EP1474632B1 - Procede d'alimentation ininterrompue de dioxyde de carbone en surfusion fluide a pression constante superieure a 40 bars et systeme de mise en oeuvre de ce procede - Google Patents

Procede d'alimentation ininterrompue de dioxyde de carbone en surfusion fluide a pression constante superieure a 40 bars et systeme de mise en oeuvre de ce procede Download PDF

Info

Publication number
EP1474632B1
EP1474632B1 EP03706560A EP03706560A EP1474632B1 EP 1474632 B1 EP1474632 B1 EP 1474632B1 EP 03706560 A EP03706560 A EP 03706560A EP 03706560 A EP03706560 A EP 03706560A EP 1474632 B1 EP1474632 B1 EP 1474632B1
Authority
EP
European Patent Office
Prior art keywords
pressure tank
carbon dioxide
pressure
low
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03706560A
Other languages
German (de)
English (en)
Other versions
EP1474632A2 (fr
Inventor
Harald Winter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide Deutschland GmbH
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide GmbH
Air Liquide SA
LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide GmbH, Air Liquide SA, LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide GmbH
Publication of EP1474632A2 publication Critical patent/EP1474632A2/fr
Application granted granted Critical
Publication of EP1474632B1 publication Critical patent/EP1474632B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/02Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with liquefied gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0326Valves electrically actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0332Safety valves or pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/013Carbone dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0146Two-phase
    • F17C2225/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/035High pressure, i.e. between 10 and 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • F17C2227/0142Pumps with specified pump type, e.g. piston or impulsive type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0626Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/02Improving properties related to fluid or fluid transfer
    • F17C2260/024Improving metering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • F17C2270/0171Trucks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/05Applications for industrial use

Definitions

  • the invention relates to a process and a supply system for the uninterrupted provision of liquid subcooled carbon dioxide at an essentially constant pressure greater than 40 bar.
  • US 5 373 702 discloses a process for delivering liquefied gas.
  • the blowing agent carbon dioxide used as an alternative is forced into the foam extruder at up to about 350 bar using a diaphragm metering pump system.
  • XPS polystyrene foam
  • the high pressure pumps some manufacturers prescribe the use of room-temperature carbon dioxide which must be stored at a constant pressure and subcooled before entry into the metering pump.
  • High-pressure storage in non-insulated heatable pressure vessels at 60 bar and 22°C is not able to continuously ensure high-pressure conditions. Since tanker trucks for industrial scale carbon dioxide consumption always provide low-temperature low-pressure carbon dioxide (12 bar/-35°C), the pressure in a high-pressure vessel collapses during replenishment. The supply pressure of the carbon dioxide must be elevated to the desired pressure level by an internal vessel heater having an output-dependent time delay.
  • the inventive process for the uninterrupted provision of liquid subcooled carbon dioxide at essentially constant pressure greater than 40 bar comprises the following process steps:
  • the double temporary storage of the carbon dioxide permits uninterrupted provision of carbon dioxide. If faults in the plant occur, in particular in the pump, the amount of carbon dioxide present in the high-pressure tank can be used for the supply until the plant is repaired.
  • the high-pressure tank has the function of a buffer reservoir.
  • thermodynamic equilibrium begins to boil rapidly in the case of small temperature decreases or temperature increases.
  • the intermediate storage of the carbon dioxide in thermodynamic disequilibrium permits provision of subcooled carbon dioxide which does not exhibit this disadvantage in the known manner.
  • the carbon dioxide does not form bubbles and is thus more easily transported and metered.
  • Thermodynamic disequilibrium here means that the temperature of the liquid carbon dioxide is lower than the equilibrium temperature which is given by the prevailing pressure and the vapour-pressure curve.
  • This thermodynamic disequilibrium occurs as a result of a nonhomogeneous temperature distribution in the high-pressure tank, in particular as result of a temperature gradient between the gaseous phase and the liquid phase of the carbon dioxide in the high-pressure tank. If the temperature of the gaseous phase is higher than that of the liquid phase, a subcooled liquid is present.
  • the great advantage of the inventive process is that conditioned carbon dioxide can be provided.
  • the conditioned carbon dioxide is readily pumpable, does not have a tendency to (micro)bubble formation, is present at a constant pressure and is provided uninterruptedly with great reliability. Costs of subsequent conditioning of the carbon dioxide are at least in part avoided.
  • the operation of such a process is comparatively inexpensive.
  • the high-pressure tank is designed in such a way that pressures between 40 and 80 bar can be accepted.
  • the high-pressure tank is expediently designed as a spherical vessel which has in particular thermal insulation, preferably a PU foam insulation, having a metal jacket of aluminium or galvanized steel. Since many applications require liquid carbon dioxide at high pressure, the high-pressure tank exhibits the coexistence of a liquid phase and a gaseous phase of the carbon dioxide.
  • the high-pressure tank can also be operated in the supercritical range, that is to say at above 73.7 bar. At pressures higher than 73.7 bar, the carbon dioxide is present in thermodynamic equilibrium in a single homogeneous phase which can be considered a high-density gas phase.
  • the low-pressure tank is designed for lower pressures, in particular for pressures less than 40 bar, in particular less than 30 bar, preferably less than 25 bar.
  • the low-pressure tank need not be designed as a spherical vessel and can be horizontal or vertical.
  • it has a pressure-build-up device and a connection for carbon dioxide in the liquid phase.
  • the low-pressure tank has thermal insulation, in particular vacuum insulation.
  • the low-pressure tank can be charged from conventional carbon dioxide tanker trucks. In the low-pressure tank a liquid phase and a gaseous phase of the carbon dioxide coexist in thermodynamic equilibrium.
  • the pressure of the carbon dioxide is increased from the lower level of the low-pressure tank to the higher level of the high-pressure tank.
  • liquid carbon dioxide is pumped from the low-pressure tank into the high-pressure tank. This ensures that the high-pressure tank constantly has a sufficient amount of carbon dioxide, in particular two thirds, preferably three quarters, of a maximum capacity. This ensures that even with short-term faults of the system, in particular the pump, sufficient liquid carbon dioxide is still present for supply.
  • the pump ensures a pressure gradient between the high-pressure tank and the low-pressure tank.
  • the temporary storage at a lower pressure level and the storage at a higher pressure level uninterrupted provision of liquid carbon dioxide is made possible.
  • the carbon dioxide can be delivered at a low pressure in a simple manner using a conventional tanker truck, without an interruption in the supply with carbon dioxide at high pressure taking place.
  • carbon dioxide from the liquid phase from the low-pressure tank is introduced into the liquid phase in the high-pressure tank to build up pressure in the high-pressure tank.
  • the temperature of the gaseous carbon dioxide in the high-pressure tank is essentially unchanged.
  • the increase in the volume fraction of the liquid phase in the high-pressure tank caused by the addition produces a compression of the gaseous phase in the high-pressure tank, which increases the pressure in the high-pressure tank.
  • the liquid carbon dioxide from the low-pressure tank is introduced into the gas phase in the high-pressure tank to decrease the pressure in the high-pressure tank.
  • the pressure of the carbon dioxide in the high-pressure tank is controlled by means of the fact that liquid carbon dioxide, depending on the current pressure in the high-pressure tank, is fed either to the gas phase or the liquid phase in the high-pressure tank.
  • the pressure in the high-pressure tank can be kept constant either by feeding liquid carbon dioxide directly to the liquid phase of the carbon dioxide in the high-pressure tank, or by adding liquid carbon dioxide to the gaseous phase of the carbon dioxide, for example by spraying it into the gaseous phase.
  • the temperature of the liquid phase in the high-pressure tank is between 0 and 10°C, preferably between 2 and 5°C. These temperatures, at a pressure of around 60 bar, do not correspond to the temperature according to the equilibrium vapour pressure curve.
  • the liquid is thus a subcooled liquid.
  • the temperature arises owing to a thermodynamic disequilibrium. This disequilibrium is caused by a nonhomogeneous temperature distribution between liquid phase and gas phase.
  • Subcooled liquid carbon dioxide has the advantage that it does not have a tendency to vaporize and is readily pumpable.
  • thermodynamic disequilibrium Since many applications require liquid subcooled carbon dioxide, a thermodynamic disequilibrium must be produced or maintained in the high-pressure tank.
  • the liquid phase in the high-pressure tank is warmed locally at one point, vaporized and/or converted into the gaseous phase.
  • the disequilibrium can be produced or maintained by local heating of gaseous carbon dioxide and/or by vaporizing liquid carbon dioxide and/or by adding cold liquid carbon dioxide from the low-pressure tank to the high-pressure tank. The local heating causes a stabilization of the pressure in the high-pressure tank. Liquid carbon dioxide is thus provided at a temperature which is lower than that corresponding to the vapour pressure curve.
  • the liquid phase and/or the gas phase in the high-pressure tank is warmed.
  • the warming is performed, in particular, by separate heating systems.
  • the temperature of the liquid carbon dioxide in the high-pressure tank falls.
  • gaseous carbon dioxide condenses in the high-pressure tank.
  • the temperature decrease produces a fall in pressure in accordance with the vapour-pressure curve.
  • the liquid cold carbon dioxide fed is passed in a defined ratio both into the gas phase and the liquid phase of the high-pressure tank.
  • the carbon dioxide is fed from the low-pressure tank to the high-pressure tank as soon as the volume or mass of carbon dioxide in the high-pressure tank falls below a preset value.
  • a suitable control circuit ensures by this means that sufficient liquid carbon dioxide is always present in the high-pressure tank.
  • this buffer ensures a safety period which can be utilized for remedying the fault.
  • the high-pressure tank is filled with liquid carbon dioxide as soon as the high-pressure tank is less than three-quarters full. In the event of a fault, thus at least the volume of a three-quarters-full high-pressure tank is available. This measure considerably increases the security of supply.
  • the low pressure is less than 40 bar, in particular less than 30 bar, preferably less than 25 bar. At low pressures, transport using conventional tanker trucks is simpler and cheaper.
  • the liquid carbon dioxide in the low-pressure tank is warmed. This also prevents solid carbon dioxide (dry ice) from forming in the low-pressure tank.
  • the pressure in the low-pressure tank decreases if insufficient liquid carbon dioxide vaporizes and passes over into the gas phase for pressure compensation.
  • the pressure in the low-pressure tank also usually decreases, since with the addition of colder carbon dioxide the temperature in the low-pressure tank falls and the pressure follows the drop in temperature in accordance with the vapour-pressure curve. Heating the carbon dioxide causes a temperature elevation, by which means a pressure drop can be compensated.for.
  • the gaseous carbon dioxide formed in the first line and/or in the pump is recirculated to the low-pressure tank.
  • the efficiency of the pump is thereby increased, since this avoids unnecessary compression of gaseous carbon dioxide.
  • the inventive supply system for uninterrupted provision of subcooled carbon dioxide at an essentially constant pressure greater than 40 bar comprises a low-pressure tank and a high-pressure tank, each for holding a liquid phase and a gas phase, and a pump, in which case the pump is disposed between the low-pressure tank and the high-pressure tank and is connected by a first line to the low-pressure tank and the pump is connected by a second line to the high-pressure tank.
  • the second line transforms into an upper and lower feed line, the upper feed line opening out into an upper region of the high-pressure tank, and the lower feed line opening into a lower region of the high-pressure feed tank.
  • the pump Via the first line, the pump and the upper or lower feed line, the low-pressure tank and the high-pressure tank are connected to one another.
  • the pump produces the pressure difference between the pressure levels in the two tanks.
  • Liquid carbon dioxide is fed from the low-pressure tank to the high-pressure tank from the top via the upper feed line. Liquid carbon dioxide thus falls through the gas phase in the high-pressure tank, as result of which gaseous carbon dioxide is condensed. This causes the pressure to fall in the high-pressure tank.
  • Liquid carbon dioxide is fed from the low-pressure tank via the lower feed line to the liquid carbon dioxide in the high-pressure tank.
  • the volume of the liquid phase in the high-pressure tank increases, whereby the gaseous phase is compressed. This causes the pressure in the high-pressure tank to increase.
  • the high-pressure tank has a first heater which is disposed in an additional line on the high-pressure tank, which line joins a lower region of the high-pressure tank for the liquid phase to a higher region of the high-pressure tank for the gas phase.
  • thermodynamic disequilibrium is hereby produced or maintained.
  • subcooled liquid carbon dioxide is provided by the high-pressure tank at a high pressure and presettable temperature. This saves, at least in part, considerable costs for conditioning the carbon dioxide.
  • the upper feed line advantageously opens into an upper region of the high-pressure tank. If the liquid carbon dioxide is passed from the low-pressure tank to the high-pressure tank through the upper region of the high-pressure tank containing the gas phase, the temperature distribution in the high-pressure tank becomes homogeneous. The homogeneity of the temperature distribution can in turn be altered by targeted local heating of the gaseous and/or the liquid phase. The interaction between homogeneity and nonhomogeneity is used, in the context of control, for providing conditioned, that is to say liquid and subcooled, carbon dioxide at a constantly high pressure.
  • the high-pressure tank has a second heater which is disposed in the lower region of the high-pressure tank. If, for example, the temperature of the liquid carbon dioxide in the high-pressure tank falls below a preset value owing to the addition of cold carbon dioxide from the low-pressure tank, the temperature can be increased by the second heater. Using the second heater, a temperature difference between the liquid and gaseous phases in the high-pressure tank can be levelled out.
  • the low-pressure tank has a low pressure less than 40 bar, in particular less than 30 bar, preferably less than 25 bar, the low pressure tank can be charged by conventional tanker trucks for carbon dioxide.
  • the low-pressure tank can store cold carbon dioxide, in particular carbon dioxide at less than -10°C, the low-pressure tank has thermal insulation.
  • the low-pressure tank has a pressure build-up device, by which means the pressure in the low-pressure tank can be built up.
  • the high-pressure tank is constructed in such a manner that it can accept pressures which are required by the respective application.
  • the high-pressure tank can withstand pressures of at least 40 bar, in particular at least 50 bar, preferably at least 60 bar.
  • the high-pressure tank is expediently thermally insulated.
  • the low-pressure tank To counteract a general warming of the carbon dioxide in the low-pressure tank, the low-pressure tank has a cooler. This prevents excessive pressure increase in the low-pressure tank.
  • a minimum temperature in the low-pressure tank in particular when low-temperature carbon dioxide is added from a tanker truck, is ensured by heating by means of a further heater for the liquid carbon dioxide phase. Even in the event of high takeoff of liquid carbon dioxide from the low-pressure tank by the high-pressure tank, by heating using this heater, sufficient liquid carbon dioxide is vaporized and converted into the gas phase to counteract a pressure drop in the low-pressure tank.
  • the low-pressure tank In order to transport the carbon dioxide from the low-pressure tank to the high-pressure tank efficiently, the low-pressure tank has a connection for the liquid phase for the first line. Large amounts of carbon dioxide may be transported better using a pump with a compressor, since a compressor to a great degree only performs work on the gas, which increases the internal energy of the gas. This portion of the work expended is lost as heat and is not used for the actual pumping of the carbon dioxide.
  • a return line is provided between the second line and the low-pressure tank, by means of which return line gaseous carbon dioxide can be recirculated to the low-pressure tank. This is important in particular when turning on the pump, if much gaseous carbon dioxide is formed during cooling of the pumps.
  • an instrumentation system having sensors that determines at least one parameter selected from the group consisting of quantity of carbon dioxide or mass of carbon dioxide in the high-pressure tank, quantity of carbon dioxide or mass of carbon dioxide in the low-pressure tank, pressure in the high-pressure tank, pressure in the low-pressure tank, temperature of the liquid phase in the high-pressure tank, temperature of the carbon dioxide in the low-pressure tank and temperature of the pump.
  • Determining the carbon quantity in the high-pressure tank for example by carbon dioxide mass determination establishes when replenishment of the high-pressure tank by carbon dioxide from the low-pressure tank using the pump is necessary.
  • the pressure in the high-pressure tank and in the low-pressure tank is measured in order to, firstly, prevent excessive overpressure in the high-pressure tank, and secondly to recognize faults in the operation of the supply system.
  • pressure monitoring in the high-pressure tank is required.
  • Measuring the temperature of the carbon dioxide in the low-pressure tank and of the pump is expedient for checking the status of the supply system.
  • the supply system comprises a control unit which is connected to the instrumentation system and at least one component selected from the group consisting of pump, second heater for the liquid phase in the high-pressure tank, first heater for the liquid phase in the high-pressure tank, cooler in the low-pressure tank, first valve in the first line, second valve in the second line, third valve in the second line, return line valve in the return line between the second line and the low-pressure tank, first safety valve on the low-pressure tank and second safety valve on the high-pressure tank.
  • a control unit which is connected to the instrumentation system and at least one component selected from the group consisting of pump, second heater for the liquid phase in the high-pressure tank, first heater for the liquid phase in the high-pressure tank, cooler in the low-pressure tank, first valve in the first line, second valve in the second line, third valve in the second line, return line valve in the return line between the second line and the low-pressure tank, first safety valve on the low-pressure tank and second safety valve on the high-pressure tank.
  • liquid carbon dioxide is vaporized locally at one point in the high-pressure tank, which builds up and maintains a thermodynamic disequilibrium in the high-pressure tank.
  • Controlling the cooling ensures that a maximum temperature, and thus a maximum pressure, in the low-pressure tank is not exceeded.
  • the pump can be decoupled from the low-pressure tank, so that stressing the pump with low temperatures is avoided.
  • the pump is decoupled from the high-pressure tank.
  • the cold liquid carbon dioxide stream is either passed directly into the liquid carbon dioxide in the high-pressure tank, whereby the pressure in the high-pressure tank is increased, or is passed into the gas phase of the high-pressure tank, whereby the pressure is reduced.
  • gaseous carbon dioxide can be recirculated in a controlled manner into the low-pressure tank. This is important, in particular, when, on turning on the pump, liquid carbon dioxide is vaporized during cooling of the pump. Pumping gaseous carbon dioxide is energy-consuming and endangers the functionality of the high-pressure pump.
  • Controlling the first safety valve on the low-pressure tank and the second safety valve on the high-pressure tank prevents the low-pressure tank or the high-pressure tank from being excessively loaded.
  • the high-pressure tank has a dewatering valve and/or a descender tube.
  • the dewatering valve and/or the descender tube By means of the dewatering valve and/or the descender tube, the liquid phase of the carbon dioxide is taken off from the high-pressure tank in a simple manner.
  • the pump is a piston pump having a displacement space, in particular a three-piston pump, which is arranged and/or constructed in such a manner that gas cannot collect in the suction space during operation.
  • a displacement space in particular a three-piston pump
  • the displacement space of the piston pump is always filled with liquid carbon dioxide. Gaseous carbon dioxide can escape from the suction space; collection of gaseous carbon dioxide is avoided.
  • Additional degassing orifices or channels which lead off gaseous carbon dioxide from the displacement space; in particular to the low-pressure tank, are expedient in order to ensure that the displacement space is always filled solely with liquid carbon dioxide.
  • a takeoff line is present between an inlet of a pump and an upper part of the low-pressure tank. Gaseous carbon dioxide thus escapes from the suction space of the piston pump and passes via the takeoff line to the low-pressure tank.
  • the high-pressure tank has a capacity of less than 2 t, in particular less than 1.5 t, preferably less than 1.2 t, of carbon dioxide.
  • a high-pressure tank of the inventive supply system is small.
  • Such small high-pressure tanks are inexpensive and, owing to the interaction between low-pressure tank and high-pressure tank, are completely sufficient to provide an uninterrupted continuous flow of carbon dioxide in large quantities.
  • the low-pressure tank advantageously has a capacity of at least 3 t, in particular at least 7 t, preferably at least 10 t, of carbon dioxide.
  • a sufficiently large quantity of carbon dioxide is stored temporarily for a high carbon dioxide consumption in corresponding industrial scale applications, so that the supply system is comparatively independent of short-term supply restrictions during delivery of carbon dioxide from tanker trucks.
  • Figure 1 shows an inventive supply system 3 having a low-pressure tank 1 and a high-pressure tank 2 in which in each case liquid and gaseous carbon dioxide are present as coexisting phases.
  • the low-pressure tank 1 is connected via a first line 5 to a pump 4 and, via a second line 6 or an upper feed line 40 and a lower feed line 41, from the pump 4 to the high-pressure tank 2.
  • the pump 4 can be decoupled from the low-pressure tank 1 and the high-pressure tank 2 when the pump 4 is not in operation or must be serviced.
  • the low-pressure tank 1 is charged from a tanker truck with cold liquid carbon dioxide at -35°C and 15 bar.
  • the carbon dioxide is stabilized in temperature by an insulation 7, in that the insulation 7 decreases heat flux from the outside to the carbon dioxide in the low-pressure tank.
  • the cooler 10 has the task of counteracting a warming of the carbon dioxide due to a heat flux from the outside.
  • a safety valve 23 ensures that in the event of excessive temperature increase a maximum permissible maximum pressure is not exceeded. If the pressure reaches this maximum pressure, gaseous carbon dioxide is discharged, as a result of which the temperature of the liquid carbon dioxide falls owing to the heat of evaporation of the liquid carbon dioxide.
  • the pump 4 takes off liquid carbon dioxide from the low-pressure tank 1 at a liquid port 13. If so much liquid carbon dioxide is taken off from the low-pressure tank 1 that the pressure in the low-pressure tank 1 falls excessively, which would cause a decrease in temperature of the carbon dioxide in the low-pressure tank 1, or if too much cold liquid carbon dioxide is charged into the low-pressure tank, the liquid phase in the low-pressure tank 1 is heated.
  • the pump 4 is constructed as a piston pump and has an inlet 21 which is joined to the low-pressure tank 1 via a return line 27 in which is disposed a return valve 28.
  • a return line 27 in which is disposed a return valve 28.
  • gaseous carbon dioxide which has formed either in the first line 5 or in the pump 4 is passed back to the low-pressure tank 1, so that the pump 4 is charged solely with liquid carbon dioxide and not also with gaseous carbon dioxide.
  • a return line 14 which has a return valve 15, during a cold start-up phase, liquid and/or gaseous carbon dioxide in the second line 6 is recirculated to the low-pressure tank 1 when the second valve 26 is closed.
  • the high-pressure tank 2 has an upper region 11 for the gaseous phase of the carbon dioxide and a lower region 12 for the liquid phase of the carbon dioxide.
  • the upper feed line 40 opens into the upper region 11 of the high-pressure tank 2.
  • the lower feed line 41 opens into the lower region 12.
  • a third valve 42 and a fourth valve pass the carbon dioxide stream into the high-pressure tank 2 via the upper feed line 40 or lower feed line 41. If carbon dioxide is fed via the upper feed line 40, the gas phase cools and the pressure in the high-pressure vessel decreases. If carbon dioxide is fed via the lower feed line 41, the gas phase above the liquid phase is compressed and the pressure in the high-pressure vessel increases.
  • the high-pressure tank 2 contains a third heater 29 for local heating and vaporization of liquid carbon dioxide in order to build up and maintain a thermodynamic disequilibrium.
  • the high-pressure tank 2 has a second heater 9 for heating the liquid phase, which can be used to set a minimum temperature of the carbon dioxide.
  • liquid carbon dioxide can be converted into the gaseous phase, so that a thermodynamic disequilibrium is maintained in the high-pressure tank 2 at a constant pressure.
  • Subcooled liquid carbon dioxide is provided by means of the fact that the gaseous phase of the carbon dioxide is not in thermodynamic equilibrium with the liquid phase and the two phases have different temperatures.
  • the second heater 9 has the task of ensuring a preset minimum temperature of the liquid phase in the high-pressure tank 2.
  • the heaters 9, 29 and the cooler 10 are connected by a control unit 18.
  • the control unit 18 controls the heaters 9, 29, the cooler 10 and the pump 4 as a function of the data determined by an instrumentation system 17, for example the pressures, temperatures and liquid levels in the supply system 3.
  • a general warming of the carbon dioxide in the high-pressure tank 2 counteracts cooling as a result of the addition of cold carbon dioxide from the low-pressure tank 1.
  • subcooled carbon dioxide is provided uninterruptedly at a constant pressure of about 60 bar.
  • a safety valve 24 protects the high-pressure tank 2 from an excessive overpressure.
  • the liquid carbon dioxide from the high-pressure tank can be taken off either via the takeoff point 20 or via a descender tube.
  • Figure 2 shows a pump 4 used in the inventive supply system 3 having a drive 32 and a displacement space 31.
  • the suction valve is arranged in such a manner that only liquid carbon dioxide passes into the displacement space and as a result energy losses due to compression of gaseous carbon dioxide are avoided.
  • the inventive process for the uninterrupted provision of liquid subcooled carbon dioxide at essentially constant pressure greater than 40 bar comprises the following process steps: liquid carbon dioxide is delivered at a low pressure, the carbon dioxide is charged into a low-pressure tank 1 and stored there temporarily; the carbon dioxide is pumped from the low-pressure tank 1 to a high-pressure tank 2, the pressure of the carbon dioxide being increased and the carbon dioxide is stored temporarily in the high-pressure tank 2 in a thermodynamic disequilibrium until takeoff.
  • the process and the supply system 3 suitable for carrying out the process are distinguished by their high performance and efficiency for the uninterrupted and inexpensive supply of liquid subcooled carbon dioxide at essentially constant pressure greater than 40 bar.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Pipeline Systems (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Claims (22)

  1. Procédé d'alimentation ininterrompue en dioxyde de carbone en surfusion liquide à une pression essentiellement constante supérieure à 40 bars, comprenant les étapes de procédé suivantes :
    du dioxyde de carbone liquide est fourni à basse pression ;
    le dioxyde de carbone est chargé dans un réservoir à basse pression (1) et y est stocké temporairement, ladite basse pression étant inférieure à 40 bars, en particulier inférieure à 30, de préférence inférieure à 25 bars ;
    le dioxyde de carbone liquide est pompé au moyen d'une pompe (4) du réservoir à basse pression (1) dans un réservoir à haute pression (2), la pression du dioxyde de carbone étant augmentée ;
    le dioxyde de carbone est stocké ou temporairement stocké dans le réservoir à haute pression (2) jusqu'à son retrait, dans un déséquilibre thermodynamique entre une phase liquide et une phase gazeuse, la température de la phase liquide dans le réservoir à haute pression (2) étant comprise entre 0°C et 10°C, de préférence entre 2°C et 5°C, le liquide étant par conséquent un liquide en surfusion.
  2. procédé selon la revendication 1, caractérisé en ce que le dioxyde de carbone liquide est transféré du réservoir à basse pression (1) à la phase liquide dans le réservoir à haute pression (2) en vue d'augmenter la pression dans le réservoir à haute pression (2).
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que le dioxyde de carbone est introduit en phase gazeuse dans le réservoir à haute pression (2) depuis la phase liquide du réservoir à basse pression (1) pour diminuer la pression dans le réservoir à haute pression (2).
  4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la pression du dioxyde de carbone dans le réservoir à haute pression (2) est contrôlée par le fait que le dioxyde de carbone liquide est introduit soit en phase gazeuse soit en phase liquide dans le réservoir à haute pression (2) en fonction de la pression actuelle.
  5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la phase liquide dans le réservoir à haute pression (2) est chauffée localement et/ou convertie en phase gazeuse pour maintenir et/ou produire un déséquilibre thermodynamique dans le réservoir à haute pression (2).
  6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que, pour stabiliser la pression et pour garantir une pression minimale dans le réservoir à haute pression (2), en particulier au cours du remplissage avec du dioxyde de carbone froid, la phase liquide et/ou la phase gazeuse est chauffée dans le réservoir à haute pression (2), en particulier par des systèmes de chauffage séparés.
  7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que du dioxyde de carbone provenant du réservoir à basse pression (1) est introduit dans le réservoir à haute pression (2) dès que la masse de dioxyde de carbone dans le réservoir à haute pression (2) chute en dessous d'une valeur prédéfinie, de préférence un quart, en particulier un tiers, d'une capacité maximale.
  8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que pour garantir une pression minimale dans le réservoir à basse pression (1), la phase liquide dans le réservoir à basse pression (1) est chauffée.
  9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que pour charger la pompe (4) avec du dioxyde de carbone sans bulles, le dioxyde de carbone gazeux formé dans la première ligne (5) et/ou dans la pompe (4) est recirculé vers le réservoir à basse pression (1).
  10. Système d'alimentation (3) pour l'alimentation ininterrompue en dioxyde de carbone en surfusion à une pression essentiellement constante supérieure à 40 bars, ayant un réservoir à basse pression (1) et un réservoir à haute pression (2), chacun destiné à recevoir une phase liquide et une phase gazeuse, et ayant une pompe (4), la pompe (4) étant disposée entre le réservoir à basse pression (1) et le réservoir à haute pression (2) et étant connectée par une première ligne (5) au réservoir à basse pression (1) et la pompe (4) étant connectée par le biais d'une deuxième ligne (6) au réservoir à haute pression (2), ledit système ayant les caractéristiques suivantes :
    i) la deuxième ligne (6) se transforme en une ligne d'amenée supérieure (40) et une ligne d'amenée inférieure (41), la ligne d'amenée supérieure (40) débouchant sur une région supérieure (11) du réservoir à haute pression (2) et la ligne d'amenée inférieure (41) débouchant sur une région inférieure du réservoir à haute pression (2) ;
    j) le réservoir à haute pression (2) a un premier dispositif de chauffage (29) qui est disposé dans une ligne supplémentaire (30) sur le réservoir à haute pression (2), laquelle relie une région inférieure (12) du réservoir à haute pression (2) pour la phase liquide à une région supérieure (11) du réservoir à haute pression (2) pour la phase gazeuse.
  11. Système d'alimentation (3) selon la revendication 10, caractérisé en ce que le réservoir à haute pression (2) a un deuxième dispositif de chauffage (9) qui est disposé dans la région inférieure (12) du réservoir à haute pression (2).
  12. Système d'alimentation (3) selon la revendication 10 ou 11, caractérisé en ce que le réservoir à basse pression (1) et/ou le réservoir à haute pression (2) a une isolation thermique (7).
  13. Système d'alimentation (3) selon l'une quelconque des revendications 10 à 12, caractérisé en ce que le réservoir à basse pression (1) a un refroidisseur (10).
  14. Système d'alimentation (3) selon l'une quelconque des revendications 10 à 13, caractérisé en ce que le réservoir à basse pression (1) a un orifice (13) pour la phase gazeuse pour la première ligne (5).
  15. Système d'alimentation (3) selon l'une quelconque des revendications 10 à 14, caractérisé par une ligne de retour (14) entre la deuxième ligne (6) et le réservoir à basse pression (1).
  16. Système d'alimentation (3) selon l'une quelconque des revendications 10 à 15, caractérisé par un système d'instrumentation (17) ayant des capteurs, qui détermine au moins un paramètre sélectionné parmi le groupe constitué de la masse de dioxyde de carbone dans le réservoir à haute pression (2), de la masse de dioxyde de carbone dans le réservoir à basse pression (1), de la pression dans le réservoir à haute pression (2), de la pression dans le réservoir à basse pression (1), de la température de la phase liquide dans le réservoir à haute pression (2), de la température de la phase gazeuse dans le réservoir à haute pression (2), de la température du dioxyde de carbone dans le réservoir à basse pression (1) et de la température de la pompe (4).
  17. Système d'alimentation (3) selon la revendication 16, caractérisé par une unité de commande qui est connectée au système d'instrumentation (17) et par au moins un composant sélectionné parmi le groupe constitué de la pompe (4), du deuxième dispositif de chauffage (9) pour la phase liquide dans le réservoir à haute pression (2), du premier dispositif de chauffage pour la phase liquide dans le réservoir à haute pression, du refroidisseur (10) dans le réservoir à basse pression (1), de la première soupape (25) dans la première ligne (5), de la deuxième soupape (26) dans la deuxième ligne (6), de la troisième soupape (42) dans la deuxième ligne (6), de la soupape de la ligne de retour (28) dans une ligne de retour (27) entre la deuxième ligne (6) et, le réservoir à basse pression (1), d'une première soupape de sécurité (23) sur le réservoir à basse pression (1), et d'une deuxième soupape de sécurité (24) sur le réservoir à haute pression (2).
  18. Système d'alimentation (3) selon l'une quelconque des revendications 10 à 17, caractérisé en ce que pour extraire le dioxyde de carbone de la phase liquide, le réservoir à haute pression (2) a une soupape de déshydratation (16) et/ou un tube descendeur.
  19. Système d'alimentation (3) selon l'une quelconque des revendications 10 à 18, caractérisé en ce que la pompe (4) est une pompe à piston ayant un espace de déplacement (31), en particulier une triple pompe à piston, qui est arrangée et/ou construite de telle manière qu'au cours du fonctionnement, essentiellement aucune collecte de gaz ne peut avoir lieu dans l'espace d'aspiration (43).
  20. Système d'alimentation (3) selon l'une quelconque des revendications 10 à 19, caractérisé par une ligne de prise (20) entre une entrée (21) de la pompe (4) et une partie supérieure du réservoir à basse pression (1).
  21. Système d'alimentation (3) selon l'une quelconque des revendications 10 à 20, caractérisé en ce que le réservoir à haute pression (2) a une capacité inférieure à 2 tonnes, en particulier inférieure à 1,5 t, de préférence inférieure à 1,2 t, de dioxyde de carbone.
  22. Système d'alimentation (3) selon l'une quelconque des revendications 10 à 21, caractérisé en ce que le réservoir à basse pression (1) a une capacité d'au moins 3 t, en particulier d'au moins 7 t, de préférence d'au moins 10 t de dioxyde de carbone.
EP03706560A 2002-02-07 2003-02-05 Procede d'alimentation ininterrompue de dioxyde de carbone en surfusion fluide a pression constante superieure a 40 bars et systeme de mise en oeuvre de ce procede Expired - Lifetime EP1474632B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10205130 2002-02-07
DE10205130A DE10205130A1 (de) 2002-02-07 2002-02-07 Verfahren zum unterbrechungsfreien Bereitstellen von flüssigem, unterkühltem Kohlendioxid bei konstantem Druck oberhalb von 40 bar sowie Versorgungssystem
PCT/EP2003/001832 WO2003067144A2 (fr) 2002-02-07 2003-02-05 Procede d'alimentation ininterrompue de dioxyde de carbone en surfusion fluide a pression constante superieure a 40 bars et systeme de mise en oeuvre de ce procede

Publications (2)

Publication Number Publication Date
EP1474632A2 EP1474632A2 (fr) 2004-11-10
EP1474632B1 true EP1474632B1 (fr) 2005-12-14

Family

ID=27634796

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03706560A Expired - Lifetime EP1474632B1 (fr) 2002-02-07 2003-02-05 Procede d'alimentation ininterrompue de dioxyde de carbone en surfusion fluide a pression constante superieure a 40 bars et systeme de mise en oeuvre de ce procede

Country Status (8)

Country Link
US (1) US7891197B2 (fr)
EP (1) EP1474632B1 (fr)
JP (1) JP4624676B2 (fr)
AT (1) ATE313040T1 (fr)
CA (1) CA2475067A1 (fr)
DE (2) DE10205130A1 (fr)
ES (1) ES2254908T3 (fr)
WO (1) WO2003067144A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2833045A1 (fr) 2013-08-01 2015-02-04 Linde Aktiengesellschaft Dispositif et procédé de production de dioxyde de carbone liquide et/ou gazeux

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2871549B1 (fr) * 2004-06-11 2006-08-04 Air Liquide Procede de production de gaz carbonique liquide et application a la production de gaz carbonique supercritique
GB2416390B (en) * 2004-07-16 2006-07-26 Statoil Asa LCD Offshore Transport System
JP2006193377A (ja) * 2005-01-14 2006-07-27 Ekipo Kk ドライアイスの製造効率を高める装置
US20130180620A1 (en) * 2005-01-21 2013-07-18 Andreas Praller Carbon dioxide supply for injection-molding systems
DE102005002976A1 (de) * 2005-01-21 2006-07-27 Linde Ag Kohlendioxid-Versorgung für Spritzgussanlagen
US7824725B2 (en) 2007-03-30 2010-11-02 The Coca-Cola Company Methods for extending the shelf life of partially solidified flowable compositions
CN203809238U (zh) * 2010-05-26 2014-09-03 安捷伦科技有限公司 用于冷却泵送系统的系统
US8820098B2 (en) * 2011-05-17 2014-09-02 Air Products And Chemicals, Inc. Method and apparatus for quenching of materials in vacuum furnace
DE102011084324A1 (de) * 2011-10-12 2013-04-18 Siemens Aktiengesellschaft Kühleinrichtung für einen Supraleiter einer supraleitenden dynamoelektrischen Synchronmaschine
KR101294190B1 (ko) * 2011-11-30 2013-08-08 기아자동차주식회사 Gdi엔진의 저압연료펌프 제어방법
WO2014091060A1 (fr) * 2012-12-14 2014-06-19 Wärtsilä Finland Oy Procédé de remplissage d'un réservoir de carburant avec un gaz liquéfié, et système de carburant gaz liquéfié
CN103104808B (zh) * 2012-12-31 2016-08-03 安庆凯美特气体有限公司 将食品级液体二氧化碳产品装入液体槽车储槽内的方法
US20150027136A1 (en) * 2013-07-23 2015-01-29 Green Buffalo Fuel, Llc Storage and Dispensing System for a Liquid Cryogen
US10066884B2 (en) * 2013-07-25 2018-09-04 Denbury Resources Inc. Method and apparatus for dampening flow variations and pressurizing carbon dioxide
US11384904B2 (en) * 2013-12-05 2022-07-12 Praxair Technology, Inc. Method and system for filling thermally insulated containers with liquid carbon dioxide
NO336502B1 (no) * 2013-12-23 2015-09-14 Yara Int Asa Fyllestasjon for fylling av et kryogent kjølemiddel
NO336503B1 (no) * 2013-12-23 2015-09-14 Yara Int Asa Fyllestasjon for flytende kryogent kjølemiddel
CN108195607A (zh) * 2018-02-02 2018-06-22 中国科学院西安光学精密机械研究所 一种火星表面环境模拟试验装置及方法
FR3080906B1 (fr) * 2018-05-07 2021-01-15 Air Liquide Procede et installation de stockage et de distribution d'hydrogene liquefie
US11835270B1 (en) 2018-06-22 2023-12-05 Booz Allen Hamilton Inc. Thermal management systems
US11313594B1 (en) 2018-11-01 2022-04-26 Booz Allen Hamilton Inc. Thermal management systems for extended operation
US11448434B1 (en) 2018-11-01 2022-09-20 Booz Allen Hamilton Inc. Thermal management systems
US11421917B1 (en) 2018-11-01 2022-08-23 Booz Allen Hamilton Inc. Thermal management systems
US11801731B1 (en) 2019-03-05 2023-10-31 Booz Allen Hamilton Inc. Thermal management systems
KR102095897B1 (ko) * 2019-04-05 2020-04-01 대성산업가스 주식회사 고압의 기체 이산화탄소 생산 장치
US11629892B1 (en) 2019-06-18 2023-04-18 Booz Allen Hamilton Inc. Thermal management systems
CN110296322B (zh) * 2019-07-30 2024-03-01 西安长庆科技工程有限责任公司 一种液态co2装卸车一体化集成装置及其应用方法
US11752837B1 (en) 2019-11-15 2023-09-12 Booz Allen Hamilton Inc. Processing vapor exhausted by thermal management systems
JP7221856B2 (ja) * 2019-12-23 2023-02-14 三菱造船株式会社 タンクシステム、船舶
US11561030B1 (en) 2020-06-15 2023-01-24 Booz Allen Hamilton Inc. Thermal management systems
CN112212220B (zh) * 2020-09-14 2022-07-26 河南中烟工业有限责任公司 一种液体二氧化碳供给输送系统
WO2022106053A1 (fr) * 2020-11-19 2022-05-27 Linde Gmbh Procédé et dispositif de transport
CN113685723B (zh) * 2021-08-16 2022-10-04 常州化工设计院有限公司 一种副产氢气压缩充装生产工艺
CN114542959A (zh) * 2022-02-23 2022-05-27 北京丰润铭科贸有限责任公司 一种在恒定压力下持续供应液态二氧化碳的方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2487863A (en) * 1946-07-01 1949-11-15 Phillips Petroleum Co Tank car unloading system
US3672181A (en) * 1970-02-26 1972-06-27 Lewis Tyree Jr Method and apparatus for carbon dioxide cooling
JPS5181014A (ja) * 1975-01-13 1976-07-15 Hitachi Ltd Teionekitaiatsusohoho
US4127008A (en) * 1976-11-01 1978-11-28 Lewis Tyree Jr Method and apparatus for cooling material using liquid CO2
FR2594209B1 (fr) * 1986-02-07 1988-05-13 Carboxyque Francaise Procede et installation pour fournir de l'anhydride carbonique sous haute pression
IT1217489B (it) * 1988-05-04 1990-03-22 Giunio Guido Santi Sistema a circuito chiuso per motore termico a riciclo dei gas di scarico
US4888955A (en) * 1988-08-23 1989-12-26 Liquid Carbonic Corporation Two phase CO2 storage tank
US5409046A (en) * 1989-10-02 1995-04-25 Swenson; Paul F. System for fast-filling compressed natural gas powered vehicles
US5088436A (en) * 1990-04-02 1992-02-18 Thad Keenan Apparatus for charging gas pressurized beverage storage and dispensing systems
US5121609A (en) * 1991-05-17 1992-06-16 Minnesota Valley Engineering No loss fueling station for liquid natural gas vehicles
US5127230A (en) * 1991-05-17 1992-07-07 Minnesota Valley Engineering, Inc. LNG delivery system for gas powered vehicles
US5218827A (en) * 1992-04-17 1993-06-15 Praxair Technology, Inc. Pumping of liquified gas
US5771946A (en) * 1992-12-07 1998-06-30 Chicago Bridge & Iron Technical Services Company Method and apparatus for fueling vehicles with liquefied cryogenic fuel
US5325894A (en) * 1992-12-07 1994-07-05 Chicago Bridge & Iron Technical Services Company Method and apparatus for fueling vehicles with liquefied natural gas
US5360139A (en) * 1993-01-22 1994-11-01 Hydra Rig, Inc. Liquified natural gas fueling facility
US5421160A (en) * 1993-03-23 1995-06-06 Minnesota Valley Engineering, Inc. No loss fueling system for natural gas powered vehicles
US5554382A (en) * 1993-05-28 1996-09-10 Aphios Corporation Methods and apparatus for making liposomes
US5373702A (en) * 1993-07-12 1994-12-20 Minnesota Valley Engineering, Inc. LNG delivery system
US5510019A (en) * 1993-07-30 1996-04-23 Mitsubishi Oil Co., Ltd. Bubble separating apparatus
US5415001A (en) * 1994-03-25 1995-05-16 Gas Research Institute Liquefied natural gas transfer
DE4423400C2 (de) * 1994-07-04 1998-02-05 Siemens Ag Verfahren und Vorrichtung zur Erzeugung eines Inertisierungsgases
FR2758317B1 (fr) * 1997-01-13 1999-09-17 Piotr Czernichowski Conversion d'hydrocarbures assistee par les arcs electriques glissants en presence de la vapeur d'eau et/ou de gaz carbonique
US5937655A (en) * 1997-12-04 1999-08-17 Mve, Inc. Pressure building device for a cryogenic tank
NO315194B1 (no) * 1998-01-30 2003-07-28 Navion As Fremgangsmåte og system for eksport av LNG og kondensat fra et flytende produksjons-, lagrings- og lossefartöy
JP2000128502A (ja) * 1998-10-22 2000-05-09 Honda Motor Co Ltd 自動車の水素貯蔵タンクへの水素充填方法
JP3065131U (ja) * 1999-06-23 2000-01-28 日本酸素株式会社 ガス供給装置
JP4616953B2 (ja) * 1999-11-29 2011-01-19 広島ガス株式会社 輸送容器の落圧システム及び貯蔵タンクへのガス吹き込み装置
DE10010193A1 (de) * 2000-03-02 2001-09-20 Messer Italia S P A Vorrichtung und Verfahren zum Befüllen eines Behälters mit Flüssiggas
JP2002013481A (ja) * 2000-06-28 2002-01-18 Sumitomo Seika Chem Co Ltd 液化ガスの送り出し装置
JP4493806B2 (ja) * 2000-06-29 2010-06-30 大陽日酸株式会社 液化ガスの送液設備
US6354088B1 (en) * 2000-10-13 2002-03-12 Chart Inc. System and method for dispensing cryogenic liquids
US6581390B2 (en) * 2001-10-29 2003-06-24 Chart Inc. Cryogenic fluid delivery system
JP3939178B2 (ja) * 2002-03-25 2007-07-04 大日本スクリーン製造株式会社 高圧乾燥装置、高圧乾燥方法および基板処理装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2833045A1 (fr) 2013-08-01 2015-02-04 Linde Aktiengesellschaft Dispositif et procédé de production de dioxyde de carbone liquide et/ou gazeux
DE102013012833A1 (de) 2013-08-01 2015-02-05 Linde Aktiengesellschaft Einrichtung und Verfahren zum Bereitstellen von flüssigem und/oder gasförmigem Kohlendioxid

Also Published As

Publication number Publication date
AU2003208750A1 (en) 2003-09-02
WO2003067144A2 (fr) 2003-08-14
DE60302768D1 (de) 2006-01-19
JP4624676B2 (ja) 2011-02-02
EP1474632A2 (fr) 2004-11-10
DE10205130A1 (de) 2003-08-28
DE60302768T2 (de) 2006-08-31
US7891197B2 (en) 2011-02-22
ATE313040T1 (de) 2005-12-15
JP2005517144A (ja) 2005-06-09
ES2254908T3 (es) 2006-06-16
WO2003067144A3 (fr) 2003-12-24
US20050126188A1 (en) 2005-06-16
CA2475067A1 (fr) 2003-08-14

Similar Documents

Publication Publication Date Title
EP1474632B1 (fr) Procede d'alimentation ininterrompue de dioxyde de carbone en surfusion fluide a pression constante superieure a 40 bars et systeme de mise en oeuvre de ce procede
EP3784952B1 (fr) Système de distribution de fluide cryogénique comportant un réservoir de réfrigération
US8065883B2 (en) Controlled storage of liquefied gases
US7131278B2 (en) Tank cooling system and method for cryogenic liquids
JP7423616B2 (ja) 液化水素を貯蔵及び分配するための方法並びに設備
US5520000A (en) Cryogenic gas compression system
US20230417368A1 (en) Method and conveying device
EP2446185A1 (fr) Système et procédé de distribution de gnl
US20230067726A1 (en) Pumping of liquid cryogen from a storage tank
CN113833977A (zh) 低温流体分配系统和方法
US6786053B2 (en) Pressure pod cryogenic fluid expander
AU2003208750B2 (en) A method for non-intermittent provision of fluid supercool carbon dioxide at constant pressure above 40 bar as well as the system for implementation of the method
US20150027136A1 (en) Storage and Dispensing System for a Liquid Cryogen
JP4731042B2 (ja) 高圧ガス供給設備
EP4242457A1 (fr) Appareil et procédé de refroidissement de pompe cryogénique
WO2008097099A1 (fr) Procédé et dispositif pour transporter du gaz
KR20230069044A (ko) 시스템을 120k 내지 200k 범위에서 냉각시키기 위한 방법
WO2021226524A1 (fr) Procédé de fonctionnement d'un système de reliquéfaction
CN117897576A (zh) 用于输送低温流体的方法和装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040907

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

17Q First examination report despatched

Effective date: 20041126

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WINTER HARALD

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051214

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051214

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051214

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051214

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051214

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051214

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051214

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051214

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WINTER HARALD

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60302768

Country of ref document: DE

Date of ref document: 20060119

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060314

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060314

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060314

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060314

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060615

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2254908

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140219

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20140219

Year of fee payment: 12

Ref country code: FR

Payment date: 20140219

Year of fee payment: 12

Ref country code: BE

Payment date: 20140218

Year of fee payment: 12

Ref country code: IT

Payment date: 20140225

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20140204

Year of fee payment: 12

Ref country code: GB

Payment date: 20140218

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150228

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20150805

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60302768

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150805

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150901

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150302

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150206