EP1482259B1 - Dispositif détendeur pour circuit de climatisation - Google Patents

Dispositif détendeur pour circuit de climatisation Download PDF

Info

Publication number
EP1482259B1
EP1482259B1 EP04012017A EP04012017A EP1482259B1 EP 1482259 B1 EP1482259 B1 EP 1482259B1 EP 04012017 A EP04012017 A EP 04012017A EP 04012017 A EP04012017 A EP 04012017A EP 1482259 B1 EP1482259 B1 EP 1482259B1
Authority
EP
European Patent Office
Prior art keywords
fluid
pressure
pressure regulator
regulator device
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04012017A
Other languages
German (de)
English (en)
Other versions
EP1482259A1 (fr
Inventor
Mohamed Ben Yahia
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Climatisation SA
Original Assignee
Valeo Climatisation SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Climatisation SA filed Critical Valeo Climatisation SA
Publication of EP1482259A1 publication Critical patent/EP1482259A1/fr
Application granted granted Critical
Publication of EP1482259B1 publication Critical patent/EP1482259B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
    • F25B41/335Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant via diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/063Feed forward expansion valves

Definitions

  • the invention relates to air conditioning circuits, especially for motor vehicles.
  • a conventional air conditioning circuit comprises a compressor, a condenser, an expander device and an evaporator traveled in this order by a refrigerant fluid.
  • the refrigerant is compressed in the gas phase and brought to a high pressure by the compressor. It is then converted into the liquid phase by the condenser, then undergoes a loss of pressure passing through the expander device. The liquid partially vaporizes in the expander device while cooling.
  • the refrigerant is in the form of a mixture of vapor and low pressure liquid, which is transmitted to the evaporator where it is converted into a gas phase.
  • a thermostatic expansion valve is used to perform the relaxation.
  • a regulator serves to supply the evaporator optimally while maintaining a chosen superheat at the outlet of the evaporator, which makes it possible to adapt the flow rate of refrigerant circulating in the circuit to the thermal loads, see by example EP 0 279 622 A .
  • such a pressure reducer comprises four connection points, two of the connection points being located on a side face for connection to the inlet of the evaporator and the outlet of the evaporator, via two connecting ducts and the two other connection points are located on the other side face for connection to the outlet of the condenser (or the accumulator) and the compressor inlet, via two other connecting ducts.
  • at least two clamps are needed to fix two by two the connecting ducts.
  • the alignment distance between two connecting ducts located on the same side face must be severe and, in particular, the two connecting ducts used to connect the expansion valve to the inlet and the outlet of the evaporator must have a specific and complex conformation to allow connection, which increases the overall cost of the regulator.
  • the expander device is a calibrated orifice.
  • a calibrated orifice to regulate the refrigerant flow rate according to the thermal load conditions do not reach those of the thermostatic expansion valves.
  • An accumulator is then used at the outlet of the evaporator to prevent an excessively large refrigerant flow from reaching the evaporator and to prevent the compressor from flowing liquid.
  • This accumulator corresponds to a storage area of the non-circulating refrigerant charge. This storage area can increase or decrease depending on the operating conditions. As a result, the accumulator must be particularly bulky, which increases the size of the air conditioning installation.
  • the invention improves the situation.
  • an expansion device intended to be installed in an air conditioning circuit operating with a refrigerant, and comprising a body adapted to be traversed by the refrigerant fluid under the control of a needle.
  • the expander device further comprises a bulb filled with a control fluid exerting a control pressure on a membrane according to the surrounding conditions, said membrane being able to act on the needle according to the control pressure.
  • the bulb is placed in the path of the coolant between the outlet of the condenser and the inlet of the expander device.
  • control fluid has a saturation pressure greater than or equal to the saturation pressure of the refrigerant at a given temperature.
  • the pressure difference between the refrigerant and the control fluid is then substantially constant over a temperature range between 10 ° C and 70 ° C.
  • the control fluid is the fluid R218.
  • control fluid is the fluid R134a.
  • the body comprises an input adapted to be connected to the condenser by a conduit for receiving the refrigerant, and an outlet adapted to be connected to the evaporator by another conduit to transmit the refrigerant.
  • the body may further comprise a first compartment which opens the inlet and a second compartment which opens the outlet, the refrigerant being transmitted from the first compartment to the second compartment by an opening whose passage section is adjusted by the needle.
  • the bulb is located in the first compartment.
  • the needle is located in the first compartment below the bulb while it comprises a control rod mechanically connected to the membrane so as to be movable in translation as a function of the pressure exerted by the control fluid on the membrane.
  • the invention also proposes an air conditioning circuit operating with a refrigerant fluid and comprising a compressor, a condenser, an expander device and an evaporator.
  • the expander device is as defined above, its inlet being connected to the condenser and its outlet being connected to the evaporator.
  • the air conditioning circuit may include an accumulator placed between the evaporator outlet and the compressor inlet.
  • the figure 1a represents an air conditioning circuit according to the prior art, wherein the expander device 12 'is a thermostatic expansion valve. Such a regulator regulates the flow of refrigerant through a bulb placed in the path of the refrigerant at the outlet of the evaporator 13.
  • the expander device 12 ' comprises a first portion P1 which receives the refrigerant from the condenser 11 by the input E1 and transmits it to the evaporator via the output S1 via an opening whose passage section is variable.
  • the expander device 12 'further comprises a second portion P2 which receives the refrigerant from the outlet of the evaporator 13 through the inlet E2 and transmits it to the compressor 14 through the outlet S2.
  • This second part houses the bulb which is crossed by the refrigerant fluid from the outlet of the evaporator.
  • the bulb is connected to a membrane on which it exerts a pressure depending on the conditions of overheating. This membrane can then move to change the passage section of the opening between the second portion P2 and the first portion P1.
  • the structure of such a regulator requires specific and expensive connections with the evaporator 13.
  • the figure 1b represents an air conditioning circuit comprising a calibrated orifice 12 "according to the prior art to achieve the relaxation.
  • the calibrated orifice 12 has a simple structure that does not require complicated connections vis-à-vis the other elements of the circuit. However, it is not able to regulate the refrigerant flow rate depending on the operating conditions. In addition, its performance is not sufficient to avoid the liquid shots at the compressor 14 so that it is often necessary to add a large accumulator 40 at the outlet of the evaporator 13, which increases the bulk of the circuit of air conditioner.
  • FIG. 2a represents an expansion device according to the invention, designated as a whole by the reference 12. This expander device is intended to be installed in an air conditioning installation.
  • the expander device 12 comprises a body 120, which may be of generally parallelepipedal shape and constituted for example by aluminum.
  • the body 120 is provided with an inlet 121 adapted to receive a refrigerant fluid FR at high pressure.
  • the inlet is intended to be connected to a condenser via a connection duct 22.
  • connection between the expander and the condenser via the connecting duct 22 may be indirect when other circuit elements, for example an exchanger thermal internal, are used on the line condenser / evaporator.
  • the remainder of the description will be made with reference to an air conditioning installation that does not use an intermediate circuit element between the condenser and the expander as a non-limiting example.
  • the body 120 further comprises an outlet 123 from which opens the refrigerant fluid FR in a low pressure state. This outlet is intended to be connected to the evaporator 13 via a connecting pipe 24.
  • the inlet 121 and the outlet 123 are preferably arranged on the same side face of the body 120.
  • the expander device is intended to be placed in an air conditioning circuit so that this side face is substantially opposite the condenser.
  • the inlet 121 opens on a first compartment 125 delimiting an end portion of the body 120.
  • the refrigerant fluid arriving in the inlet 121 flows into this first compartment 125.
  • the outlet 123 opens on a second compartment 126 delimiting another end portion of the body 120.
  • the refrigerant in the second compartment exits the expander through the outlet 123.
  • the first compartment 125 may comprise an upper part 1250 and a lower part 1251.
  • the upper part 1250 is separated from the lower part 1251 by a wall 25 consisting of at least one opening 30 (or 32).
  • a wall 25 consisting of at least one opening 30 (or 32).
  • two openings 30 and 32 are used in particular. The remainder of the description will be made with reference to this example by way of illustration.
  • the wall 25 constitutes an intermediate support for a bulb 200.
  • the refrigerant fluid arriving in the upper part 1250 through the inlet 121 can thus pass through the openings 30 and 32 to be distributed in the lower part 1251.
  • the second compartment is separated from the first compartment by another wall 21 provided with a calibrated opening 34, of adjustable passage section by the displacement of a needle 134.
  • the lower part 1251 of the first compartment comprises a wall 23 provided with openings for the passage of the cooling fluid. This wall is arranged on either side of the needle 134 to support it.
  • the needle 134 may consist of a substantially vertical control rod, called a trigger rod, which can be displaced in translation in a direction generally perpendicular to the respective axes of the inlet 121 and the outlet 123, in particular in one direction. vertical.
  • the end of the needle is shaped according to the diameter of the opening 34.
  • the wall 21 is funnel-shaped at the opening 34, in order to maintain the needle in the second compartment.
  • the expander device further comprises a bulb 200 comprising a small volume chamber filled with a control fluid FC, which is essentially of the refrigerant type.
  • the enclosure is a rigid shell integral with the wall 25.
  • the lower part of the bulb consists of a flexible membrane 33 connected to the needle 134.
  • the FC fluid has a particular saturation pressure / temperature characteristic. It is chosen in particular so that its saturation curve in the saturation pressure / temperature diagram is above the curve saturation of the refrigerant fluid FR.
  • a particularly suitable refrigerant / control fluid pair is the pair R134a / R218. It is also possible to use the torque R134a / R134a.
  • control fluid R218 by way of non-limiting example.
  • the bulb is placed in the first compartment so as to be in contact with the membrane 33.
  • the bulb is licked by the refrigerant fluid FR which arrives in the first compartment 125.
  • the control fluid exerts pressure on the flexible membrane 33.
  • the membrane can then be moved vertically in translation depending on the forces exerted on it.
  • the temperature of the control fluid FC in the bulb depends on the temperature of the refrigerating fluid FR which arrives in the expander device and which corresponds to the outlet temperature of the condenser (or of the internal heat exchanger when the installation is provided with this) , which makes it possible to control the movement of the needle 134.
  • the membrane may be connected to a spring system comprising a first coil spring 350 connected to a portion 250 of the wall 25, located in the vicinity of the needle on the left, and a second coil spring 351 connected to a portion 251 of the wall 25 , located near the needle on the right.
  • the spring system is arranged to bias the needle upwardly to facilitate the opening of the section 34.
  • Other spring systems may be used to the extent that the force they exert opposes the force. exerted by the control fluid FC on the diaphragm 33.
  • the stiffness of the springs is chosen low enough not to keep the needle open when the outside temperature is low, ie when the thermal load on the loop is low.
  • FIG. 3 represents an air conditioning circuit 20, suitable for installation in a motor vehicle for air conditioning of the passenger compartment.
  • the circuit 20 comprises a compressor 14, a condenser 11, an expander device 12 according to the invention, and an evaporator 13 traversed in this order by a refrigerant fluid FR, for example the fluid R134a.
  • the refrigerating fluid FR is compressed in the gaseous phase and brought to a high pressure HP by the compressor 14. It is then converted into a liquid phase by the condenser 11, then undergoes a pressure loss by passing through the expander device 12. The liquid partially vaporizes in the expander device 10 while cooling. At the outlet of the expander device, a mixture of vapor and low-pressure liquid BP is obtained, which is transmitted to the evaporator 13 where it is converted into a gas phase.
  • the condenser 11 is traversed by a stream of air which is heated on contact, while the evaporator is traversed by a flow of air which is cooled on contact and which is intended for the air conditioning of the passenger compartment of the vehicle. .
  • the expander device 12 can be connected in a simple manner to the condenser 11 and to the evaporator 13, since it comprises only an inlet 121 and an outlet 123.
  • the refrigerant FR first undergoes desuperheating at constant pressure to lower the temperature of the fluid, and then constant pressure condensation. Finally, the fluid FR is undercooled so as to supply the regulator with 100% of liquid.
  • a sub-cooling value ⁇ S of the order of 10 ° C allows a correct operation of the air conditioning circuit and offers better thermal performance.
  • the pressure of the control fluid FC in the bulb 200 depends on the temperature characteristics of the refrigerant fluid FR from the condenser, and therefore the subcooling ⁇ S.
  • the control pressure Pc exerted by the fluid FC on the membrane 33 has a value which is related to the sub-cooling ⁇ S.
  • the expander device makes it possible to regulate the refrigerant flow rate as a function of the subcooling AS at the outlet of the condenser.
  • the vertical movement of the needle 134 shown on the figure 2a is controlled by the temperature of the refrigerating fluid FR arriving in the expander device via the inlet 121.
  • the control fluid FC inside the bulb 200 is subjected to a heat exchange with the refrigerant fluid FR which arrives in the first compartment 125.
  • the control fluid FC has saturation pressure characteristics with respect to the temperature greater than or equal to that of the refrigerant fluid FR and therefore at a given temperature, the control fluid FC has a pressure different from that of the FR refrigerant.
  • the figure 2a corresponds to a state of equilibrium.
  • the needle 134 goes in the direction of the opening of the passage section 34, as shown in FIG. figures 2b and 2d . Conversely, if the force F1 is smaller than the force F2, the needle 134 goes in the direction of closing the passage section of the passage section 34, as shown in FIG. Figure 2c .
  • the expander device 12 makes it possible to impose subcooling at the outlet of the condenser 11.
  • Undercooling ⁇ S too large indicates that the last molecule of gas condenses too early in the condenser.
  • the control pressure in the bulb is very low, which causes the opening of the passage section 34. It follows a high coolant flow rate at the inlet of the evaporator and therefore a high cooling capacity .
  • the expansion device of the invention imposes a relationship between the opening of the passage section 34 and the subcooling ⁇ S. In particular, it is possible to use this property to set subcooling.
  • the fluid FR arriving in the first compartment 125 has undercooled in the condenser, and therefore the refrigerant FR is almost entirely in the liquid phase at low temperature.
  • the membrane will then deform towards the inside of the bulb, causing an upward translation of the needle, which causes the opening of the passage section 34 and allows a significant flow of refrigerant FR at the outlet 123 of the expander device . Opening the passage section will then cause a decrease in subcooling.
  • the FR refrigerant that arrives in the compartment 125 has not undergone or undercooled in the condenser 11, and therefore the coolant has a high temperature.
  • the control fluid FC in the bulb 200 reacts at this temperature by swelling slightly.
  • the membrane 33 deforms outwardly and causes a translation downward of the needle 134, which causes the closing of the passage section 34. This will have the effect of creating an undercooling in the condenser 11.
  • control fluid FC is chosen such that its saturation curve is above the refrigerant saturation curve FR, in the saturation pressure / temperature diagram as shown in FIG. figure 4 .
  • the subcooling is then substantially constant under conditions of high loads.
  • the upper saturation curve corresponds to the control fluid R218 and the lower saturation curve corresponds to the coolant R134a.
  • the subcooling ⁇ S then represents, for a given pressure, the difference between the temperature corresponding to this pressure on the lower saturation curve and the temperature corresponding to this pressure on the upper saturation curve.
  • a probe may be placed in the bulb 200 to measure the temperature of the control fluid FC and another probe in the first compartment to measure the temperature of the refrigerant fluid FR. It is then possible to calculate the difference between the two temperatures measured at a given instant, which gives the value of the sub-cooling ⁇ S. If the subcooling is too great, it is possible to act on the sub-cooling adjustment screw to increase the opening of the passage section 34.
  • the air conditioning circuit may comprise an accumulator 45 at the outlet of the evaporator or at the inlet of the compressor in order to avoid the thrusts of liquid.
  • an accumulator 45 is not essential to the operation of the air conditioning system according to the invention and is only an additional security.
  • this accumulator may be small, since it is not intended to contain the non-circulating portion of the refrigerant, the latter being treated in the subcooling zone of the condenser.
  • the expander device of the invention thus makes it possible to create a refrigerant pressure drop between the inlet 123 and the outlet 124 while maintaining proper subcooling to ensure proper operation of the air conditioning loop.
  • connection of the expander to the other elements of the circuit can be achieved by a single-tube flange maintained for example by a screw.
  • a connection system is conventionally used in calibrated orifice regulators.
  • the regulating performance provided by this expander device is such that it is not necessary to have a bulky accumulator.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Safety Valves (AREA)
  • Fluid-Driven Valves (AREA)
  • Control Of Fluid Pressure (AREA)

Description

  • L'invention concerne les circuits de climatisation, notamment pour véhicules automobiles.
  • Un circuit de climatisation classique comporte un compresseur, un condenseur, un dispositif détendeur et un évaporateur parcourus, dans cet ordre, par un fluide réfrigérant. Le fluide réfrigérant est comprimé en phase gazeuse et amené à une pression élevée par le compresseur. Il est ensuite transformé en phase liquide par le condenseur, puis subit une perte de pression en passant dans le dispositif détendeur. Le liquide se vaporise partiellement dans le dispositif détendeur en refroidissant. A la sortie du dispositif détendeur, le fluide réfrigérant est sous la forme d'un mélange de vapeur et de liquide à basse pression, qui est transmis à l'évaporateur où il est transformé en phase gazeuse.
  • Dans des réalisations existantes, on utilise un détendeur thermostatique pour réaliser la détente. Un tel détendeur a pour rôle d'alimenter l'évaporateur de manière optimale tout en maintenant une surchauffe choisie à la sortie de l'évaporateur, ce qui permet d'adapter le débit de fluide réfrigérant circulant dans le circuit aux charges thermiques, voir par example EP 0 279 622 A .
  • Cependant, le raccordement d'un tel détendeur aux autres éléments du circuit de climatisation est coûteux. En effet, un tel détendeur comprend quatre points de raccords, deux des points de raccords étant situés sur une face latérale pour un raccordement à l'entrée de l'évaporateur et à la sortie de l'évaporateur, via deux conduits de raccord et les deux autres points de raccord étant situés sur l'autre face latérale pour un raccordement à la sortie du condenseur (ou à l'accumulateur) et à l'entrée du compresseur, via deux autres conduits de raccord. En outre, au moins deux brides de fixation sont nécessaires pour fixer deux à deux les conduits de raccord. L'entraxe d'alignement de deux conduits de raccord situés sur une même face latérale doit être sévère et, en particulier, les deux conduits de raccord utilisés pour raccorder le détendeur à l'entrée et à la sortie de l'évaporateur doivent avoir une conformation spécifique et complexe pour permettre le raccordement, ce qui augmente le coût global du détendeur.
  • Dans d'autres réalisations, le dispositif détendeur est un orifice calibré. Un tel dispositif détendeur peut être aisément raccordé au reste du circuit de climatisation, compte tenu de la simplicité de sa structure. Cependant, les performances d'un orifice calibré pour réguler le débit de fluide réfrigérant en fonction des conditions de charges thermiques n'atteignent pas celles des détendeurs thermostatiques. On utilise alors en complément un accumulateur à la sortie de l'évaporateur pour empêcher qu'un débit de fluide frigorigène trop important n'arrive à l'évaporateur et pour éviter les coups de liquide au compresseur. Cet accumulateur correspond à une zone de stockage de la charge non-circulante de fluide réfrigérant. Cette zone de stockage peut augmenter ou diminuer en fonction des conditions de fonctionnement. Par suite, l'accumulateur doit être particulièrement volumineux, ce qui augmente l'encombrement de l'installation de climatisation.
  • L'invention vient améliorer la situation.
  • Elle propose à cet effet un dispositif détendeur destiné à être installé dans un circuit de climatisation fonctionnant avec un fluide réfrigérant, et comprenant un corps propre à être traversé par le fluide réfrigérant sous le contrôle d'un pointeau. Le dispositif détendeur comprend en outre un bulbe rempli d'un fluide de contrôle exerçant une pression de contrôle sur une membrane en fonction des conditions environnantes, ladite membrane étant apte à agir sur le pointeau en fonction de la pression de contrôle. Avantageusement, le bulbe est placé sur le trajet du fluide réfrigérant entre la sortie du condenseur et l'entrée du dispositif détendeur.
  • Selon un autre aspect de l'invention, le fluide de contrôle présente une pression de saturation supérieure ou égale à la pression de saturation du fluide réfrigérant, à température donnée.
  • L'écart de pression entre le fluide réfrigérant et le fluide de contrôle est alors sensiblement constant sur une plage de température comprise entre 10°C et 70°C.
    En particulier, le fluide de contrôle est le fluide R218.
  • En variante, le fluide de contrôle est le fluide R134a.
  • Le corps comprend une entrée propre à être reliée au condenseur par un conduit pour recevoir le fluide réfrigérant, et une sortie propre à être reliée à l'évaporateur par un autre conduit pour lui transmettre le fluide réfrigérant.
  • Le corps peut en outre comporter un premier compartiment duquel débouche l'entrée et un deuxième compartiment duquel débouche la sortie, le fluide réfrigérant étant transmis du premier compartiment au deuxième compartiment par une ouverture dont la section de passage est ajustée par le pointeau.
  • En particulier, le bulbe est situé dans le premier compartiment.
  • Le pointeau est situé dans le premier compartiment au dessous du bulbe tandis qu'il comprend une tige de commande reliée mécaniquement à la membrane de manière à être mobile en translation en fonction de la pression exercée par le fluide de contrôle sur la membrane.
  • L'invention propose également un circuit de climatisation fonctionnant avec un fluide réfrigérant et comprenant un compresseur, un condenseur, un dispositif détendeur et un évaporateur. Avantageusement, le dispositif détendeur est tel que défini ci-avant, son entrée étant raccordée au condenseur et sa sortie étant raccordée à l'évaporateur.
  • Le circuit de climatisation peut comprendre un accumulateur placé entre la sortie de l'évaporateur et l'entrée du compresseur.
  • D'autres caractéristiques et avantages de l'invention apparaîtront à l'examen de la description détaillée ci-après, et des dessins annexés sur lesquels:
    • la figure 1 a représente une vue en coupe d'un détendeur thermostatique selon l'art antérieur;
    • la figure 1b représente une vue en coupe d'un orifice calibré selon l'art antérieur;
    • les figures 2a à 2c représentent un dispositif détendeur selon l'invention, dans différents états de fonctionnement;
    • la figure 2d représente un dispositif détendeur selon une variante de réalisation de l'invention;
    • la figure 3 représente un circuit de climatisation équipé d'un dispositif détendeur selon l'invention;
    • la figure 4 est un graphique représentant les caractéristiques idéales pression de saturation/température d'un fluide de contrôle utilisable dans le dispositif détendeur selon l'invention;
    • la figure 5a est un schéma représentant les différentes pressions qui s'exercent sur la membrane du bulbe, selon le dispositif détendeur de l'invention; et
    • la figure 5b est un schéma représentant les différentes pressions qui s'exercent sur la membrane du bulbe, selon la variante de réalisation de la figure 2d.
  • Les dessins contiennent, pour l'essentiel, des éléments de caractère certain. Ils pourront donc non seulement servir à mieux faire comprendre la description, mais aussi contribuer à la définition de l'invention, le cas échéant.
  • On se réfère tout d'abord aux figures 1 a et 1b qui représentent des détendeurs selon l'art antérieur.
  • La figure 1a représente un circuit de climatisation selon l'art antérieur, dans lequel le dispositif détendeur 12' est un détendeur thermostatique. Un tel détendeur régule le débit de fluide frigorigène grâce à un bulbe placé sur le trajet du fluide réfrigérant à la sortie de l'évaporateur 13. Le dispositif détendeur 12' comprend une première partie P1 qui reçoit le fluide réfrigérant en provenance du condenseur 11 par l'entrée E1 et le transmet à l'évaporateur par la sortie S1 via une ouverture dont la section de passage est variable. Le dispositif détendeur 12' comprend en outre une deuxième partie P2 qui reçoit le fluide réfrigérant en provenance de la sortie de l'évaporateur 13 par l'entrée E2 et le transmet au compresseur 14 par la sortie S2. Cette deuxième partie loge le bulbe qui est traversé par le fluide réfrigérant en provenance de la sortie de l'évaporateur. Le bulbe est relié à une membrane sur laquelle il exerce une pression en fonction des conditions de surchauffe. Cette membrane peut alors se déplacer pour modifier la section de passage de l'ouverture entre la deuxième partie P2 et la première partie P1. La structure d'un tel détendeur nécessite des raccordements spécifiques et coûteux avec l'évaporateur 13.
  • La figure 1b représente un circuit de climatisation comportant un orifice calibré 12" selon l'art antérieur pour réaliser la détente. L'orifice calibré 12" présente une structure simple ne nécessitant pas de raccords compliqués vis-à-vis des autres éléments du circuit. Toutefois, il n'est pas capable de réguler le débit de fluide réfrigérant en fonction des conditions de fonctionnement. En outre, ses performances ne sont pas suffisantes pour éviter les coups de liquide au compresseur 14 de sorte qu'il est souvent nécessaire d'ajouter un accumulateur volumineux 40 en sortie de l'évaporateur 13, ce qui augmente l'encombrement du circuit de climatisation.
  • On se réfère tout d'abord à la figure 2a qui représente un dispositif détendeur selon l'invention, désigné dans son ensemble par la référence 12. Ce dispositif détendeur est destiné à être installé dans une installation de climatisation.
  • Le dispositif détendeur 12 comprend un corps 120, qui peut être de forme générale parallélépipédique et constitué par exemple en aluminium. Le corps 120 est muni d'une entrée 121 propre à recevoir un fluide réfrigérant FR à haute pression. L'entrée est destinée à être raccordée à un condenseur par un conduit de raccordement 22. Bien entendu, le raccordement entre le détendeur et le condenseur via le conduit de raccordement 22 peut être indirect lorsque d'autres éléments de circuit, par exemple un échangeur thermique interne, sont utilisés sur la ligne condenseur/évaporateur. La suite de la description sera faite en référence à une installation de climatisation n'utilisant pas d'élément de circuit intermédiaire entre le condenseur et de détendeur à titre d'exemple non limitatif. Le corps 120 comprend en outre une sortie 123 de laquelle débouche le fluide réfrigérant FR dans un état de basse pression. Cette sortie est destinée à être raccordé à l'évaporateur 13 par un conduit de raccordement 24.
  • L'entrée 121 et la sortie 123 sont de préférence agencées sur une même face latérale du corps 120. Le dispositif détendeur est destiné à être placé dans un circuit de climatisation de sorte que cette face latérale soit sensiblement en regard du condenseur.
  • L'entrée 121 débouche sur un premier compartiment 125 délimitant une partie d'extrémité du corps 120. Le fluide réfrigérant arrivant dans l'entrée 121 se déverse dans ce premier compartiment 125.
  • La sortie 123 débouche sur un deuxième compartiment 126 délimitant une autre partie d'extrémité du corps 120. Le fluide réfrigérant dans le deuxième compartiment sort du détendeur par la sortie 123.
  • Le premier compartiment 125 peut comprendre une partie supérieure 1250 et une partie inférieure 1251. La partie supérieure 1250 est séparée de la partie inférieure 1251 par une paroi 25 constituée d'au moins une ouverture 30 (ou 32). Dans l'exemple de la figure, on utilise en particulier deux ouvertures 30 et 32. La suite de la description sera faite en référence à cet exemple à titre d'illustration.
  • La paroi 25 constitue un support intermédiaire pour un bulbe 200.
  • Le fluide réfrigérant arrivant dans la partie supérieure 1250 par l'entrée 121 peut ainsi traverser les ouvertures 30 et 32 pour se répartir dans la partie inférieure 1251.
  • Le deuxième compartiment est séparé du premier compartiment par une autre paroi 21 munie d'une ouverture calibrée 34, de section de passage réglable grâce au déplacement d'un pointeau 134.
  • La partie inférieure 1251 du premier compartiment comporte une paroi 23 munie d'ouvertures pour le passage du fluide réfrigérant. Cette paroi est agencée de part et d'autre du pointeau 134 pour le supporter.
  • Le pointeau 134 peut être constitué d'une tige de commande sensiblement verticale, dite tige de détente, qui peut être déplacée en translation dans une direction généralement perpendiculaire aux axes respectifs de l'entrée 121 et de la sortie 123, en particulier dans une direction verticale. L'extrémité du pointeau est conformée en fonction du diamètre de l'ouverture 34.
  • La paroi 21 est conformée en entonnoir au niveau de l'ouverture 34, afin de maintenir le pointeau dans le deuxième compartiment.
  • Le dispositif détendeur comprend en outre un bulbe 200 comprenant une enceinte de petit volume remplie d'un fluide de contrôle FC, qui est essentiellement du type fluide réfrigérant. L'enceinte est une coquille rigide solidaire de la paroi 25. La partie inférieure du bulbe est constituée d'une membrane flexible 33 reliée au pointeau 134.
  • Le fluide FC a une caractéristique de pression de saturation/température particulière. Il est notamment choisi de sorte que sa courbe de saturation, dans le diagramme pression de saturation/température soit au-dessus de la courbe de saturation du fluide réfrigérant FR. Un couple fluide réfrigérant/fluide de contrôle particulièrement adapté est le couple R134a/R218. Il est également possible d'utiliser le couple R134a/R134a.
  • La suite de la description sera faite en référence au fluide de contrôle R218 à titre d'exemple non limitatif.
  • Le bulbe est placé dans le premier compartiment de manière à être en contact avec la membrane 33. Le bulbe est léché par le fluide réfrigérant FR qui arrive dans le premier compartiment 125.
  • Le fluide de contrôle vient exercer une pression sur la membrane souple 33. La membrane peut alors être déplacée verticalement en translation en fonction des forces qui s'exercent sur elle.
  • La température du fluide de contrôle FC dans le bulbe dépend de la température du fluide réfrigérant FR qui arrive dans le dispositif détendeur et qui correspond à la température de sortie du condenseur (ou de l'échangeur thermique interne lorsque l'installation en est munie), ce qui permet de piloter le mouvement du pointeau 134.
  • Dans le mode de réalisation où le couple R134a/R218 est utilisé, il est possible d'utiliser en complément un système de ressorts pour faciliter l'ouverture du pointeau. Par exemple, en référence à la figure 2d, la membrane peut être reliée à un système de ressorts comprenant un premier ressort hélicoïdal 350 raccordé à une partie 250 de la paroi 25, situé au voisinage du pointeau à gauche, et un deuxième ressort hélicoïdal 351 raccordé à une partie 251 de la paroi 25, situé au voisinage du pointeau à droite. Le système de ressorts est agencé pour solliciter le pointeau vers le haut de manière à favoriser l'ouverture de la section 34. D'autres systèmes de ressorts peuvent être utilisés dans la mesure où la force qu'ils exercent s'oppose à la force exercée par le fluide de contrôle FC sur la membrane 33. La raideur des ressorts est choisie suffisamment faible pour ne pas maintenir ouvert le pointeau lorsque la température extérieure est faible, c'est à dire lorsque la charge thermique sur la boucle est faible.
  • On se réfère maintenant à la figure 3 qui représente un circuit de climatisation 20, propre à être installé dans un véhicule automobile pour assurer la climatisation de l'habitacle.
  • Le circuit 20 comprend un compresseur 14, un condenseur 11, un dispositif détendeur 12 selon l'invention, et un évaporateur 13 parcourus, dans cet ordre, par un fluide réfrigérant FR, par exemple le fluide R134a. Le fluide réfrigérant FR est comprimé en phase gazeuse et amené à une pression élevée HP par le compresseur 14. Il est ensuite transformé en phase liquide par le condenseur 11, puis subit une perte de pression en passant dans le dispositif détendeur 12. Le liquide se vaporise partiellement dans le dispositif détendeur 10 en refroidissant. A la sortie du dispositif détendeur, on obtient un mélange de vapeur et de liquide à basse pression BP, qui est transmis à l'évaporateur 13 où il est transformé en phase gazeuse.
  • Le condenseur 11 est traversé par un flux d'air qui est échauffé à son contact, tandis que l'évaporateur est traversé par un flux d'air qui est refroidi à son contact et qui est destiné à la climatisation de l'habitacle du véhicule.
  • Le dispositif détendeur 12 selon l'invention peut être raccordé de manière simple au condenseur 11 et à l'évaporateur 13, car il ne comporte qu'une entrée 121 et qu'une sortie 123.
  • Dans le condenseur 11, le fluide réfrigérant FR subit d'abord une désurchauffe à pression constante pour abaisser la température du fluide, puis une condensation à pression constante. Enfin, le fluide FR est sous-refroidi pour pouvoir alimenter le détendeur par 100% de liquide. Le sous-refroidissement ΔS correspond donc à la différence entre la température de saturation Tsat du fluide réfrigérant FR et la température en entrée du détendeur Tin, conformément à l'équation ci-après: ΔS = T sat P in - T in ,
    Figure imgb0001
    où la température de saturation Tsat du fluide réfrigérant FR dépend de la pression Pin du fluide réfrigérant en entrée du dispositif détendeur.
  • A fortes charges, une valeur de sous-refroidissement ΔS de l'ordre de 10°C permet un fonctionnement correct du circuit de climatisation et offre de meilleures performances thermiques.
  • Comme indiqué précédemment, la pression du fluide contrôle FC dans le bulbe 200 dépend des caractéristiques de température du fluide réfrigérant FR provenant du condenseur, et donc du sous-refroidissement ΔS. Il en résulte que la pression de contrôle Pc exercée par le fluide FC sur la membrane 33 a une valeur qui est liée au sous-refroidissement ΔS.
  • Les variations de cette pression de contrôle Pc permettent de faire varier la section de passage de l'ouverture calibrée 34.
  • Ainsi, le dispositif détendeur selon l'invention permet de réguler le débit de fluide réfrigérant en fonction du sous-refroidissement AS en sortie du condenseur.
  • Le mouvement vertical du pointeau 134 représenté sur la figure 2a est asservi à la température du fluide réfrigérant FR arrivant dans le dispositif détendeur par l'entrée 121. En effet, le fluide de contrôle FC à l'intérieur du bulbe 200 est soumis à un échange thermique avec le fluide réfrigérant FR qui arrive dans le premier compartiment 125. Le fluide de contrôle FC a des caractéristiques de pression de saturation par rapport à la température supérieure ou égale à celle du fluide réfrigérant FR et par suite à une température donnée, le fluide de contrôle FC a une pression différente de celle du fluide réfrigérant FR.
  • On se réfère à la figure 5a qui représente le bilan des forces qui s'exerce sur la membrane 33. Le fonctionnement du dispositif détendeur est déterminé par les forces suivantes :
    • la force fb due à l'action de la pression de contrôle Pc du bulbe sur la membrane,
    • la force fFR exercée par la pression du fluide réfrigérant FR sur la membrane 33.
  • La figure 5b représente le bilan des forces qui s'exercent sur la membrane 33 conformément au dispositif détendeur de la figure 2d, utilisant un système de ressort (350,351). Dans un tel dispositif détendeur, la membrane 33 est soumise aux forces suivantes:
    • la force fb due à l'action de la pression de contrôle Pc du bulbe sur la membrane,
    • la force fFR exercée par la pression du fluide réfrigérant FR sur la membrane 33.
    • la force fr de poussée du système de ressort (350, 351).
  • La force F1 = fFR + fr (avec fr=0 en l'absence de système de ressort) agit dans le sens de l'ouverture du pointeau et la force F2 = fb agit dans le sens de la fermeture du pointeau.
  • Tant que les trois forces s'équilibrent, la section de passage de fluide réfrigérant reste fermée. La figure 2a correspond à un cet état d'équilibre.
  • Si la force F1 est supérieure à la force F2, le pointeau 134 va dans le sens de l'ouverture de la section de passage 34, comme représenté sur les figures 2b et 2d. Inversement, si la force F1 est inférieure à la force F2, le pointeau 134 va dans le sens de la fermeture de la section de passage de la section de passage 34, comme représenté sur la figure 2c.
  • Le dispositif détendeur 12 permet d'imposer un sous-refroidissement en sortie du condenseur 11.
  • Un sous-refroidissement ΔS trop important indique que la dernière molécule de gaz se condense trop tôt dans le condenseur. Dans ce cas, la pression de contrôle dans le bulbe est très faible, ce qui entraîne l'ouverture de la section de passage 34. Il s'ensuit un débit de fluide réfrigérant élevé en entrée de l'évaporateur et donc une puissance frigorifique élevée.
  • Un sous-refroidissement ΔS trop faible ne permet pas d'alimenter le détendeur avec 100% de liquide. Dans ce cas, la pression de contrôle dans le bulbe est élevée, ce qui entraîne la fermeture de la section de passage 34. Il en résulte un débit de fluide réfrigérant très faible en entrée de l'évaporateur. La puissance frigorifique est bonne mais le compresseur 14 risque des coups de liquide.
  • Ainsi, le dispositif détendeur de l'invention impose une relation entre l'ouverture de la section de passage 34 et le sous-refroidissement ΔS. En particulier, il est possible d'utiliser cette propriété pour fixer le sous-refroidissement.
  • Sur la figure 2b, le fluide FR arrivant dans le premier compartiment 125 a subi un sous-refroidissement dans le condenseur, et par suite le fluide réfrigérant FR est presque intégralement en phase liquide, à faible température. La pression du fluide de contrôle FC est donc faible par rapport à la pression s'exerçant à l'extérieur du bulbe 200. En conséquence, la force F2= fb est inférieure à la force F1= fFR + fr. La membrane va alors se déformer vers l'intérieur du bulbe, entraînant une translation vers le haut du pointeau, ce qui provoque l'ouverture de la section de passage 34 et permet un débit de fluide réfrigérant FR important à la sortie 123 du dispositif détendeur. L'ouverture de la section de passage va ensuite provoquer une diminution du sous-refroidissement.
  • Inversement, dans certaines conditions de fonctionnement, il peut être intéressant de provoquer un sous-refroidissement. En référence à la figure 2c, le fluide réfrigérant FR qui arrive dans le compartiment 125 n'a pas ou peu subi de sous-refroidissement dans le condenseur 11, et par suite le fluide réfrigérant a une température élevée. Le fluide de contrôle FC dans le bulbe 200 réagit à cette température en gonflant légèrement. La pression dans le bulbe est donc légèrement supérieure ou égale à la pression s'exerçant autour du bulbe 200, et la force F2=fb devient supérieure où égale à la force F1= fFR + fr. La membrane 33 se déforme vers l'extérieur et entraîne une translation vers le bas du pointeau 134, ce qui provoque la fermeture de la section de passage 34. Ceci va avoir pour effet de créer un sous-refroidissement dans le condenseur 11.
  • En fonctionnement normal, c'est donc le détendeur qui va réguler ou imposer le sous-refroidissement dans le condenseur.
  • Selon un aspect complémentaire de l'invention, le fluide de contrôle FC est choisi tel que sa courbe de saturation soit au-dessus de la courbe de saturation du fluide réfrigérant FR, dans le diagramme pression de saturation/température tel que représenté sur la figure 4. Le sous-refroidissement est alors sensiblement constant, dans des conditions de fortes charges.
  • En référence à la figure 4, la courbe de saturation supérieure correspond au fluide de contrôle R218 et la courbe de saturation inférieure correspond au fluide réfrigérant R134a. Le sous-refroidissement ΔS représente alors pour une pression donnée, l'écart entre la température correspondant à cette pression sur la courbe de saturation inférieure et la température correspondant à cette pression sur la courbe de saturation supérieure.
  • Sur la figure 4, on observe que les courbes de saturation supérieure et inférieure sensiblement parallèles entre 10°C et 70°C. L'écart de pression de saturation entre le fluide réfrigérant et le fluide de contrôle-et donc le sous refroidissement-est donc sensiblement constant sur cette plage de températures. Ces caractéristiques résultent du couple fluide réfrigérant FR/ fluide de contrôle FC utilisé (R134a/R218).
  • Ainsi, en imposant des conditions opératoires adaptées, on peut maintenir un sous-refroidissement choisi, par exemple de 10°C en sortie du condenseur et donc optimiser le fonctionnement de la boucle de climatisation.
  • Par exemple, on peut placer une sonde dans le bulbe 200 pour mesurer la température du fluide de contrôle FC et une autre sonde dans le premier compartiment pour mesurer la température du fluide réfrigérant FR. On peut alors calculer l'écart entre les deux températures mesurées à un instant donné, ce qui fournit la valeur du sous-refroidissement ΔS. Si le sous-refroidissement est trop important, on peut agir sur la vis de réglage de sous-refroidissement pour augmenter l'ouverture de la section de passage 34.
  • En complément, le circuit de climatisation peut comporter un accumulateur 45 à la sortie de l'évaporateur ou à l'entrée du compresseur pour éviter les coups de liquide. Un tel accumulateur 45 n'est pas indispensable au fonctionnement de l'installation de climatisation selon l'invention et ne constitue qu'une sécurité supplémentaire. En outre, cet accumulateur peut être de petite taille, puisqu'il n'est pas destiné à contenir la partie non-circulante du fluide réfrigérant, celle-ci étant traitée dans la zone de sous-refroidissement du condenseur.
  • Le dispositif détendeur de l'invention permet donc de créer une chute de pression de fluide réfrigérant entre l'entrée 123 et la sortie 124 tout en maintenant un sous-refroidissement propre à garantir un bon fonctionnement de la boucle de climatisation.
  • Il contrôle en outre le débit de fluide réfrigérant en fonction de la charge calorifique émise par le condenseur, laquelle varie suivant les différentes conditions de fonctionnement.
  • Sa structure implique des raccords simples et peu coûteux pour une installation dans un circuit de climatisation.
  • En particulier, le raccordement du détendeur aux autres éléments du circuit peut être réalisé par une bride mono tube maintenue par exemple par une vis. Un tel système de raccordement est classiquement utilisé dans les détendeurs à orifice calibré.
  • En outre, les performances de régulation fournies par ce dispositif détendeur sont telles qu'il n'est pas nécessaire d'avoir un accumulateur volumineux.
  • Un tel dispositif détendeur satisfait donc les exigences de coût et d'encombrement d'une installation de climatisation.

Claims (11)

  1. Dispositif détendeur destiné à être installé dans un circuit de climatisation fonctionnant avec un fluide réfrigérant (FR), et comprenant un corps propre à être traversé par le fluide réfrigérant sous le contrôle d'un pointeau (134),
    le dispositif détendeur comprenant en outre un bulbe (200) rempli d'un fluide de contrôle exerçant une pression de contrôle sur une membrane (33) en fonction des conditions environnantes, ladite membrane étant apte à agir sur le pointeau (134) en fonction de la pression de contrôle,
    caractérisé en ce que le bulbe est placé sur le trajet du fluide réfrigérant dans le dispositif détendeur.
  2. Dispositif détendeur selon la revendication 1, caractérisé en ce que le fluide de contrôle présente une pression de saturation supérieure ou égale à la pression de saturation du fluide réfrigérant, à température donnée.
  3. Dispositif détendeur selon la revendication 2, caractérisé en ce que l'écart de pression entre le fluide réfrigérant (FR) et le fluide de contrôle (FC) est sensiblement constant sur une plage de température comprise entre 10°C et 70°C.
  4. Dispositif détendeur selon l'une des revendications 2 et 3, caractérisé en ce que le fluide de contrôle est le fluide R218.
  5. Dispositif détendeur selon l'une des revendications 2 et 3, caractérisé en ce que le fluide de contrôle est le fluide R134a.
  6. Dispositif détendeur selon l'une des revendications 1 à 5, caractérisé en ce que le corps comprend une entrée (121) propre à être reliée au condenseur par un conduit pour recevoir le fluide réfrigérant, et une sortie propre à être reliée à l'évaporateur par un autre conduit pour lui transmettre le fluide réfrigérant.
  7. Dispositif détendeur selon la revendication 6, caractérisé en ce que le corps comporte un premier compartiment duquel débouche l'entrée (121) et un deuxième compartiment duquel débouche la sortie (123), le fluide réfrigérant étant transmis du premier compartiment au deuxième compartiment par une ouverture dont la section de passage est ajustée par le pointeau (134).
  8. Dispositif détendeur selon la revendication 7, caractérisé en ce que le bulbe est situé dans le premier compartiment.
  9. Dispositif détendeur selon la revendication 8, caractérisé en ce que le pointeau (134) est situé dans le premier compartiment au dessous du bulbe (200) et en ce qu'il comprend une tige de commande reliée mécaniquement à la membrane de manière à être mobile en translation en fonction de la pression exercée par le fluide de contrôle sur la membrane (33).
  10. Circuit de climatisation fonctionnant avec un fluide réfrigérant et comprenant un compresseur (14), un condenseur (11), un dispositif détendeur (12) et un évaporateur (13), caractérisé en ce que le dispositif détendeur est tel que défini dans l'une des revendications 1 à 9, son entrée étant raccordée au condenseur (11) et sa sortie étant raccordée à l'évaporateur (13).
  11. Circuit de climatisation selon la revendication 10, caractérisé en ce qu'il comprend un accumulateur placé entre la sortie de l'évaporateur et l'entrée du compresseur.
EP04012017A 2003-05-27 2004-05-21 Dispositif détendeur pour circuit de climatisation Expired - Lifetime EP1482259B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0306424A FR2855596B1 (fr) 2003-05-27 2003-05-27 Dispositif detendeur pour circuit de climatisation
FR0306424 2003-05-27

Publications (2)

Publication Number Publication Date
EP1482259A1 EP1482259A1 (fr) 2004-12-01
EP1482259B1 true EP1482259B1 (fr) 2012-10-24

Family

ID=33104488

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04012017A Expired - Lifetime EP1482259B1 (fr) 2003-05-27 2004-05-21 Dispositif détendeur pour circuit de climatisation

Country Status (4)

Country Link
US (1) US7299654B2 (fr)
EP (1) EP1482259B1 (fr)
JP (1) JP4676166B2 (fr)
FR (1) FR2855596B1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2640635C (fr) * 2005-10-20 2011-06-14 Robert W. Cochran Dispositif de controle de flux de fluide refrigerant et procede
FR2895786B1 (fr) * 2006-01-04 2008-04-11 Valeo Systemes Thermiques Module de detente pour installation de climatisation a deux evaporateurs
FR2905633B1 (fr) * 2006-09-08 2008-12-05 Valeo Systemes Thermiques Boucle de climatisation d'un vehicule automobile dont le fluide refrigerant est a base de 1,1,1,2-tetrafluoroproprene et de trifluoroiodomethane
FR2906877A1 (fr) * 2006-10-10 2008-04-11 Valeo Systemes Thermiques Organe de detente adapte pour un fluide refrigerant a base d'un melange comprenant du 1,1,1,2-tetrafluoropropene ("hfo-1234yf") et du trifluoroiodomethane ("cf31"
FI125547B (en) * 2014-02-19 2015-11-30 Heikki Antero Pohjola A method and arrangement for maintaining the pressure of a fluid flow in a system at a predetermined, almost constant level
JP6404191B2 (ja) * 2015-06-03 2018-10-10 株式会社鷺宮製作所 絞り装置、および、それを備える冷凍サイクルシステム

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3399543A (en) * 1966-12-21 1968-09-03 Controls Co Of America Valve with bimetal operator means
JPS4726901Y1 (fr) * 1969-04-28 1972-08-17
JPS5283060U (fr) * 1975-12-19 1977-06-21
JPS63129169U (fr) * 1987-02-16 1988-08-24
US5170638A (en) * 1990-02-01 1992-12-15 Carrier Corporation Variable area refrigerant expansion device
US5004008A (en) * 1990-04-02 1991-04-02 Carrier Corporation Variable area refrigerant expansion device
US5002089A (en) * 1990-04-02 1991-03-26 Carrier Corporation Variable area refrigerant expansion device for heating mode of a heat pump
US5214939A (en) * 1991-11-25 1993-06-01 Carrier Corporation Variable area refrigerant expansion device having a flexible orifice
WO1997017643A1 (fr) * 1995-11-09 1997-05-15 Acurex Corporation Detendeur
JP3858297B2 (ja) * 1996-01-25 2006-12-13 株式会社デンソー 圧力制御弁と蒸気圧縮式冷凍サイクル
JPH11148576A (ja) * 1997-11-17 1999-06-02 Denso Corp 圧力制御弁
FR2780143B1 (fr) * 1998-06-23 2000-09-08 Valeo Climatisation Boucle de fluide refrigerant amelioree pour installation de climatisation de vehicule
EP1143212A4 (fr) * 1998-11-20 2002-08-14 Zexel Valeo Climate Contr Corp Dispositif de detente
US6131606A (en) * 1999-06-21 2000-10-17 Caterpillar Inc. Moving check valve seat providing high pressure relief
JP2001027458A (ja) * 1999-07-15 2001-01-30 Daikin Ind Ltd 冷凍装置
WO2001006183A1 (fr) * 1999-07-16 2001-01-25 Zexel Valeo Climate Control Corporation Cycle frigorifique
JP2001108310A (ja) * 1999-10-06 2001-04-20 Zexel Valeo Climate Control Corp 圧力制御装置
JP2001116403A (ja) * 1999-10-20 2001-04-27 Zexel Valeo Climate Control Corp 冷凍サイクル
WO2001063185A1 (fr) * 2000-02-25 2001-08-30 Zexel Valeo Climate Control Corporation Cycle frigorifique
DE10012714A1 (de) * 2000-03-16 2001-09-20 Egelhof Fa Otto Ventilanordnung einer Kälteanlage
JP4445090B2 (ja) * 2000-03-30 2010-04-07 株式会社鷺宮製作所 超臨界蒸気圧縮冷凍サイクル装置用高圧制御弁
JP2002061990A (ja) * 2000-08-23 2002-02-28 Zexel Valeo Climate Control Corp 冷凍サイクル

Also Published As

Publication number Publication date
JP2004354042A (ja) 2004-12-16
US7299654B2 (en) 2007-11-27
JP4676166B2 (ja) 2011-04-27
FR2855596A1 (fr) 2004-12-03
US20040237548A1 (en) 2004-12-02
FR2855596B1 (fr) 2005-08-05
EP1482259A1 (fr) 2004-12-01

Similar Documents

Publication Publication Date Title
EP1965156B1 (fr) Installation de climatisation équipée d'une vanne de détente électrique
EP2933584B1 (fr) Circuit de fluide frigorigène
EP1715264B1 (fr) Dispositif de détente améliorée pour circuit de climatisation
FR2785964A1 (fr) Organe de detente pour installation de climatisation, et unite de soupape utilisee a cet effet
WO2019135049A1 (fr) Circuit de conditionnement thermique
EP0960755A1 (fr) Circuit de climatisation utilisant un fluide réfrigérant à l'état supercritique, notamment pour véhicule
FR2802291A1 (fr) Circuit de climatisation, notamment pour vehicule automobile
FR2844036A1 (fr) Cycle refrigerant avec un ejecteur comportant une buse a etranglement changeable
FR2779216A1 (fr) Dispositif de climatisation de vehicule utilisant un fluide refrigerant a l'etat supercritique
FR2867261A1 (fr) Vanne de detente et procede pour sa commande
EP1325269B1 (fr) Dispositif de climatisation de vehicule utilisant un cycle supercritique
EP3781882B1 (fr) Dispositif de conditionnement thermique pour véhicule automobile
EP1482259B1 (fr) Dispositif détendeur pour circuit de climatisation
EP1850075A1 (fr) Circuit de climatisation à cycle supercritique
FR2905633A1 (fr) Boucle de climatisation d'un vehicule automobile dont le fluide refrigerant est a base de 1,1,1,2-tetrafluoroproprene et de trifluoroiodomethane
EP1509417B1 (fr) Installation de climatisation de vehicule munie d'un dispositif electronique de controle
FR2906877A1 (fr) Organe de detente adapte pour un fluide refrigerant a base d'un melange comprenant du 1,1,1,2-tetrafluoropropene ("hfo-1234yf") et du trifluoroiodomethane ("cf31"
WO2005051691A1 (fr) Instalation de climatisation de vehicule
WO2012065972A1 (fr) Boucle de climatisation munie d'électrovanne et fonctionnant comme pompe à chaleur.
WO2005012810A1 (fr) Dispositif pour l’adaptation d’un detendeur a l’evaporateur d’un appareil de climatisation
EP2766206B1 (fr) Dispositif de detente comprenant un moyen de detente et un moyen de contournement du moyen de detente
FR2743138A1 (fr) Detendeur thermostatique pour circuit de climatisation, en particulier de vehicule automobile
FR2912495A1 (fr) Organe de detente d'un fluide refrigerant circulant a l'interieur d'une boucle de climatisation d'un vehicule automobile
FR2807975A1 (fr) Dispositif de regulation du debit d'un flux d'air circulant sous un capot de vehicule automobile
FR2725778A1 (fr) Climatiseur pilote par un dispositif fournissant une mesure relative au fluide frigorigene utilise

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

17P Request for examination filed

Effective date: 20050421

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 581158

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602004039752

Country of ref document: DE

Effective date: 20121220

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 581158

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121024

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20121024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121024

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121024

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121024

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130125

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130225

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121024

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121024

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121024

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121024

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121024

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121024

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130204

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602004039752

Country of ref document: DE

Effective date: 20130725

BERE Be: lapsed

Owner name: VALEO CLIMATISATION

Effective date: 20130531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121024

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130521

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130521

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20040521

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130521

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170530

Year of fee payment: 14

Ref country code: CH

Payment date: 20170517

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170518

Year of fee payment: 14

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180521

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602004039752

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F25B0041060000

Ipc: F25B0041300000

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220511

Year of fee payment: 19

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602004039752

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231201