Polymere emulgatoren
WO2002043674A1 (de) Kosmetische mikroemulsionen
WO2001051011A2 (de) Kondensationsprodukte von proteinen mit azelainsäure
WO2001074304A1 (de) Pro-liposomal verkapselte zubereitungen
EP1264634A1 (de) Verwendung von Alkyl(ether)phosphaten(II)
EP1206428A1 (de) Verwendung von hydroxyethern in kosmetischen und pharmazeutischen zubereitungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040911

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COGNIS IP MANAGEMENT GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20081001