EP1481044A1 - Lubricating oil compositions with improved friction properties - Google Patents

Lubricating oil compositions with improved friction properties

Info

Publication number
EP1481044A1
EP1481044A1 EP03710807A EP03710807A EP1481044A1 EP 1481044 A1 EP1481044 A1 EP 1481044A1 EP 03710807 A EP03710807 A EP 03710807A EP 03710807 A EP03710807 A EP 03710807A EP 1481044 A1 EP1481044 A1 EP 1481044A1
Authority
EP
European Patent Office
Prior art keywords
hydrocarbyl
group
esters
oils
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03710807A
Other languages
German (de)
English (en)
French (fr)
Inventor
Mark D. Winemiller
Douglas Edward Deckman
William L. Maxwell
William H. Buck
David J. Baillargeon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Technology and Engineering Co
Original Assignee
ExxonMobil Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ExxonMobil Research and Engineering Co filed Critical ExxonMobil Research and Engineering Co
Publication of EP1481044A1 publication Critical patent/EP1481044A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M139/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing atoms of elements not provided for in groups C10M127/00 - C10M137/00
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • C10M105/38Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/02Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M111/00Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
    • C10M111/02Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential at least one of them being a non-macromolecular organic compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M111/00Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
    • C10M111/04Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential at least one of them being a macromolecular organic compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M127/00Lubricating compositions characterised by the additive being a non- macromolecular hydrocarbon
    • C10M127/06Alkylated aromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/06Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic nitrogen-containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • C10M169/041Mixtures of base-materials and additives the additives being macromolecular compounds only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • C10M169/044Mixtures of base-materials and additives the additives being a mixture of non-macromolecular and macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/10Compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/06Well-defined aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/06Well-defined aromatic compounds
    • C10M2203/065Well-defined aromatic compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/0206Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/022Ethene
    • C10M2205/0225Ethene used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/024Propene
    • C10M2205/0245Propene used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • C10M2205/0285Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/16Paraffin waxes; Petrolatum, e.g. slack wax
    • C10M2205/163Paraffin waxes; Petrolatum, e.g. slack wax used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/17Fisher Tropsch reaction products
    • C10M2205/173Fisher Tropsch reaction products used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/22Alkylation reaction products with aromatic type compounds, e.g. Friedel-crafts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/22Alkylation reaction products with aromatic type compounds, e.g. Friedel-crafts
    • C10M2205/223Alkylation reaction products with aromatic type compounds, e.g. Friedel-crafts used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/024Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings having at least two phenol groups but no condensed ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/2805Esters used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • C10M2207/2835Esters of polyhydroxy compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/102Polyesters
    • C10M2209/1023Polyesters used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/081Thiols; Sulfides; Polysulfides; Mercaptals used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/086Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing sulfur atoms bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/04Molecular weight; Molecular weight distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/54Fuel economy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2060/00Chemical after-treatment of the constituents of the lubricating composition
    • C10N2060/14Chemical after-treatment of the constituents of the lubricating composition by boron or a compound containing boron

Definitions

  • This invention relates to lubricating oil compositions suitable for use in internal combustion engines.
  • Lubricating oils for internal combustion engines contain in addition to at least one base lubricating oil, additives which enhance the performance of the lubricating oil.
  • additives such as detergents, dispersants, friction reducers, viscosity index improvers, antioxidants, corrosion inhibitors, antiwear additives, pour point depressants, seal compatibility additives, and antifoam agents are used in lubricating oil compositions.
  • Friction reducers often include mixtures of two or more of the above classes of components. Several of the above prior art friction reducing compositions are found to have significant and often undesirable side-effects. It is thus desirable to have several improved fuel economy components and/or systems to be able to choose from in the formulation of high quality fuel economy improving lubricants.
  • the present invention concerns friction reducers for use in lubricating oil compositions which comprise certain groups of aromatic compounds, esters, narrow mixtures of base stocks, and/or amorphous polymers such as amorphous olefin copolymers. These compositions can provide substantial reductions in the coefficient of friction and fuel economy improving benefits when admixed to lubricating oils without deleterious effects such as instability, undesirable high viscosities and deposits.
  • pentaerythritol esters and optionally triol esters are added to lubricating oil compositions to provide reduced friction and improved fuel economy.
  • similar results are obtained by adding hydrocarbyl aromatics to a lubricating oil composition containing one or more of Group II base stock, Group III base stock, and wax isomerate base stock.
  • the invention concerns a lubricating oil composition comprising an amorphous olefin copolymer and one or more of Group II base stock, Group III base stock, and wax isomerate base stock.
  • the third aspect also includes one or more of hydrocarbyl aromatics and polyol esters as part of the composition.
  • moderate concentrations of hydrocarbyl aromatics are used in a lubricating oil composition comprising paraffinic base oil stocks and preferably a borated polyisobutenyl succinimide ashless dispersant.
  • Figure 1 is a plot of coefficient of friction as a function of temperature for various compositions.
  • Engine oils contain a base lube oil and a variety of additives. These additives include detergents, dispersants, friction reducers, viscosity index improvers, antioxidants, corrosion inhibitors, antiwear additives, pour point depressants, seal compatibility additives, and antifoam agents. To be effective, these additives must be oil-soluble or oil-dispersible. By oil-soluble, it is meant that the compound is soluble in the base oil or lubricating oil composition under normal blending conditions.
  • the instant invention concerns certain groups of aromatic compounds, esters, mixtures of base stocks, and/or amorphous polymers such as amorphous olefin copolymers that can provide substantial reductions in the coefficient of friction and fuel economy improving benefits when admixed to lubricating oils without deleterious effects such as instability, undesirable high viscosities and deposits.
  • the present invention concerns certain pentaerythritol esters which are found to provide unexpected and significant fuel economy improving (friction reducing) benefits when formulated into lubricants containing hydrocarbyl aromatic compositions. This fuel economy improvement enhancement can be further improved with the addition of certain esters to the above-mentioned pentaerythritol esters.
  • this additional fuel economy improvement is seen with a mixed triol ester and pentaerythritol ester system in the presence of a relatively low concentration of hydrocarbyl aromatics such as alkylated naphthalene.
  • Useful concentrations of hydrocarbyl aromatics range from about 1% or more. We believe that about 2% to about 45% of such hydrocarbyl aromatics is often preferred, more preferably about 2% to about 30%, even more preferably about 3% to about 15%.
  • Desirable esters include pentaerythritol esters, derived from mono-, di-, and poly pentaerythritol polyols reacted with mixed hydrocarbyl acids (RC0 2 H), and where a substantial amount of the available -OH groups are converted to esters.
  • the substituent hydrocarbyl groups, R, of the acid moiety and ester comprise from about C 6 to about C 16 or more, with preferable ranges being about C 6 to about Cj 4 , and may comprise alkyl, alkenyl, cycloalkyl, cycloalkenyl, linear, branched, and related hydrocarbyl groups, and can optionally contain S, N, and/or O groups.
  • Pentaerythritol esters with mixtures of substituent hydrocarbyl groups, R are often preferred.
  • substituent hydrocarbyl groups, R may comprise a substantial amount of C 8 and Cio hydrocarbyl moieties in the proportions of about 1 :4 to 4: 1.
  • a preferred pentaerythritol ester has R groups comprising approximately about 55% C 8 , about 40% C 10 , and the remainder approximately 5% C 6 and C ⁇ 2+ moieties.
  • one useful pentaerythritol ester has a viscosity index of about 148, a pour point of about 3°C and a kinematic viscosity of about 5.9 cSt at 100°C.
  • the pentaerythritol esters can be used in lubricant compositions at concentrations of about 3% to about 30%, preferably about 4% to about 20%, and more preferably about 5% to about 15%.
  • Esters may also include esters of trimethylolpropane and trimethylolethane and the like.
  • the hydrocarbyl aromatics that can be used can be any hydrocarbyl molecule that contains at least about 5% of its weight derived from an aromatic moiety such as a benzenoid moiety or naphthenoid moiety, or their derivatives.
  • These hydrocarbyl aromatics include alkyl benzenes, alkyl naphthalenes, alkyl diphenyl oxides, alkyl naphthols, alkyl diphenyl sulfides, alkylated bis-phenol A, alkylated thiodiphenol, and the like.
  • the aromatic can be mono-alkylated, dialkylated, polyalkylated, and the like.
  • the aromatic can be mono- or poly- functionalized.
  • the hydrocarbyl groups can also be comprised of mixtures of alkyl groups, alkenyl groups, alkynyl, cycloalkyl groups, cycloalkenyl groups and other related hydrocarbyl groups.
  • the hydrocarbyl groups can range from about C 6 up to about C 6 o with a range of about C 8 to about C 0 often being preferred. A mixture of hydrocarbyl groups is often preferred.
  • the hydrocarbyl group can optionally contain sulfur, oxygen, and/or nitrogen containing substituents.
  • the aromatic group can also be derived from natural (petroleum) sources, provided at least about 5% of the molecule is comprised of an above- type aromatic moiety.
  • Viscosities at 100 °C of approximately 3 cSt to about 50 cSt are preferred, with viscosities of approximately 3.4 cSt to about 20 cSt often being more preferred for the hydrocarbyl aromatic component.
  • an alkyl naphthalene where the alkyl group is primarily comprised of 1-hexadecene is used.
  • Other alkylates of aromatics can be advantageously used.
  • Naphthalene for example, can be alkylated with olefins such as octene, decene, dodecene, tetradecene or higher, mixtures of similar olefins, and the like.
  • Useful concentrations of hydrocarbyl aromatic in a lubricant oil composition can be about 2% to about 25%, preferably about 4% to about 20%, and more preferably about 4% to about 15%, depending on the application.
  • Alkylated aromatics such as the hydrocarbyl aromatics of the present invention may be produced by well-known Friedel-Crafts alkylation of aromatic compounds. See Friedel-Crafts and Related Reactions, Olah, G.A. (ed), Interscience Publishers, New York, 1963.
  • an aromatic compound such as benzene or naphthalene
  • an olefin, alkyl halide or alcohol in the presence of a Friedel-Crafts catalyst. See Friedel-Crafts and Related Reactions, Vol. 2, part 1, chapters 14, 17, and 18, See Olah, G.A. (ed), Interscience Publishers, New York, 1964.
  • catalysts are known to one skilled in the art.
  • the choice of catalyst depends on the reactivity of the starting materials and product quality requirements.
  • strong acids such as A1C1 3 , BF 3 , or HF may be used.
  • milder catalysts such as FeCl 3 or SnCL* are preferred.
  • Other alkylation technology uses zeolites or solid super acids.
  • Fuel economy enhancements are seen with synergistic mixtures of (a) Group II or Group III paraffinic oil blends, including wax isomerate base oils, and (b) hydrocarbyl aromatics.
  • the above mentioned base stocks comprising certain hydroprocessed base oils, in the presence of low concentrations of polyol based esters (such as those derived from trimethylolpropane and mixed hydrocarbyl acids), and hydrocarbyl aromatics (such as alkylated naphthalene) are found to provide unexpected and significant fuel economy improving (friction reducing) benefits when directly compared to lubricants containing relatively high quantities of about 40% of high quality synthetic fluids derived from olefin oligomers such as oligomers of 1-decene.
  • both groups of base stocks have viscosities of about 4 to about 50 cSt at 100 °C and similar viscosity indices of approximately 110 to approximately 150 or greater.
  • certain amorphous olefin copolymers are found to provide unexpected and significant fuel economy improving (friction reducing) benefits when formulated into lubricants, especially those containing significant amounts of Group II or Group III base oils, including wax isomerates, having viscosity indices of about 110 to about 150 or greater.
  • Such olefin copolymers are not predominantly crystalline.
  • Copolymers used in this invention have molecular weights in the range of about 20,000 or higher, preferably 60,000 or higher, more preferably 100,000 or higher and even more preferably 150,000 or higher.
  • amorphous etheylene-propylene copolymers comprising significant to major amounts of propylene-derived copolymers have molecular weights in the range of about 20,000 or higher.
  • a traditional ester and/or hydrocarbyl aromatic such as alkyl naphthalene at concentrations of about 1% to about 30% or more, preferably about 2% to about 25%, or more preferably about 3% to about 20% in the finished formulated lubricant.
  • significant fuel economy enhancements are attained with the use of moderate concentrations of hydrocarbyl aromatics, preferably in the presence of at least a minor concentration of Group II or Group III hydrocracked and/or hydrotreated base stocks, including wax isomerates.
  • hydrocarbyl aromatics are described above.
  • Group II and Group III base stocks and wax isomerate base stocks are described below. We also believe that the presence of certain ashless dispersants can significantly contribute to the fuel economy enhancements observed.
  • one preferred composition comprising about 20% hydrocarbyl aromatic, about 40% Group II paraffinic base stock, about 3 weight percent borated polyisobutyl succinimide ashless dispersant is found to be particularly useful.
  • Useful ashless dispersants are described below.
  • Group II and/or Group III hydroprocessed or hydrocracked base stocks including wax isomerates, or their synthetic counterparts such as polyalphaolefin lubricating oils are preferred as lubricating base stocks when used in conjunction with the components of each of the aspects of the present invention.
  • At least about 20% of the total composition should comprise such Group II or Group III base stocks, including wax isomerates, with at least about 30% on occasion being more preferable, with at least about 50% on occasion being more preferable and more than about 80% on occasion being even more preferable.
  • Gas-to-Liquids base stocks can also be preferentially used with the components of this invention as a portion or all of the base stocks used to formulate the finished lubricant.
  • a mixture of all or some of such base stocks can be used to advantage and can often be preferred.
  • the components of this invention are added to lubricating systems comprised of primarily Group II and or Group III base stocks, including wax isomerates, with up to lesser quantities of alternate fluids such as the above described hydrocarbyl aromatics as exemplified by C ⁇ 2 , C ⁇ , 6 , and/or Cis alkylated naphthalenes.
  • hydrocarbyl aromatics products comprising substantially mono-alkylated naphthalene can be preferred.
  • Other components, including effective amounts of co-base stocks, and various performance additives can be advantageously used with the components of this invention.
  • co-base stocks include polyalphaolefin oligomeric low- and moderate- and high-viscosity oils, dibasic acid esters, polyol esters, other hydrocarbon oils such as those derived from gas to liquids type technology, supplementary hydrocarbyl aromatics and the like.
  • co-base stocks can also include some quantity of decene-derived trimers and tetramers, and also some quantity of Group I base stocks, provided that the above Group II and/or Group III type base stocks, including wax isomerates, predominate and make up at least about 50% of the total base stocks contained in fluids comprised of the elements of the above invention requiring a substantial portion of such stocks.
  • the base stocks, co-base stocks and other performance additives are discussed in more detail below.
  • the instant invention can be used with additional lubricant components in effective amounts in lubricant compositions, such as for example polar and/or non-polar lubricant base oils, and performance additives such as for example, but not limited to, oxidation inhibitors, metallic and non-metallic dispersants, metallic and non-metallic detergents, corrosion and rust inhibitors, metal deactivators, anti-wear agents (metallic and non-metallic, phosphorus- containing and non-phosphorus, sulfur-containing and non-sulfur types), extreme pressure additives (metallic and non-metallic, phosphonis-containing and non-phosphorus, sulfur-containing and non-sulfur types), anti-seizure agents, pour point depressants, wax modifiers, viscosity modifiers, seal compatibility agents, friction modifiers, lubricity agents, anti-staining agents, chromophoric agents, def amants, demulsifiers, and others.
  • performance additives such as for example, but not limited to, oxidation
  • Lubricating oils that are useful in the present invention are both natural oils and synthetic oils. Natural and synthetic oils (or mixtures thereof) can be used unrefined, refined, or rerefined (the latter is also known as reclaimed or reprocessed oil). Unrefined oils are those obtained directly from a natural or synthetic source and used without added purification. These include shale oil obtained directly from retorting operations, petroleum oil obtained directly from primary distillation, and ester oil obtained directly from an esterification process. Refined oils are similar to the oils discussed for unrefined oils except refined oils are subjected to one or more purification steps to improve the at least one lubricating oil property. One skilled in the art is familiar with many purification processes. These processes include solvent extraction, secondary distillation, acid extraction, base extraction, filtration, and percolation. Rerefined oils are obtained by processes analogous to refined oils but using an oil that has been previously used.
  • Groups I, II, III, IV and V are broad categories of base oil stocks developed and defined by the American Petroleum Institute (API Publication 1509; www.API.org) to create guidelines for lubricant base oils.
  • Group I base stock generally have a viscosity index of between about 80 to 120 and contains greater than about 0.03% sulfur and/or less than about 90% saturates.
  • Group II base stocks generally have a viscosity index of between about 80 to 120, and contain less than or equal to about 0.03 % sulfur and greater than or equal to about 90% saturates.
  • Group III stock generally has a viscosity index greater than about 120 and contain less than or equal to about 0.03 % sulfur and greater than about 90% saturates.
  • Group IV includes polyalphaolefins (POA).
  • Group V base stock includes base stocks not included in Groups I-IV. The table below summarizes properties of each of these five groups.
  • Natural oils include animal oils, vegetable oils (castor oil and lard oil, for example), and mineral oils. Animal and vegetable oils possessing favorable thermal oxidative stability can be used. Of the natural oils, mineral oils are preferred. Mineral oils vary widely as to their crude source, for example, as to whether they are paraffinic, naphthenic, or mixed paraffinic-naphthenic. Oils derived from coal or shale are also useful in the present invention. Natural oils vary also as to the method used for their production and purification, for example, their distillation range and whether they are straight run or cracked, hydrorefined, or solvent extracted.
  • Synthetic oils include hydrocarbon oil.
  • Hydrocarbon oils include oils such as polymerized and interpolymerized olefins (polybutylenes, polypropylenes, propylene isobutylene copolymers, ethylene-olefin copolymers, and ethylene-alphaolefin copolymers, for example).
  • Polyalphaolefin (PAO) oil base stocks are a commonly used synthetic hydrocarbon oil.
  • PAOs derived from C 8 , Cio, C ]2 , C olefins or mixtures thereof may be utilized. See U.S. Patents 4,956,122; 4,827,064; and 4,827,073, which are incorporated herein by reference in their entirety.
  • the number average molecular weights of the PAOs typically vary from about 250 to about 3,000, although PAO's may be made in viscosities up to about 100 cSt (100°C).
  • the PAOs are typically comprised of relatively low molecular weight hydrogenated polymers or oligomers of alphaolefins which include, but are not limited to, C 2 to about C 32 alphaolefins with the C 8 to about C 16 alphaolefins, such as 1-octene, 1 -decene, 1-dodecene and the like, being preferred.
  • alphaolefins include, but are not limited to, C 2 to about C 32 alphaolefins with the C 8 to about C 16 alphaolefins, such as 1-octene, 1 -decene, 1-dodecene and the like, being preferred.
  • the preferred polyalphaolefins are poly- 1-octene, poly-1-decene and poly- 1-dodecene and mixtures thereof and mixed olefin-derived polyolefins.
  • the dimers of higher olefins in the range of C 1 to C J8 may be used to provide low viscosity basestocks of acceptably low volatility.
  • the PAOs may be predominantly trimers and tetramers of the starting olefins, with minor amounts of the higher oligomers, having a viscosity range of 1.5 to 12 cSt.
  • the PAO fluids may be conveniently made by the polymerization of an alphaolefin in the presence of a polymerization catalyst such as the Friedel- Crafts catalysts including, for example, aluminum trichloride, boron trifluoride or complexes of boron trifluoride with water, alcohols such as ethanol, propanol or butanol, carboxylic acids or esters such as ethyl acetate or ethyl propionate.
  • a polymerization catalyst such as the Friedel- Crafts catalysts including, for example, aluminum trichloride, boron trifluoride or complexes of boron trifluoride with water, alcohols such as ethanol, propanol or butanol, carboxylic acids or esters such as ethyl acetate or ethyl propionate.
  • a polymerization catalyst such as the Friedel- Crafts catalysts including, for example, aluminum trichloride, boron triflu
  • the alkyl substituents are typically alkyl groups of about 8 to 25 carbon atoms, usually from 10 to 18 carbon atoms and up to three such substituents may be present, as described for the alkyl benzenes in ACS Petroleum Chemistry Preprint 1053-1058, "Poly n-Alkylbenzene Compounds: A Class of Thermally Stable and Wide Liquid Range Fluids", Eapen et al, Phila. 1984. Tri-alkyl benzenes may be produced by the cyclodimerization of 1-alkynes of 8 to 12 carbon atoms as described in U.S. Patent No. 5,055,626.
  • alkylbenzenes are described in European Patent Application No. 168534 and U.S. Patent No. 4,658,072.
  • Alkylbenzenes are used as lubricant basestocks, especially for low-temperature applications (arctic vehicle service and refrigeration oils) and in papermaking oils. They are commercially available from producers of linear alkylbenzenes (LABs) such as Vista Chem. Co, Huntsman Chemical Co., Chevron Chemical Co., and Nippon Oil Co.
  • LABs linear alkylbenzenes
  • the linear alkylbenzenes typically have good low pour points and low temperature viscosities and VI values greater than 100 together with good solvency for additives.
  • alkylated aromatics which may be used when desirable are described, for example, in “Synthetic Lubricants and High Performance Functional Fluids", Dressier, H., chap 5, (R. L. Shubkin (Ed.)), Marcel Dekker, N.Y. 1993.
  • Other useful lubricant oil base stocks include wax isomerate base stocks and base oils, comprising hydroisomerized waxy stocks (e.g. waxy stocks such as gas oils, slack waxes, fuels hydrocracker bottoms, etc.), hydroisomerized Fischer-Tropsch waxes, Gas-to-Liquids (GTL) base stocks and base oils, and other wax isomerate hydroisomerized base stocks and base oils, or mixtures thereof.
  • hydroisomerized waxy stocks e.g. waxy stocks such as gas oils, slack waxes, fuels hydrocracker bottoms, etc.
  • hydroisomerized Fischer-Tropsch waxes e.g. waxy stocks such as gas oils, slack waxes, fuels hydrocracker bottoms, etc.
  • Fischer-Tropsch waxes the high boiling point residues of Fischer- Tropsch synthesis, are highly paraffinic hydrocarbons with very low sulfur content.
  • the hydroprocessing used for the production of such base stocks may use an amorphous hydrocracking hydroisomerization catalyst, such as one of the specialized lube hydrocracking (LHDC) catalysts or a crystalline hydrocracking/hydroisomerization catalyst, preferably a zeolitic catalyst.
  • an amorphous hydrocracking hydroisomerization catalyst such as one of the specialized lube hydrocracking (LHDC) catalysts or a crystalline hydrocracking/hydroisomerization catalyst, preferably a zeolitic catalyst.
  • LHDC specialized lube hydrocracking
  • a zeolitic catalyst preferably ZSM-48 as described in U.S. ' Patent 5,075,269, the disclosure of which is incorporated herein by reference in its entirety.
  • Processes for making hydrocracked/hydroisomerized distillates and hydrocracked/hydroisomerized waxes are described, for example, in U.S. Patents Nos.
  • Gas-to-Liquids (GTL) base oils, Fischer-Tropsch wax derived base oils, and other wax-derived hydroisomerized (wax isomerate) base oils be advantageously used in the instant invention, and may have useful kinematic viscosities at 100°C of about 3 cSt to about 50 cSt, preferably about 3 cSt to about 30 cSt, more preferably about 3.5 cSt to about 25 cSt, as exemplified by GTL 4 with kinematic viscosity of about 4.0 cSt at 100°C and a viscosity index of about 141.
  • Gas-to-Liquids (GTL) base oils may have useful pour points of about -20°C or lower, and under some conditions may have advantageous pour points of about -25 °C or lower, with useful pour points of about -30°C to about -40°C or lower.
  • Useful compositions of Gas-to-Liquids (GTL) base oils, Fischer-Tropsch wax derived base oils, and wax-derived hydroisomerized base oils are recited in U.S. Patent Nos. 6,080,301; 6,090,989, and 6, 165,949 for example, and are incorporated herein in their entirety by reference.
  • Gas-to-Liquids (GTL) base oils have a beneficial kinematic viscosity advantage over conventional Group II and Group III base oils, which may be very advantageously used with the instant invention.
  • Gas-to-Liquids (GTL) base oils can have significantly higher kinematic viscosities, up to about 20-50 cSt at 100°C, whereas by comparison commercial Group II base oils can have kinematic viscosities, up to about 15 cSt at 100°C, and commercial Group III base oils can have kinematic viscosities, up to about 10 cSt at 100°C.
  • the higher kinematic viscosity range of Gas-to- Liquids (GTL) base oils, compared to the more limited kinematic viscosity range of Group II and Group III base oils, in combination with the instant invention can provide additional beneficial advantages in formulating lubricant compositions.
  • the exceptionally low sulfur content of Gas-to-Liquids (GTL) base oils, and other wax-derived hydroisomerized base oils, in combination with the low sulfur content of suitable olefin oligomers and/or alkyl aromatics base oils, and in combination with the instant invention can provide additional advantages in lubricant compositions where very low overall sulfur content can beneficially impact lubricant performance.
  • Alkylene oxide polymers and interpolymers and their derivatives containing modified terminal hydroxyl groups obtained by, for example, esterification or etherification are useful synthetic lubricating oils.
  • these oils may be obtained by polymerization of ethylene oxide or propylene oxide, the alkyl and aryl ethers of these polyoxyalkylene polymers (methyl-polyisopropylene glycol ether having an average molecular weight of about 1000, diphenyl ether of polyethylene glycol having a molecular weight of about 500-1000, and the diethyl ether of polypropylene glycol having a molecular weight of about 1000 to 1500, for example) or mono- and polycarboxylic esters thereof (the acidic acid esters, mixed C 3 . 8 fatty acid esters, or the C ⁇ 3 Oxo acid diester of tetraethylene glycol, for example).
  • Esters comprise a useful base stock. Additive solvency and seal compatibility characteristics may be secured by the use of esters such as the esters of dibasic acids with monoalkanols and the polyol esters of monocarboxylic acids.
  • Esters of the former type include, for example, the esters of dicarboxylic acids such as phthalic acid, succinic acid, alkyl succinic acid, alkenyl succinic acid, maleic acid, azelaic acid, suberic acid, sebacic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acid, alkyl malonic acid, alkenyl malonic acid, etc., with a variety of alcohols such as butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethylhexyl alcohol, etc.
  • dicarboxylic acids such as phthalic acid, succinic acid, alkyl succinic acid, alkenyl succinic acid, maleic acid, azelaic acid, suberic acid, sebacic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acid, alkyl malonic acid, alkenyl malonic acid, etc
  • esters include dibutyl adipate, di(2-ethylhexyl) sebacate, di-n-hexyl fumarate, dioctyl sebacate, diisooctyl azelate, diisodecyl azelate, dioctyl phthalate, didecyl phthalate, dieicosyl sebacate, etc.
  • Particularly useful synthetic esters are those which are obtained by reacting one or more polyhydric alcohols, preferably the hindered polyols (such as the neopentyl polyols e.g. neopentyl glycol, trimethylol ethane, 2-methyl-2- propyl-l,3-propanediol, trimethylol propane, pentaerythritol and dipenta- erythritol) with alkanoic acids containing at least about 4 carbon atoms (preferably Cs to C 30 acids such as saturated straight chain fatty acids including caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachic acid, and behenic acid, or the corresponding branched chain fatty acids or unsaturated fatty acids such as oleic acid, or mixtures of any of these materials).
  • the hindered polyols such as the neopentyl polyols
  • Suitable synthetic ester components include the esters of trimethylol propane, trimethylol butane, trimethylol ethane, pentaerythritol and/or dipentaerythritol with one or more monocarboxylic acids containing from about 5 to about 10 carbon atoms. These esters are widely available commercially, for example, the Mobil P-41 and P-51 esters ExxonMobil Chemical Company).
  • Silicon-based oils are another class of useful synthetic lubricating oils. These oils include polyalkyl-, polyaryl-, polyalkoxy-, and polyaryloxy-siloxane oils and silicate oils. Examples of suitable silicon-based oils include tetraethyl silicate, tetraisopropyl silicate, tetra-(2-ethylhexyl)silicate, tetra-(4-methyl- hexyl)silicate, tetra-(p-tert-butylphenyl) silicate, hexyl-(4-methyl-2-pentoxy) disiloxane, poly(methyl) siloxanes, and poly-(methyl-2-mehtylphenyl) siloxanes.
  • esters of phosphorous- containing acids include, for example, tricresyl phosphate, trioctyl phosphate, diethyl ester of decanephosphonic acid.
  • Another class of oils includes polymeric tetrahydrofurans and the like.
  • ZDDP zinc dialkyldithio- phosphate
  • ZDDP compounds generally are of the formula Zn[SP(S)(OR 1 )(OR 2 )] 2 where R 1 and R 2 are alkyl groups, preferably C 2 -C 12 alkyl groups. These alkyl groups may be straight chain or branched.
  • the ZDDP is typically used in amounts of from about 0.4 to 1.4 weight percent of the total lube oil composition, although more or less can often be used advantageously.
  • Sulfurized olefins are useful as antiwear and EP additives.
  • Sulfur- containing olefins can be prepared by sulfurization or various organic materials including aliphatic, arylaliphatic or alicyclic olefinic hydrocarbons containing from about 3 to 30 carbon atoms, preferably 3-20 carbon atoms.
  • the olefinic compounds contain at least one non-aromatic double bond. Such compounds are defined by the formula
  • R 3 R 4 C CR 5 R 6 where each of R -R are independently hydrogen or a hydrocarbon radical.
  • Preferred hydrocarbon radicals are alkyl or alkenyl radicals. Any two of R 3 -R 6 may be connected so as to form a cyclic ring. Additional information concerning sulfurized olefins and their preparation can be found in U.S. Patent No. 4,941,984, incorporated by reference herein in its entirety.
  • alkylthiocarbamoyl compounds bis(dibutyl)thiocarbamoyl, for example
  • a molybdenum compound oxymolybdenum diisopropylphosphorodithioate sulfide, for example
  • a phosphorous ester dibutyl hydrogen phosphite, for example
  • U.S. Patent No. 4,758,362 discloses use of a carbamate additive to provide improved antiwear and extreme pressure properties.
  • the use of thiocarbamate as an antiwear additive is disclosed in U.S. Patent No. 5,693,598.
  • Thiocarbamate/molybdenum complexes such as moly- sulfur alkyl dithiocarbamate trimer complex alkyl are also useful antiwear agents.
  • Esters of glycerol may be used as antiwear agents.
  • mono-, di, and tri-oleates, mono-palmitates and mono-myristates may be used.
  • ZDDP is combined with other compositions that provide antiwear properties.
  • U.S. Patent No. 5,034, 141 discloses that a combination of a thiodixanthogen compound (octylthiodixanthogen, for example) and a metal thiophosphate (ZDDP, for example) can improve antiwear properties.
  • U.S. Patent No. 5,034, 142 discloses that use of a metal alkyoxyalkylxanthate (nickel ethoxyethylxanthate, for example) and a dixanthogen (diethoxyethyl dixanthogen, for example) in combination with ZDDP improves antiwear properties.
  • a metal alkyoxyalkylxanthate nickel ethoxyethylxanthate, for example
  • a dixanthogen diethoxyethyl dixanthogen, for example
  • Preferred antiwear additives include phosphorus and sulfur compounds such as zinc dithiophosphates and/or sulfur, nitrogen, boron, molybdenum phosphorodithioates, molybdenum dithiocarbamates and various organo-molybdenum derivatives including heterocyclics, for example dimercaptothiadiazoles, mercaptobenzothiadiazoles, triazines, and the like, alicyclics, amines, alcohols, esters, diols, triols, fatty amides and the like can also be used. Such additives may be used in an amount of about 0.01 to 6 weight percent, preferably about 0.01 to 4 weight percent. Viscositv Index Improvers
  • Viscosity index improvers also known as VI improvers, viscosity modifiers, and viscosity improvers
  • VI improvers also known as VI improvers, viscosity modifiers, and viscosity improvers
  • Viscosity index improvers provide lubricants with high and low temperature operability. These additives impart shear stability at elevated temperatures and acceptable viscosity at low temperatures.
  • Suitable viscosity index improvers include high molecular weight hydrocarbons, polyesters and viscosity index improver dispersants that function as both a viscosity index improver and a dispersant.
  • Typical molecular weights of these polymers are between about 10,000 to 1,000,000, more typically about 20,000 to 500,00, and even more typically between about 50,000 and 200,000.
  • suitable viscosity index improvers are polymers and copolymers of methacrylate, butadiene, olefins, or alkylated styrenes.
  • Polyisobutylene is a commonly used viscosity index improver.
  • Another suitable viscosity index improver is polymethacrylate (copolymers of various chain length alkyl methacrylates, for example), some formulations of which also serve as pour point depressants.
  • Other suitable viscosity index improvers include copolymers of ethylene and propylene, hydrogenated block copolymers of styrene and isoprene, and polyacrylates (copolymers of various chain length acrylates, for example). Specific examples include styrene-isoprene or styrene- butadiene based polymers of 50,000 to 200,000 molecular weight.
  • Viscosity index improvers may be used in an amount of about 0.01 to 8 weight percent, preferably about 0.01 to 4 weight percent.
  • Antioxidants may be used in an amount of about 0.01 to 8 weight percent, preferably about 0.01 to 4 weight percent.
  • Antioxidants retard the oxidative degradation of base oils during service. Such degradation may result in deposits on metal surfaces, the presence of sludge, or a viscosity increase in the lubricant.
  • oxidation inhibitors that are useful in lubricating oil compositions. See, Klamann in Lubricants and Related Products, op cite, and U.S. Patent Nos. 4,798,684 and 5,084,197, for example, each of which is incorporated by reference herein in its entirety.
  • Useful antioxidants include hindered phenols. These phenolic antioxidants may be ashless (metal-free) phenolic compounds or neutral or basic metal salts of certain phenolic compounds. Typical phenolic antioxidant compounds are the hindered phenolics which are the ones which contain a sterically hindered hydroxyl group, and these include those derivatives of dihydroxy aryl compounds in which the hydroxyl groups are in the o- or p- position to each other. Typical phenolic antioxidants include the hindered phenols substituted with C 6 + alkyl groups and the alkylene coupled derivatives of these hindered phenols.
  • phenolic materials of this type 2-t-butyl- 4-heptyl phenol; 2-t-butyl-4-octyl phenol; 2-t-butyl-4-dodecyl phenol; 2,6-di-t- butyl-4-heptyl phenol; 2,6-di-t-butyl-4-dodecyl phenol; 2-methyl-6-t-butyl-4- heptyl phenol; and 2-methyl-6-t-butyl-4-dodecyl phenol.
  • Other useful hindered mono-phenolic antioxidants may include for example hindered 2,6-di-alkyl- phenolic proprionic ester derivatives.
  • Bis-phenolic antioxidants may also be advantageously used in combination with the instant invention.
  • ortho coupled phenols include: 2,2'-bis(6-t-butyl-4-heptyl phenol); 2,2'-bis(6-t- butyl-4-octyl phenol); and 2,2'-bis(6-t-butyl-4-dodecyl phenol).
  • Para coupled bis phenols include for example 4,4'-bis(2,6-di-t-butyl phenol) and 4,4'- methylene-bis(2, 6-di-t-butyl phenol).
  • Non-phenolic oxidation inhibitors which may be used include aromatic amine antioxidants and these may be used either as such or in combination with phenolics.
  • non-phenolic antioxidants include: alkylated and non-alkylated aromatic amines such as aromatic monoamines of the formula R R R J where R is an aliphatic, aromatic or substituted aromatic group, R 9 is an aromatic or a substituted aromatic group, and R 10 is H, alkyl, aryl or R S(0) ⁇ R 12 where R 11 is an alkylene, alkenylene, or aralkylene group, R 12 is a higher alkyl group, or an alkenyl, aryl, or alkaryl o group , and x is 0, 1 or 2.
  • the aliphatic group R may contain from 1 to about 20 carbon atoms, and preferably contains from about 6 to 12 carbon atoms.
  • the aliphatic group is a saturated aliphatic group.
  • both R and R are aromatic or substituted aromatic groups, and the aromatic group may be a fused ring aromatic group such as naphthyl.
  • Aromatic groups R and R may be joined together with other groups such as S.
  • Typical aromatic amines antioxidants have alkyl substituent groups of at least about 6 carbon atoms.
  • Examples of aliphatic groups include hexyl, heptyl, octyl, nonyl, and decyl. Generally, the aliphatic groups will not contain more than about 14 carbon atoms.
  • the general types of amine antioxidants useful in the present compositions include diphenylamines, phenyl naphthyl- amines, phenothiazines, imidodibenzyls and diphenyl phenylene diamines. Mixtures of two or more aromatic amines are also useful. Polymeric amine antioxidants can also be used.
  • aromatic amine antioxidants useful in the present invention include: p,p' -dioctyl diphenylamine; t-octylphenyl-alpha-naphthylamine; phenyl-alphanaphthylamine; and p-octylphenyl-alpha-naphthylamine.
  • Sulfurized alkyl phenols and alkali or alkaline earth metal salts thereof also are useful antioxidants. Low sulfur peroxide decomposers are useful as antioxidants.
  • Another class of antioxidant used in lubricating oil compositions is oil-soluble copper compounds. Any oil-soluble suitable copper compound may be blended into the lubricating oil.
  • suitable copper antioxidants include copper dihydrocarbyl thio or dithio-phosphates and copper salts of carboxylic acid (naturally occurring or synthetic).
  • suitable copper salts include copper dithiocarbamates, sulphonates, phenates, and acetylacetonates.
  • Basic, neutral, or acidic copper Cu(I) and or Cu(II) salts derived from alkenyl succinic acids or anhydrides are know to be particularly useful.
  • Preferred antioxidants include hindered phenols, arylamines, low sulfur peroxide decomposers and other related components. These antioxidants may be used individually by type or in combination with one another. Such additives may be used in an amount of about 0.01 to 5 weight percent, preferably about 0.01 to 1.5 weight percent.
  • Detergents are commonly used in lubricating compositions.
  • a typical detergent is an anionic material that contains a long chain oleophillic portion of the molecule and a smaller anionic or oleophobic portion of the molecule.
  • the anionic portion of the detergent is typically derived from an organic acid such as a sulfur acid, carboxylic acid, phosphorous acid, phenol, or mixtures thereof.
  • the counter ion is typically an alkaline earth or alkali metal.
  • Salts that contain a substantially stoichiometric amount of the metal are described as neutral salts and have a total base number (TBN, as measured by ASTM D2896) of from 0 to 80.
  • compositions are overbased, containing large amounts of a metal base that is achieved by reacting an excess of a metal compound (a metal hydroxide or oxide, for example) with an acidic gas (such as carbon dioxide).
  • a metal compound a metal hydroxide or oxide, for example
  • an acidic gas such as carbon dioxide
  • the overbased material has a ratio of metallic ion to anionic portion of the detergent of about 1.05: 1 to 50: 1 on an equivalent basis. More preferably, the ratio is from about 4: 1 to about 25: 1.
  • the resulting detergent is an overbased detergent that will typically have a TBN of about 150 or higher, often about 250 to 450 or more.
  • the overbasing cation is sodium, calcium, or magnesium.
  • a mixture of detergents of differing TBN can be used in the present invention.
  • Preferred detergents include the alkali or alkaline earth metal salts of sulfates, phenates, carboxylates, phosphates, and salicylates.
  • Sulfonates may be prepared from sulfonic acids that are typically obtained by sulfonation of alkyl substituted aromatic hydrocarbons.
  • Hydrocarbon examples include those obtained by alkylating benzene, toluene, xylene, naphthalene, biphenyl and their halogenated derivatives (chlorobenzene, chlorotoluene, and chloronaphthalene, for example).
  • the alkylating agents typically have about 3 to 70 carbon atoms.
  • the alkaryl sulfonates typically contain about 9 to about 80 carbon or more carbon atoms, more typically from about 16 to 60 carbon atoms.
  • Klamann in Lubricants and Related Products, op cit discloses a number of overbased metal salts of various sulfonic acids which are useful as detergents and dispersants in lubricants.
  • Alkaline earth phenates are another useful class of detergent. These detergents can be made by reacting alkaline earth metal hydroxide or oxide (CaO, Ca(OH) 2 , BaO, Ba(OH) 2 , MgO, Mg(OH) 2 , for example) with an alkyl phenol or sulfurized alkylphenol.
  • alkyl phenol or sulfurized alkylphenol Useful alkyl groups include straight chain or branched C ⁇ -C 3 o alkyl groups, preferably, C -C 20 . Examples of suitable phenols include isobutylphenol, 2-ethylhexylphenol, nonylphenol, 1-ethyldecylphenol, and the like.
  • starting alkylphenols may contain more than one alkyl substituent that are each independently straight chain or branched.
  • the sulfurized product may be obtained by methods well known in the art. These methods include heating a mixture of alkylphenol and sulfurizing agent (including elemental sulfur, sulfur halides such as sulfur dichloride, and the like) and then reacting the sulfurized phenol with an alkaline earth metal base.
  • Metal salts of carboxylic acids are also useful as detergents. These carboxylic acid detergents may be prepared by reacting a basic metal compound with at least one carboxylic acid and removing free water from the reaction product. These compounds may be overbased to produce the desired TBN level.
  • Detergents made from salicylic acid are one preferred class of detergents derived from carboxylic acids.
  • Usef l salicylates include long chain alkyl salicylates.
  • One useful family of compositions is of the formula
  • R is a hydrogen atom or an alkyl group having 1 to about 30 carbon atoms
  • n is an integer from 1 to 4
  • M is an alkaline earth metal.
  • Preferred R groups are alkyl chains of at least Cn, preferably C ⁇ 3 or greater. R may be optionally substituted with substituents that do not interfere with the detergent's function.
  • M is preferably, calcium, magnesium, or barium. More preferably, M is calcium.
  • Hydrocarbyl-substituted salicylic acids may be prepared from phenols by the Kolbe reaction. See U.S. Patent No. 3,595,791, which is incorporated herein by reference in its entirety, for additional information on synthesis of these compounds.
  • the metal salts of the hydrocarbyl-substituted salicylic acids may be prepared by double decomposition of a metal salt in a polar solvent such as water or alcohol.
  • Alkaline earth metal phosphates are also used as detergents.
  • Detergents may be simple detergents or what is known as hybrid or complex detergents. The latter detergents can provide the properties of two detergents without the need to blend separate materials. See U.S. Patent No. 6,034,039 for example.
  • Preferred detergents include calcium phenates, calcium sulfonates, calcium salicylates, magnesium phenates, magnesium sulfonates, magnesium salicylates and other related components (including borated detergents).
  • the total detergent concentration is about 0.01 to about 6.0 weight percent, preferably, about 0.1 to 0.4 weight percent.
  • Dispersants help keep these byproducts in solution, thus diminishing their deposit on metal surfaces.
  • Dispersants may be ashless or ash-forming in nature.
  • the dispersant is ashless.
  • So called ashless dispersants are organic materials that form substantially no ash upon combustion.
  • non-metal-containing or borated metal-free dispersants are considered ashless.
  • metal-containing detergents discussed above form ash upon combustion.
  • Suitable dispersants typically contain a polar group attached to a relatively high molecular weight hydrocarbon chain.
  • the polar group typically contains at least one element of nitrogen, oxygen, or phosphorous.
  • Typical hydrocarbon chains contain 50 to 400 carbon atoms.
  • dispersants may be characterized as phenates, sulfonates, sulfurized phenates, salicylates, naphthenates, stearates, carbamates, thiocarbamates, phosphorus derivatives.
  • a particularly useful class of dispersants are the alkenylsuccinic derivatives, typically produced by the reaction of a long chain substituted alkenyl succinic compound, usually a substituted succinic anhydride, with a polyhydroxy or polyamino compound.
  • the long chain group constituting the oleophilic portion of the molecule which confers solubility in the oil is normally a polyisobutylene group.
  • Exemplary U.S. patents describing such dispersants are 3,172,892; 3,2145,707; 3,219,666; 3,316, 177; 3,341,542; 3,444, 170; 3,454,607; 3,541,012; 3,630,904; 3,632,511; 3,787,374 and 4,234,435.
  • Other types of dispersant are described in U.S. Patents Nos.
  • Hydrocarbyl-substituted succinic acid compounds are popular dispersants.
  • succinimide, succinate esters, or succinate ester amides prepared by the reaction of a hydrocarbon-substituted succinic acid compound preferably having at least 50 carbon atoms in the hydrocarbon substituent, with at least one equivalent of an alkylene amine are particularly useful.
  • Succinimides are formed by the condensation reaction between alkenyl succinic anhydrides and amines. Molar ratios can vary depending on the polyamine. For example, the molar ratio of alkenyl succinic anhydride to TEPA can vary from about 1: 1 to about 5: 1. Representative examples are shown in U.S. Pat. Nos. 3,087,936; 3,172,892; 3,219,666; 3,272,746; 3,322,670; and 3,652,616, 3,948,800; and Canada Pat. No. 1,094,044, which are incorporated herein in their entirety by reference.
  • Succinate esters are formed by the condensation reaction between alkenyl succinic anhydrides and alcohols or polyols. Molar ratios can vary depending on the alcohol or polyol used. For example, the condensation product of an alkenyl succinic anhydride and pentaerythritol is a useful dispersant.
  • Succinate ester amides are formed by condensation reaction between alkenyl succinic anhydrides and alkanol amines.
  • suitable alkanol amines include ethoxylated polyalkylpolyamines, propoxylated polyalkylpoly- amines and polyalkenylpolyamines such as polyethylene polyamines.
  • propoxylated hexamethylenediamine Representative examples are shown in U.S. Pat. No. 4,426,305, incorporated herein by reference.
  • the molecular weight of the alkenyl succinic anhydrides used in the preceding paragraphs will typically range between 800 and 2,500.
  • the above products can be post-reacted with various reagents such as sulfur, oxygen, formaldehyde, carboxylic acids such as oleic acid, and boron compounds such as borate esters or highly borated dispersants.
  • the dispersants can be borated with from about 0.1 to about 5 moles of boron per mole of dispersant reaction product.
  • Mannich base dispersants are made from the reaction of alkylphenols, formaldehyde, and amines. See U.S. Patent No. 4,767,551, which is incorporated herein by reference. Process aids and catalysts, such as oleic acid and sulfonic acids, can also be part of the reaction mixture. Molecular weights of the alkylphenols range from 800 to 2,500. Representative examples are shown in U.S. Pat. Nos. 3,697,574; 3,703,536; 3,704,308; 3,751,365; 3,756,953; 3,798,165; and 3,803,039, which are incorporated herein in their entirety by reference.
  • Typical high molecular weight aliphatic acid modified Mannich condensation products useful in this invention can be prepared from high molecular weight alkyl-substituted hydroxyaromatics or HN(R) 2 group- containing reactants.
  • Examples of high molecular weight alkyl-substituted hydroxyaromatic compounds are polypropylphenol, polybutylphenol, and other polyalkylphenols.
  • polyalkylphenols can be obtained by the alkylation, in the presence of an alkylating catalyst, such as BF 3 , of phenol with high molecular weight polypropylene, polybutylene, and other polyalkylene compounds to give alkyl substituents on the benzene ring of phenol having an average 600-100,000 molecular weight.
  • an alkylating catalyst such as BF 3
  • HN(R) 2 group-containing reactants are alkylene polyamines, principally polyethylene polyamines.
  • Other representative organic compounds containing at least one HN(R) 2 group suitable for use in the preparation of Mannich condensation products are well known and include the mono- and di-amino alkanes and their substituted analogs, e.g., ethylamine and diethanol amine; aromatic diamines, e.g., phenylene diamine, diamino naphthalenes; heterocyclic amines, e.g., morpholine, pyrrole, pyrrolidine, imidazole, imidazolidine, and piperidine; melamine and their substituted analogs.
  • alkylene polyamide reactants include ethylenediamine, diethylene triamine, triethylene tetraamine, tetraethylene pentaamine, pentaethylene hexamine, hexaethylene heptaamine, heptaethylene octaamine, octaethylene nonaamine, nonaethylene decamine, and decaethylene undecamine and mixture of such amines having nitrogen contents corresponding to the alkylene polyamines, in the formula H 2 N-(Z-NH-) n H, mentioned before, Z is a divalent ethylene and n is 1 to 10 of the foregoing formula.
  • propylene polyamines such as propylene diamine and di-, tri-, terra-, pentapropylene tri-, terra-, penta- and hexaamines are also suitable reactants.
  • the alkylene polyamines are usually obtained by the reaction of ammonia and dihalo alkanes, such as dichloro alkanes.
  • the alkylene polyamines obtained from the reaction of 2 to 11 moles of ammonia with 1 to 10 moles of dichloro alkanes having 2 to 6 carbon atoms and the chlorines on different carbons are suitable alkylene polyamine reactants.
  • Aldehyde reactants useful in the preparation of the high molecular products useful in this invention include the aliphatic aldehydes such as formaldehyde (also as paraformaldehyde and formalin), acetaldehyde and aldol (b-hydroxybutyraldehyde). Formaldehyde or a formaldehyde-yielding reactant is preferred.
  • Hydrocarbyl substituted amine ashless dispersant additives are well known to one skilled in the art; see, for example, U.S. Patent Nos. 3,275,554; 3,438,757; 3,565,804; 3,755,433, 3,822,209, and 5,084,197, which are incorporated herein in their entirety by reference.
  • Preferred dispersants include borated and non-borated succinimides, including those derivatives from mono-succinimides, bis-succinimides, and/or mixtures of mono- and bis-succinimides, wherein the hydrocarbyl succinimide is derived from a hydrocarbylene group such as polyisobutylene having a Mn of from about 500 to about 5000, preferably from about 1000 to 3000, more preferably from about 1000 to 2000, and even more preferably from about 1000 to 1600 or a mixture of such hydrocarbylene groups.
  • Other preferred dispersants include succinic acid-esters and amides, alkylphenol-polyamine coupled Mannich adducts, their capped derivatives, and other related components. Such additives may be used in an amount of about 0.1 to 20 weight percent, preferably about 0.1 to 8 weight percent.
  • Conventional pom * point depressants may be added to the compositions of the present invention if desired. These pour point depressant may be added to lubricating compositions of the present invention to lower the minimum temperature at which the fluid will flow or can be poured.
  • suitable pour point depressants include polymethacrylates, polyacrylates, polyarylamides, condensation products of haloparaffin waxes and aromatic compounds, vinyl carboxylate polymers, and terpolymers of dialkylfumarates, vinyl esters of fatty acids and allyl vinyl ethers.
  • 1,815,022; 2,015,748; 2,191,498; 2,387,501; 2,655,479; 2,666,746; 2,721,877; 2,721,878; and 3,250,715 describe useful pour point depressants and/or the preparation thereof.
  • Such additives may be used in an amount of about 0.01 to 5 weight percent, preferably about 0.01 to 1.5 weight percent.
  • Corrosion inhibitors are used to reduce the degradation of metallic parts that are in contact with the lubricating oil composition.
  • Suitable corrosion inhibitors include thiadizoles. See, for example, U.S. Patent Nos. 2,719,125; 2,719, 126; and 3,087,932, which are incorporated herein by reference in their entirety.
  • Such additives may be used in an amount of about 0.01 to 5 weight percent, preferably about 0.01 to 1.5 weight percent.
  • Seal compatibility agents help to swell elastomeric seals by causing a chemical reaction in the fluid or physical change in the elastomer.
  • Suitable seal compatibility agents for lubricating oils include organic phosphates, aromatic esters, aromatic hydrocarbons, esters (butylbenzyl phthalate, for example), and polybutenyl succinic anhydride. Such additives may be used in an amount of about 0.01 to 3 weight percent, preferably about 0.01 to 2 weight percent.
  • Anti-foam agents may advantageously be added to lubricant compositions. These agents retard the formation of stable foams. Silicones and organic polymers are typical anti-foam agents. For example, polysiloxanes, such as silicon oil or polydimethyl siloxane, provide antifoam properties. Anti-foam agents are commercially available and may be used in conventional minor amounts along with other additives such as demulsifiers; usually the amount of these additives combined is less than 1 percent and often less than 0.1 percent.
  • Antirust additives are additives that protect lubricated metal surfaces against chemical attack by water or other contaminants.
  • a wide variety of these are commercially available; they are referred to in Klamann in Lubricants and Related Products, op cite.
  • antirust additive is a polar compound that wets the metal surface preferentially, protecting it with a film of oil.
  • Another type of antirust additive absorbs water by incorporating it in a water-in-oil emulsion so that only the oil touches the metal surface.
  • Yet another type of antirust additive chemically adheres to the metal to produce a non-reactive surface.
  • suitable additives include zinc dithiophosphates, metal phenolates, basic metal sulfonates, fatty acids and amines. Such additives may be used in an amount of about 0.01 to 5 weight percent, preferably about 0.01 to 1.5 weight percent.
  • a friction modifier is any material or materials that can alter the coefficient of friction of any lubricant or fluid containing such material(s).
  • Friction modifiers also known as friction reducers, or lubricity agents or oiliness agents, and other such agents that change the coefficient of friction of lubricant base oils, formulated lubricant compositions, or functional fluids, may be effectively used in combination with the base oils or lubricant compositions of the present invention if desired. Friction modifiers that lower the coefficient of friction are particularly advantageous in combination with the base oils and lube compositions of this invention. Friction modifiers may include metal-containing compounds or materials as well as ashless compounds or materials, or mixtures thereof.
  • Metal-containing friction modifiers may include metal salts or metal- ligand complexes where the metals may include alkali, alkaline earth, or transition group metals. Such metal-containing friction modifiers may also have low-ash characteristics. Transition metals may include Mo, Sb, Sn, Fe, Cu, Zn, and others.
  • Ligands may include hydrocarbyl derivative of alcohols, polyols, glycerols, partial ester glycerols, thiols, carboxylates, carbamates, thiocarbamates, dithiocarbamates, phosphates, thiophosphates, dithiophosphates, amides, imides, amines, thiazoles, thiadiazoles, dithiazoles, diazoles, triazoles, and other polar molecular functional groups containing effective amounts of O, N, S, or P, individually or in combination.
  • Mo-containing compounds can be particularly effective such as for example Mo- dithiocarbamates, Mo(DTC), Mo-dithiophosphates, Mo(DTP), Mo-amines, Mo (Am), Mo-alcoholates, Mo-alcohol-amides, etc.
  • Ashless friction modifiers may have also include lubricant materials that contain effective amounts of polar groups, for example hydroxyl-containing hydrocaryl base oils, glycerides, partial glycerides, glyceride derivatives, and the like.
  • Polar groups in friction modifiers may include hyrdocarbyl groups containing effective amounts of O, N, S, or P, individually or in combination.
  • friction modifiers that may be particularly effective include, for example, salts (both ash-containing and ashless derivatives) of fatty acids, fatty alcohols, fatty amides, fatty esters, hydroxyl-containing carboxylates, and comparable synthetic long-chain hydrocarbyl acids, alcohols, amides, esters, hydroxy carboxylates, and the like.
  • salts both ash-containing and ashless derivatives
  • fatty acids fatty alcohols, fatty amides, fatty esters, hydroxyl-containing carboxylates
  • fatty alcohols, amides, esters hydroxy carboxylates
  • comparable synthetic long-chain hydrocarbyl acids alcohols, amides, esters, hydroxy carboxylates, and the like.
  • fatty organic acids, fatty amines, and sulfurized fatty acids may be used as suitable friction modifiers.
  • Useful concentrations of friction modifiers may range from about 0.01 wt% to 10-15 wt% or more, often with a preferred range of about 0.1 wt% to 5 wt%. Concentrations of molybdenum containing materials are often described in terms of Mo metal concentration. Advantageous concentrations of Mo may range from about 10 ppm to 3000 ppm or more, and often with a preferred range of about 20-2000 ppm, and in some instances a more preferred range of about 30-1000 ppm. Friction modifiers of all types may be used alone or in mixtures with the materials of this invention. Often mixtures of two or more friction modifiers, or mixtures of friction modifiers(s) with alternate surface active material(s), are also desirable.
  • lubricating oil compositions contain one or more of the additives discussed above, the additive(s) are blended into the composition in an amount sufficient for it to perform its intended function. Typical amounts of such additives useful in the present invention are shown in the table below. [0096] Note that many of the additives are shipped from the manufacturer and used with a certain amount of base oil solvent in the formulation. Accordingly, the weight amounts in the table below, as well as other amounts mentioned in this patent, are directed to the amount of active ingredient (that is the non- solvent or non-diluent portion of the ingredient). The weight percents indicated below are based on the total weight of the lubricating oil composition.
  • kinematic viscosity at 40°C or 100°C is determined according to ASTM test method D 445, viscosity index is determined by ASTM test method D 2270, pour point is determined by ASTM test method D 97, and TBN by ASTM test method number D 2896.
  • the hydrocarbyl aromatic in the following examples is alkylated naphthalene (primarily mono-alkylated) having a kinematic viscosity of approximately 4.6 cSt at 100 °C.
  • the primarily mono-alkylated naphthalene is prepared by the alkylation of naphthalene with an olefin primarily comprised of 1-hexadecene.
  • PE ester pentaerythritol ester
  • the admixture of 9.4% of such PE ester to a SAE 10W-30 automotive engine oil exhibited a surprising 44% fuel economy enhancement.
  • the admixture of 12% of such PE ester to a SAE 10W-30 automotive engine oil exhibited a surprising 65% fuel economy enhancement.
  • the admixture of 15% of such PE ester to a SAE 10W-30 automotive engine oil exhibited a smprising 77% fuel economy enhancement. It is found that increasing concentrations of such PE ester resulted in greater fuel economy enhancements.
  • Each of these test oils contained a hydrocarbyl aromatic base oil, and it is believed that the presence of such hydrocarbyl aromatic may have contributed to the favorable results obtained.
  • Preferred amounts may be from about 4% to about 15% hydrocarbyl aromatic, about 30% to about 50% Group II type paraffinic base stocks and about 1% to about 4% borated polyisobutenyl succinimide ashless dispersant as received by weight that correspond with HFRR testing of dispersants in Figure 1.
  • the neat borated polyisobutenyl succinimide ashless dispersant is approximately two- thirds active ingredient and provides about 2% active ingredient when added to the oil blends.
  • the inventors also note that a mixture of about 70 wt% Group III base stock, about 8 to 9 wt% Pentaerythritol derived ester and about 5 to 6 wt % Hydrocarbyl Aromatics, with the remainder being a Performance Additive package will also achieve the same surprising Fuel Economy increases.
  • Certain amorphous olefin copolymers are found to provide unexpected and significant fuel economy improving (friction reducing) benefits when formulated into lubricants, especially those containing significant amounts of Group II or Group III base oils having viscosity indices of about 110 to about 150 or greater.
  • a series of industry-sanctioned Sequence VIB fuel economy engine tests is performed to determine the effect of compositional changes upon fuel economy of the test lubricants. Comparative Example 5.1 is used as the reference engine test formulation to establish the base-line FEI value used in subsequent calculations as described above.
  • the inventors have found that the fuel economy benefit can be further enhanced when the above amorphous olefin copolymer is used in the presence of about 1% to about 10% or more of any traditional polyol ester and/or hydrocarbyl aromatic such as alkyl naphthalene and/or other co-base oils in the finished formulated lubricant.
  • Sequence VIB engine testing shows that significant fuel economy enhancements can be attained with the use of moderate concentrations of hydrocarbyl aromatics, preferably in the presence of at least a minor concentration of Group II or Group III, or hydrocracked and/or hydrotreated base stocks, including wax isomerate base oils.
  • the presence of certain ashless dispersants also can significantly contribute to the fuel economy enhancements observed.
  • a series of industry-sanctioned Sequence VIB fuel economy engine tests is performed to determine the effect of compositional changes upon fuel economy of the test lubricants. Comparative Example 6.1 is used as the reference engine test formulation to establish the base-line FEI value used in subsequent calculations as described above.
  • Preferred amounts may be from about 4% to about 15% hydrocarbyl aromatic, about 30% to about 50% Group II type paraffinic base stocks and about 1% to about 4% borated polyisobutenyl succinimide ashless dispersant as received by weight that correspond with HFRR testing of dispersants in Figure 1.
  • the Sequence VIB fuel economy engine test results clearly show the unexpected advantages obtainable by using the components of this invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Lubricants (AREA)
EP03710807A 2002-01-31 2003-01-31 Lubricating oil compositions with improved friction properties Withdrawn EP1481044A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US35373802P 2002-01-31 2002-01-31
US353738P 2002-01-31
US10/354,662 US20030166476A1 (en) 2002-01-31 2003-01-30 Lubricating oil compositions with improved friction properties
US354662 2003-01-30
PCT/US2003/002935 WO2003064572A1 (en) 2002-01-31 2003-01-31 Lubricating oil compositions with improved friction properties

Publications (1)

Publication Number Publication Date
EP1481044A1 true EP1481044A1 (en) 2004-12-01

Family

ID=27669123

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03710807A Withdrawn EP1481044A1 (en) 2002-01-31 2003-01-31 Lubricating oil compositions with improved friction properties

Country Status (8)

Country Link
US (2) US20030166476A1 (ja)
EP (1) EP1481044A1 (ja)
JP (1) JP2006503926A (ja)
KR (1) KR20040077895A (ja)
CA (1) CA2471886A1 (ja)
MX (1) MXPA04006250A (ja)
NZ (1) NZ533412A (ja)
WO (1) WO2003064572A1 (ja)

Families Citing this family (169)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7462490B2 (en) * 2003-10-31 2008-12-09 Chevron Oronite Company Llc Combinatorial lubricating oil composition libraries
US7150182B2 (en) * 2003-10-31 2006-12-19 Chevron Oronite Company, Llc High throughput screening methods for lubricating oil compositions
US7069203B2 (en) * 2003-10-31 2006-06-27 Chevron Oronite Company Llc Method and system of product development process for chemical compositions using high volume modeling
US20050095714A1 (en) * 2003-10-31 2005-05-05 Wollenberg Robert H. High throughput preparation of lubricating oil compositions for combinatorial libraries
CA2592882A1 (en) * 2004-12-30 2006-07-06 A.P. Moeller-Maersk A/S Method and system for improving fuel economy and environmental impact operating a 2-stroke engine
US7465696B2 (en) * 2005-01-31 2008-12-16 Chevron Oronite Company, Llc Lubricating base oil compositions and methods for improving fuel economy in an internal combustion engine using same
JP2008544058A (ja) * 2005-06-23 2008-12-04 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 潤滑油組成物
CN101365777B (zh) * 2006-05-05 2012-07-11 R.T.范德比尔特公司 使用增效有机钨酸盐组分的润滑抗氧化组合物
US8299005B2 (en) 2006-05-09 2012-10-30 Exxonmobil Research And Engineering Company Lubricating oil composition
WO2008127569A2 (en) * 2007-04-10 2008-10-23 Exxonmobil Research And Engineering Company Synthetic lubricating compositions
CA2726683A1 (en) 2008-06-18 2009-12-23 Basf Se Sulfonamide compounds
EP2696689A1 (en) 2011-04-15 2014-02-19 Basf Se Use of substituted dithiine-tetracarboximides for combating phytopathogenic fungi
EP2696688B1 (en) 2011-04-15 2016-02-03 Basf Se Use of substituted dithiine-dicarboximides for combating phytopathogenic fungi
US9938269B2 (en) 2011-06-30 2018-04-10 Abbvie Inc. Inhibitor compounds of phosphodiesterase type 10A
MY163323A (en) 2011-07-13 2017-09-15 Basf Agro Bv Fungicidal substituted 2-[2-halogenalkyl-4-(phenoxy)-phenyl]-1-[1,2,4]triazol-1-yl-ethanol compounds
CN103649058A (zh) 2011-07-15 2014-03-19 巴斯夫欧洲公司 杀真菌的烷基-和芳基取代的2-[2-氯-4-(二卤代苯氧基)苯基]-1-[1,2,4]三唑-1-基乙醇化合物
PE20140837A1 (es) 2011-07-15 2014-07-10 Basf Se Compuestos fungicidas 2-[2-cloro-4-(4-cloro-fenoxi)-fenil]-1-[1,2,4]triazol-1-il-etanol alquilo sustituidos
EP2731936A1 (en) 2011-07-15 2014-05-21 Basf Se Fungicidal phenylalkyl-substituted 2-[2-chloro-4-(4-chloro-phenoxy)-phenyl]-1-[1,2,4]triazol-1-yl-ethanol compounds
AR087536A1 (es) 2011-08-15 2014-04-03 Basf Se Compuestos fungicidas de 1-{2-[2-halo-4-(4-halogen-fenoxi)-fenil]-2-alquiniloxi-etil}-1h-[1,2,4]triazol sustituidos
AU2012296893A1 (en) 2011-08-15 2014-03-06 Basf Se Fungicidal substituted 1-{2-[2-halo-4-(4-halogen-phenoxy)-phenyl]-2-alkoxy-2-alkynyl/alkenyl-ethyl}-1H-[1,2,4]triazole compounds
AR087537A1 (es) 2011-08-15 2014-04-03 Basf Se Compuestos fungicidas de 1-{2-[2-halo-4-(4-halogen-fenoxi)-fenil]-2-alcoxi-2-ciclil-etil}-1h-[1,2,4]triazol sustituidos
EP2744793B1 (en) 2011-08-15 2015-10-14 Basf Se Fungicidal substituted 1-{2-[2-halo-4-(4-halogen-phenoxy)-phenyl]-2-ethoxy-ethyl}-1h- [1,2,4]triazole compounds
EP2559688A1 (en) 2011-08-15 2013-02-20 Basf Se Fungicidal substituted 1-{2-[2-halo-4-(4-halogen-phenoxy)-phenyl]-2-butoxy-ethyl}-1h [1,2,4]triazole compounds
EP2744791B1 (en) 2011-08-15 2015-10-28 Basf Se Fungicidal substituted 1-{2-[2-halo-4-(4-halogen-phenoxy)-phenyl]-2-alkoxy-3-methyl-butyl}-1h-[1,2,4]triazole compounds
JP2014529594A (ja) 2011-08-15 2014-11-13 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 殺菌性置換1−{2−シクリルオキシ−2−[2−ハロ−4−(4−ハロゲン−フェノキシ)−フェニル]−エチル}−1h−[1,2,4]トリアゾール化合物
JP2014524431A (ja) 2011-08-15 2014-09-22 ビーエーエスエフ ソシエタス・ヨーロピア 殺菌性置換1−{2−[2−ハロ−4−(4−ハロゲン−フェノキシ)−フェニル]−2−アルコキシ−ヘキシル}−1h−[1,2,4]トリアゾール化合物
SG11201402134VA (en) 2011-11-09 2014-06-27 Abbvie Deutschland Heterocyclic carboxamides useful as inhibitors of phosphodiesterase type 10a
US20130116241A1 (en) 2011-11-09 2013-05-09 Abbvie Inc. Novel inhibitor compounds of phosphodiesterase type 10a
WO2013113791A1 (en) 2012-02-03 2013-08-08 Basf Se Fungicidal pyrimidine compounds
BR112014018909A8 (pt) 2012-02-03 2017-07-11 Basf Se Compostos, processo para a preparação dos compostos, composição agroquímica, método para o combate dos fungos, utilização dos compostos e semente
WO2013113781A1 (en) 2012-02-03 2013-08-08 Basf Se Fungicidal pyrimidine compounds i
WO2013113776A1 (en) 2012-02-03 2013-08-08 Basf Se Fungicidal pyrimidine compounds
WO2013113720A1 (en) 2012-02-03 2013-08-08 Basf Se Fungicidal pyrimidine compounds
WO2013113782A1 (en) 2012-02-03 2013-08-08 Basf Se Fungicidal pyrimidine compounds
WO2013113778A1 (en) 2012-02-03 2013-08-08 Basf Se Fungicidal pyrimidine compounds
WO2013113715A1 (en) 2012-02-03 2013-08-08 Basf Se Fungicidal pyrimidine compounds
WO2013113773A1 (en) 2012-02-03 2013-08-08 Basf Se Fungicidal pyrimidine compounds
WO2013113716A1 (en) 2012-02-03 2013-08-08 Basf Se Fungicidal pyrimidine compounds
WO2013113719A1 (en) 2012-02-03 2013-08-08 Basf Se Fungicidal pyrimidine compounds ii
EA201491667A1 (ru) 2012-03-13 2015-03-31 Басф Се Фунгицидные соединения пиримидина
WO2013135672A1 (en) 2012-03-13 2013-09-19 Basf Se Fungicidal pyrimidine compounds
WO2014009293A1 (en) 2012-07-13 2014-01-16 Basf Se New substituted thiadiazoles and their use as fungicides
UY34980A (es) 2012-08-17 2014-03-31 Abbvie Inc Nuevos compuestos inhibidores de la fosfodiesterasa del tipo 10a
US9376396B2 (en) 2012-10-22 2016-06-28 AbbVie Deutschland GmbH & Co. KG Acylaminocycloalkyl compounds suitable for treating disorders that respond to modulation of dopamine D3 receptor
US9790203B2 (en) 2012-11-26 2017-10-17 Abbvie Inc. Inhibitor compounds of phosphodiesterase type 10A
US20150313229A1 (en) 2012-11-27 2015-11-05 Basf Se Substituted [1,2,4] Triazole Compounds
WO2014082871A1 (en) 2012-11-27 2014-06-05 Basf Se Substituted 2-[phenoxy-phenyl]-1-[1,2,4]triazol-1-yl-ethanol compounds and their use as fungicides
US20160029630A1 (en) 2012-11-27 2016-02-04 Basf Se Substituted 2-[phenoxy-phenyl]-1-[1,2,4]triazol-1-yl-ethanol compounds and their use as fungicides
WO2014082879A1 (en) 2012-11-27 2014-06-05 Basf Se Substituted [1,2,4]triazole compounds
JP2016501206A (ja) 2012-12-04 2016-01-18 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 新規な置換1,4−ジチイン誘導体および殺菌剤としてのそれらの使用
EP2746277A1 (en) 2012-12-19 2014-06-25 Basf Se Fungicidal imidazolyl and triazolyl compounds
EP2746264A1 (en) 2012-12-19 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds
EP2746274A1 (en) 2012-12-19 2014-06-25 Basf Se Substituted [1,2,4]triazole compounds
WO2014095534A1 (en) 2012-12-19 2014-06-26 Basf Se New substituted triazoles and imidazoles and their use as fungicides
EP2746255A1 (en) 2012-12-19 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds
EP2935236B1 (en) 2012-12-19 2017-11-29 Basf Se Substituted [1,2,4]triazole compounds and their use as fungicides
EP2935237A1 (en) 2012-12-19 2015-10-28 Basf Se Substituted [1,2,4]triazole compounds and their use as fungicides
EP2746278A1 (en) 2012-12-19 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds
EP2746279A1 (en) 2012-12-19 2014-06-25 Basf Se Fungicidal imidazolyl and triazolyl compounds
WO2014095555A1 (en) 2012-12-19 2014-06-26 Basf Se New substituted triazoles and imidazoles and their use as fungicides
CN104981459A (zh) 2012-12-19 2015-10-14 巴斯夫欧洲公司 新型取代三唑类和咪唑类及其作为杀真菌剂的用途
EP2746256A1 (en) 2012-12-19 2014-06-25 Basf Se Fungicidal imidazolyl and triazolyl compounds
EP2746266A1 (en) 2012-12-19 2014-06-25 Basf Se New substituted triazoles and imidazoles and their use as fungicides
WO2014095381A1 (en) 2012-12-19 2014-06-26 Basf Se Fungicidal imidazolyl and triazolyl compounds
WO2014095249A1 (en) 2012-12-19 2014-06-26 Basf Se Fungicidal imidazolyl and triazolyl compounds
EP2746263A1 (en) 2012-12-19 2014-06-25 Basf Se Alpha-substituted triazoles and imidazoles
EP2746276A1 (en) 2012-12-19 2014-06-25 Basf Se New substituted triazoles and imidazoles and their use as fungicides
EP2746275A1 (en) 2012-12-19 2014-06-25 Basf Se New substituted triazoles and imidazoles and their use as fungicides
EP2746262A1 (en) 2012-12-19 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds for combating phytopathogenic fungi
EP2745691A1 (en) 2012-12-19 2014-06-25 Basf Se Substituted imidazole compounds and their use as fungicides
US10759767B2 (en) 2012-12-20 2020-09-01 BASF Agro B.V. Compositions comprising a triazole compound
EP2746258A1 (en) 2012-12-21 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds
EP2746257A1 (en) 2012-12-21 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds
EP2746260A1 (en) 2012-12-21 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds
EP2746259A1 (en) 2012-12-21 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds
UA122519C2 (uk) 2013-01-09 2020-11-25 Басф Агро Б.В. Спосіб одержання триазольної сполуки
WO2014124850A1 (en) 2013-02-14 2014-08-21 Basf Se Substituted [1,2,4]triazole and imidazole compounds
WO2014140184A1 (en) 2013-03-14 2014-09-18 AbbVie Deutschland GmbH & Co. KG Novel inhibitor compounds of phosphodiesterase type 10a
EP2813499A1 (en) 2013-06-12 2014-12-17 Basf Se Substituted [1,2,4]triazole and imidazole compounds
CN106028817A (zh) 2013-07-08 2016-10-12 巴斯夫农业公司 包含三唑化合物和生物农药的组合物
CA2923101A1 (en) 2013-09-16 2015-03-19 Basf Se Fungicidal pyrimidine compounds
WO2015036059A1 (en) 2013-09-16 2015-03-19 Basf Se Fungicidal pyrimidine compounds
WO2015086462A1 (en) 2013-12-12 2015-06-18 Basf Se Substituted [1,2,4]triazole and imidazole compounds
CN106132935A (zh) 2014-03-26 2016-11-16 巴斯夫欧洲公司 作为杀真菌剂的取代的[1,2,4]三唑和咪唑化合物
EP2924027A1 (en) 2014-03-28 2015-09-30 Basf Se Substituted [1,2,4]triazole and imidazole fungicidal compounds
EP2949649A1 (en) 2014-05-30 2015-12-02 Basf Se Fungicide substituted [1,2,4]triazole and imidazole compounds
EP2949216A1 (en) 2014-05-30 2015-12-02 Basf Se Fungicidal substituted alkynyl [1,2,4]triazole and imidazole compounds
EP2952506A1 (en) 2014-06-06 2015-12-09 Basf Se Substituted [1,2,4]triazole and imidazole compounds
US10212934B2 (en) 2014-06-25 2019-02-26 BASF Agro B.V. Pesticidal compositions
US10779536B2 (en) 2014-11-07 2020-09-22 Basf Se Pesticidal mixtures
EP3359530A1 (en) 2015-10-05 2018-08-15 Basf Se Pyridine derivatives for combating phytopathogenic fungi
EP3380483A1 (en) 2015-11-25 2018-10-03 Abbvie Deutschland GmbH & Co. KG Hexahydropyrazinobenz- or -pyrido-oxazepines carrying an oxygen-containing substituent and use thereof in the treatment of 5-ht2c-dependent disorders
CN108290839A (zh) 2015-12-01 2018-07-17 巴斯夫欧洲公司 作为杀真菌剂的吡啶化合物
EP3383849B1 (en) 2015-12-01 2020-01-08 Basf Se Pyridine compounds as fungicides
US10905122B2 (en) 2016-03-16 2021-02-02 Basf Se Use of tetrazolinones for combating resistant phytopathogenic fungi on cereals
WO2017157916A1 (en) 2016-03-16 2017-09-21 Basf Se Use of tetrazolinones for combating resistant phytopathogenic fungi on soybean
US11425909B2 (en) 2016-03-16 2022-08-30 Basf Se Use of tetrazolinones for combating resistant phytopathogenic fungi on fruits
PE20181898A1 (es) 2016-04-01 2018-12-11 Basf Se Compuestos biciclicos
US20190211002A1 (en) 2016-09-22 2019-07-11 Bayer Cropscience Aktiengesellschaft Novel triazole derivatives
CN109715622A (zh) 2016-09-22 2019-05-03 拜耳作物科学股份公司 新的三唑衍生物及其作为杀真菌剂的用途
WO2018054721A1 (en) 2016-09-26 2018-03-29 Basf Se Pyridine compounds for controlling phytopathogenic harmful fungi
WO2018054711A1 (en) 2016-09-26 2018-03-29 Basf Se Pyridine compounds for controlling phytopathogenic harmful fungi
WO2018054723A1 (en) 2016-09-26 2018-03-29 Basf Se Pyridine compounds for controlling phytopathogenic harmful fungi
WO2018065182A1 (en) 2016-10-04 2018-04-12 Basf Se Reduced quinoline compounds as antifuni agents
WO2018073110A1 (en) 2016-10-20 2018-04-26 Basf Se Quinoline compounds as fungicides
WO2018134127A1 (en) 2017-01-23 2018-07-26 Basf Se Fungicidal pyridine compounds
BR112019016240A2 (pt) 2017-02-08 2020-04-07 Bayer Ag derivados de triazoletiona
US20200017467A1 (en) 2017-02-08 2020-01-16 Bayer Cropscience Aktiengesellschaft Novel triazole derivatives
US20200045967A1 (en) 2017-02-08 2020-02-13 Bayer Cropscience Aktiengesellschaft Novel triazole derivatives
WO2018145921A1 (en) 2017-02-10 2018-08-16 Bayer Aktiengesellschaft Composition for controlling harmful microorganisms comprising 1 -(phenoxy-pyridinyl)-2-(1,2,4-triazol-1 -yl)-ethanol derivatives
WO2018149754A1 (en) 2017-02-16 2018-08-23 Basf Se Pyridine compounds
BR112019020879A2 (pt) 2017-04-06 2020-04-28 Basf Se compostos, composição, uso de um composto de formula i, método para combater fungos fitopatogênicos, semente e intermediários
JP2020519607A (ja) 2017-05-10 2020-07-02 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 二環式殺有害生物性化合物
BR112019025295A2 (pt) 2017-05-30 2020-06-23 Basf Se Compostos, composição, uso de um composto da fórmula i, método para combater fungos fitopatogênicos e semente
EP3453706A1 (en) 2017-09-08 2019-03-13 Basf Se Pesticidal imidazole compounds
HUE062183T2 (hu) 2017-11-13 2023-09-28 Kureha Corp Azolszármazék, intermedier vegyület, eljárás azolszármazék elõállítására, mezõgazdasági és kertészeti felhasználásra szolgáló szer, és ipari felhasználásra szolgáló anyagvédõszer
WO2019154665A1 (en) 2018-02-07 2019-08-15 Basf Se New pyridine carboxamides
KR20200118091A (ko) 2018-02-07 2020-10-14 바스프 에스이 신규의 피리딘 카르복스아미드
EP3421460A1 (en) 2018-03-15 2019-01-02 Bayer Aktiengesellschaft 2-[(4-alkylphenoxy)-pyridinyl]-1-(1,2,4-triazol-1-yl)alkan-2-ol fungicides
EP3620053A1 (en) 2018-12-14 2020-03-11 Bayer Aktiengesellschaft Fungicidal active compound combinations
EP3670501A1 (en) 2018-12-17 2020-06-24 Basf Se Substituted [1,2,4]triazole compounds as fungicides
EP3679792A1 (en) 2019-01-08 2020-07-15 Bayer AG Active compound combinations
EP3679793A1 (en) 2019-01-08 2020-07-15 Bayer AG Active compound combinations
EP3679791A1 (en) 2019-01-08 2020-07-15 Bayer AG Active compound combinations
EP3679789A1 (en) 2019-01-08 2020-07-15 Bayer AG Active compound combinations
EP3679790A1 (en) 2019-01-08 2020-07-15 Bayer AG Active compound combinations
CA3139524A1 (en) 2019-05-10 2020-11-19 Bayer Cropscience Lp Active compound combinations
CR20210605A (es) 2019-06-06 2022-01-07 Basf Se N-(prid-3-il)carboxamidas fungicidas
WO2020244970A1 (en) 2019-06-06 2020-12-10 Basf Se New carbocyclic pyridine carboxamides
WO2020244969A1 (en) 2019-06-06 2020-12-10 Basf Se Pyridine derivatives and their use as fungicides
WO2021063736A1 (en) 2019-10-02 2021-04-08 Basf Se Bicyclic pyridine derivatives
WO2021064075A1 (en) 2019-10-02 2021-04-08 Bayer Aktiengesellschaft Active compound combinations comprising fatty acids
WO2021063735A1 (en) 2019-10-02 2021-04-08 Basf Se New bicyclic pyridine derivatives
WO2021099240A1 (en) 2019-11-22 2021-05-27 Basf Se Pyrimidone derivatives containing two fused bicyclic rings
EP3708565A1 (en) 2020-03-04 2020-09-16 Bayer AG Pyrimidinyloxyphenylamidines and the use thereof as fungicides
AR121486A1 (es) 2020-03-06 2022-06-08 Kureha Corp Derivado de azol, metodo para producir derivado de azol, químico agrícola u hortícola, y protector de material industrial
BR112022020131A2 (pt) 2020-04-06 2022-11-29 Basf Se Composto da fórmula, mistura de pesticidas, uso de compostos da fórmula, métodos de combate ou controle de pragas invertebradas e de proteção de plantas em crescimento e semente
CN111334360A (zh) * 2020-04-13 2020-06-26 董志军 一种汽车发动机润滑油及其制备方法和应用
WO2021209368A1 (en) 2020-04-16 2021-10-21 Bayer Aktiengesellschaft Active compound combinations and fungicide compositions comprising those
BR112022020857A2 (pt) 2020-04-16 2022-11-29 Bayer Ag Combinações de compostos ativos e composições fungicidas compreendendo as mesmas
WO2021209364A1 (en) 2020-04-16 2021-10-21 Bayer Aktiengesellschaft Active compound combinations and fungicide compositions comprising those
WO2021209366A1 (en) 2020-04-16 2021-10-21 Bayer Aktiengesellschaft Active compound combinations and fungicide compositions comprising those
AR121830A1 (es) 2020-04-16 2022-07-13 Bayer Ag Combinaciones de compuestos activos y composiciones fungicidas que los comprenden
US11697782B2 (en) * 2020-07-09 2023-07-11 ExxonMobil Technology and Engineering Company Engine oil lubricant compositions and methods for making same with superior engine wear protection and corrosion protection
EP3915371A1 (en) 2020-11-04 2021-12-01 Bayer AG Active compound combinations and fungicide compositions comprising those
MX2023006990A (es) 2020-12-14 2023-06-26 Basf Se Plaguicidas de sulfoximina.
EP3915971A1 (en) 2020-12-16 2021-12-01 Bayer Aktiengesellschaft Phenyl-s(o)n-phenylamidines and the use thereof as fungicides
WO2022129196A1 (en) 2020-12-18 2022-06-23 Bayer Aktiengesellschaft Heterobicycle substituted 1,2,4-oxadiazoles as fungicides
WO2022129188A1 (en) 2020-12-18 2022-06-23 Bayer Aktiengesellschaft 1,2,4-oxadiazol-3-yl pyrimidines as fungicides
WO2022129190A1 (en) 2020-12-18 2022-06-23 Bayer Aktiengesellschaft (hetero)aryl substituted 1,2,4-oxadiazoles as fungicides
WO2022189191A1 (en) 2021-03-09 2022-09-15 Basf Se Tricyclic pesticidal compounds
WO2022189189A1 (en) 2021-03-09 2022-09-15 Basf Se Tricyclic pesticidal compounds
WO2022207494A1 (en) 2021-03-30 2022-10-06 Bayer Aktiengesellschaft 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide
BR112023019788A2 (pt) 2021-03-30 2023-11-07 Bayer Ag 3-(hetero)aril-5-clorodifluorometil-1,2,4-oxadiazol como fungicida
AU2022279357A1 (en) 2021-05-18 2023-11-30 Basf Se New substituted pyridines as fungicides
EP4341256A1 (en) 2021-05-18 2024-03-27 Basf Se New substituted pyridines as fungicides
CA3219311A1 (en) 2021-05-18 2022-11-24 Basf Se New substituted quinolines as fungicides
IL310497A (en) 2021-08-02 2024-03-01 Basf Se (3-quinolyl)-quinazoline
KR20240042636A (ko) 2021-08-02 2024-04-02 바스프 에스이 (3-피리딜)-퀴나졸린
AU2022326207A1 (en) 2021-08-13 2024-02-15 Bayer Aktiengesellschaft Active compound combinations and fungicide compositions comprising those
WO2024068517A1 (en) 2022-09-28 2024-04-04 Bayer Aktiengesellschaft 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide
WO2024068519A1 (en) 2022-09-28 2024-04-04 Bayer Aktiengesellschaft 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide
WO2024068520A1 (en) 2022-09-28 2024-04-04 Bayer Aktiengesellschaft 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide
WO2024068518A1 (en) 2022-09-28 2024-04-04 Bayer Aktiengesellschaft 3-heteroaryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide
EP4295688A1 (en) 2022-09-28 2023-12-27 Bayer Aktiengesellschaft Active compound combination
WO2024104822A1 (en) 2022-11-16 2024-05-23 Basf Se Substituted tetrahydrobenzodiazepine as fungicides
WO2024104815A1 (en) 2022-11-16 2024-05-23 Basf Se Substituted benzodiazepines as fungicides
WO2024104818A1 (en) 2022-11-16 2024-05-23 Basf Se Substituted benzodiazepines as fungicides
WO2024104823A1 (en) 2022-11-16 2024-05-23 Basf Se New substituted tetrahydrobenzoxazepine

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3897353A (en) * 1972-12-29 1975-07-29 Texaco Inc Method of preventing haze in oil concentrates containing an amorphous ethylene-propylene copolymer viscosity index improver
US4175047A (en) * 1978-09-25 1979-11-20 Mobil Oil Corporation Synthetic ester and hydrogenated olefin oligomer lubricant and method of reducing fuel consumption therewith
AU549639B2 (en) * 1981-07-01 1986-02-06 Chevron Research Company Lubricating oil composition to improve fuel economy
US4358385A (en) * 1981-08-10 1982-11-09 Texaco Inc. Lubricating oil composition
JPH0730346B2 (ja) * 1986-09-08 1995-04-05 出光興産株式会社 潤滑油組成物
US5286394A (en) * 1989-06-27 1994-02-15 Ethyl Corporation Fuel economy and oxidation inhibition in lubricant compositions for internal combustion engines
US5460740A (en) * 1990-12-31 1995-10-24 Texaco Inc. Acylated mono and/or bis-succinimides lubricating oil additives
US5102570A (en) * 1990-12-31 1992-04-07 Texaco Inc. Acylated mannich base mono and/or bis-succinimide lubricating oil additives
DE69525968T2 (de) * 1994-12-20 2002-09-19 Exxonmobil Res & Eng Co Motoröl mit verbesserten eigenschaften zur kraftstoffersparnis
US5744430A (en) * 1995-04-28 1998-04-28 Nippon Oil Co., Ltd. Engine oil composition
US5863873A (en) * 1997-04-08 1999-01-26 Exxon Chemical Patents Inc Fuel economy additive and lubricant composition containing same
US5906969A (en) * 1998-05-01 1999-05-25 Exxon Research And Engineering Company High fuel economy passenger car engine oil
US6180575B1 (en) * 1998-08-04 2001-01-30 Mobil Oil Corporation High performance lubricating oils
US6165949A (en) * 1998-09-04 2000-12-26 Exxon Research And Engineering Company Premium wear resistant lubricant
US6451745B1 (en) * 1999-05-19 2002-09-17 The Lubrizol Corporation High boron formulations for fluids continuously variable transmissions
JP2001181664A (ja) * 1999-12-22 2001-07-03 Nippon Mitsubishi Oil Corp エンジン油組成物
WO2001079399A1 (en) * 2000-04-13 2001-10-25 Ashland Inc. Engine lubricant and additive
US6303547B1 (en) * 2000-09-19 2001-10-16 Ethyl Corporation Friction modified lubricants
US6790813B2 (en) * 2002-11-21 2004-09-14 Chevron Oronite Company Llc Oil compositions for improved fuel economy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03064572A1 *

Also Published As

Publication number Publication date
US20060079411A1 (en) 2006-04-13
JP2006503926A (ja) 2006-02-02
KR20040077895A (ko) 2004-09-07
MXPA04006250A (es) 2004-09-27
CA2471886A1 (en) 2003-08-07
NZ533412A (en) 2006-09-29
WO2003064572A1 (en) 2003-08-07
US20030166476A1 (en) 2003-09-04

Similar Documents

Publication Publication Date Title
US6992049B2 (en) Lubricating oil compositions
US20030166476A1 (en) Lubricating oil compositions with improved friction properties
EP1472329B1 (en) Use of mixed salicylates for improving cleanliness of lubricating oils.
US20060073990A1 (en) Lubricating oil compositions with improved friction properties
US20070184991A1 (en) Lubricating oil compositions with improved friction properties
US20050209109A1 (en) Lubricating oil compositions with improved friction properties
US20030158055A1 (en) Lubricating oil compositions
US20060073991A1 (en) Lubricating oil compositions with improved friction properties
US20030171228A1 (en) Mixed TBN detergents and lubricating oil compositions containing such detergents
US20030166473A1 (en) Lubricating oil compositions with improved friction properties
WO2003064574A1 (en) Lubricating oil compositions with improved friction properties
AU2003214958A1 (en) Lubricating oil compositions with improved friction properties
AU2003219697A1 (en) Lubricating oil compositions with improved friction properties
AU2003214960A1 (en) Lubricating oil compositions with improved friction properties
AU2003212883A1 (en) Lubricating oil compositions
AU2003217292A1 (en) Mixed TBN detergents additive composition for lubricating oils

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040831

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060617