EP1449004A1 - Sequence de reconstruction de projection de type a echo de gradient multiple destinee a une irm et notamment a une irm a diffusion ponderee - Google Patents
Sequence de reconstruction de projection de type a echo de gradient multiple destinee a une irm et notamment a une irm a diffusion pondereeInfo
- Publication number
- EP1449004A1 EP1449004A1 EP02782317A EP02782317A EP1449004A1 EP 1449004 A1 EP1449004 A1 EP 1449004A1 EP 02782317 A EP02782317 A EP 02782317A EP 02782317 A EP02782317 A EP 02782317A EP 1449004 A1 EP1449004 A1 EP 1449004A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- gradient
- set forth
- diffusion
- magnetic resonance
- imaging region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/563—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography
- G01R33/56341—Diffusion imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/561—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
- G01R33/5615—Echo train techniques involving acquiring plural, differently encoded, echo signals after one RF excitation, e.g. using gradient refocusing in echo planar imaging [EPI], RF refocusing in rapid acquisition with relaxation enhancement [RARE] or using both RF and gradient refocusing in gradient and spin echo imaging [GRASE]
- G01R33/5616—Echo train techniques involving acquiring plural, differently encoded, echo signals after one RF excitation, e.g. using gradient refocusing in echo planar imaging [EPI], RF refocusing in rapid acquisition with relaxation enhancement [RARE] or using both RF and gradient refocusing in gradient and spin echo imaging [GRASE] using gradient refocusing, e.g. EPI
Definitions
- the present invention relates to the diagnostic imaging arts. It finds particular application in conjunction with open MRI systems operating diffusion detection sequences and will be described with particular reference thereto. It will be appreciated, however, that the present invention is useful in conjunction with other systems, such as higher field bore type systems, and is not limited to the aforementioned application.
- a main magnetic field B 0 is generated through an imaging region wherein is located a subject.
- Radio frequency (RF) coils transmit RF pulses into the imaging region exciting and manipulating dipoles within the subject.
- Gradient coils superimpose gradient magnetic fields on the main magnetic field in order to spatially and spectrally encode the excited dipoles .
- Diffusion weighting sequences detect the movement of water in the subject on the cellular level. These sequences typically detect the movement of water on the order of a few microns, or about the distance it takes to cross a cell membrane. Echo planar imaging (EPI) sequences have been used to detect diffusion in a magnetic resonance scan. Although fast in data acquisition, EPI sequences tend to be very motion sensitive and have relatively low signal to noise ratios (SNR) .
- SNR signal to noise ratios
- Rotating k-space diffusion sequences without phase encoding are also used. These sequences are typically more resilient to patient motion, and have higher SNR. However, they take much longer than an EPI sequence, typically on the order of three to four minutes. Another drawback of this type of sequence is that it tends to put heavy loads on the gradient equipment, and is not implementable in all present day MRI scanners. In addition, high, rapidly changing gradient fields can add to patient discomfort.
- FSE Fast spin echo
- the present invention provides a new and improved method and apparatus that overcomes the above referenced problems and others .
- a method of magnetic resonance is provided. Resonance is excited in selected dipoles of a .subject in an imaging region. The resonance is refocused with an inversion pulse, and at least two gradient recalled echos are acquired. Data is collected until enough is present to be reconstructed into an image representation to the subject.
- a magnetic resonance apparatus In accordance with another aspect of the present invention, a magnetic resonance apparatus is provided.
- a main magnetic assembly generates a main magnetic field through a subject in the imaging region.
- An RF coil assembly transmits RF pulses into the imaging region.
- a gradient coil assembly superimposes gradient fields on the main magnetic field inducing at least two gradient recalled echos .
- a receiver receives magnetic resonance signals from the imaging region, and a reconstruction processor reconstructs the received magnetic resonance into an image representation.
- Another advantage resides in higher signal to noise ratios in diffusion weighting imaging.
- Another advantage resides in more robust data acquisition schemes.
- Another advantage resides in reduced RF and gradient loads .
- the invention may take form in various components and arrangements of components, and in various steps and arrangements of steps.
- the drawings are only for purposes of illustrating preferred embodiments and are not to be construed as limiting the invention.
- FIGURE 1 is a diagrammatic illustration of a magnetic resonance imaging apparatus in accordance with the present invention.
- FIGURE 2 is a pulse sequence diagram illustrating a diffusion weighting pulse sequence in accordance with the present invention
- FIGURE 3 is a preferred trajectory through k-space, generated by multiple iterations of the pulse sequence of FIGURE 2.
- a subject is disposed in an imaging region 10 of an magnetic resonance apparatus.
- an open magnetic resonance apparatus is utilized, however, bore type machines have also been contemplated.
- the subject is disposed in the apparatus between an upper pole assembly 12 and a lower pole assembly 14.
- gradient coils 24, 26 transmit gradient pulses into the imaging region.
- the pulses are controlled by a gradient field controller 28 and amplified by gradient amplifiers 30 then transmitted to the gradient coils 24,26.
- the gradient field controller 28 includes three specific gradient synthesizers which are utilized in constructing the gradient sequence.
- a diffusion gradient synthesizer 32 synthesizes gradients that sensitize the magnetic resonance apparatus to the diffusion of water or other molecules in the subject.
- a frequency encoding synthesizer 34 synthesizes gradient pulses that frequency encode resonance in the subject as well as induce gradient recalled echoes in the subject.
- the third gradient synthesizer is a slice select gradient synthesizer 36.
- the slice select synthesizer creates gradient pulses that will limit a region of interest within the subject to a slab or a slice.
- Upper and lower RF coils 40, 42 transmit RF pulses into the imaging region 10.
- the pulses are transmitted to the coils 40, 42 by at least one RF transmitter 44, preferably digital.
- the RF pulses are generated by an RF pulse controller 46.
- the gradient field controller 28 and the RF pulse controller 46 are both controlled by a sequence controller 48 which retrieves desired sequences from a sequence memory 50.
- the RF coils 40, 42 or other local receive coils detect the resonance signals.
- the resonance signals are received by at least one receiver 52 and processed by a reconstruction processor 54 which applies a one dimensional Fourier transform or other appropriate reconstruction algorithm to the detected resonance signals.
- the processed signals are stored in a magnitude memory 56.
- a backprojection processor 58 backprojects the image magnitudes producing an image representation that is stored in a volumetric image memory 60.
- An image processor 62 extracts portions of the image representation from the image memory 60 and formats them for display on a human readable display 62 such as a video monitor, LCD display, active matrix monitor, or the like.
- the preferred pulse sequence generates multiple gradient recalled echoes. Magnetic resonance data is read from these echoes in the presence of a plurality of different gradients. Slice select gradients are applied to reduce the imaging volume to a selected slice or slab within the subject. Diffusion gradients and frequency encoding gradients are applied preferably such that their sensitivities are orthogonal to one another. In the preferred embodiment , data is read in the absence of phase encoding gradients.
- a 90° RF excitation pulse 70 is applied in the presence of a slab select gradient 72.
- the excitation pulse 70 preferably tips magnetic dipoles selected by the slab select gradient 72 into the transverse plane, that is, approximately 90 ° .
- 90° of tip yields a relatively strong signal, in comparison to lesser degrees of initial tip. It is to be understood that other tip angles are possible, with 90° being preferred as it yields a higher SNR with a possibility for the most gradient recalled echoes .
- the dephase gradient is composed of a y-component 74a and an x- component 74b.
- the x and y directions refer to the orthogonal directions in the excited slab, and they also define the directions k x and k y in k-space.
- the purpose of the dephase gradient is to form an echo in the first read gradient event. Alternatively, it may be applied after the refocusing pulse with opposite sign.
- the two portions of the dephase gradient 74 combine to define a directional vector of sensitivity in k- space .
- a first portion of a diffusion sensitivity gradient 76 is applied. Similar to the dephase gradient 74, the first portion of the diffusion gradient is divided into a y-component 76a and an x-component
- the diffusion sensitivity gradient 76, 82 detects the diffusion of selected molecules, preferably water, during times when it is active.
- the first part 76 and the second part 82 of the diffusion sensitivity gradient are preferably disposed symmetrically in time about the 180° refocusing RF pulse 78.
- the gradient lobes 76 and 82 should have the same area.
- a first frequency encode gradient 84 commonly known as a read gradient
- the first read gradient 84 is composed of a y-component 84a and an x-component 84b.
- the two components define a directional vector that is approximately perpendicular to the directional sensitivity of the diffusion gradient 76, 82 and has the same direction as the dephasing gradient 74.
- the area underneath lobes of the first read gradient 84 is approximately twice the size of the area underneath the dephase gradient 74.
- a reversal gradient 86 is applied to the imaging region.
- the reversal gradient similar to the other gradients has a y- component 86a and an x-component 86b.
- the reversal gradient effectively resets the data readout in k-space, and defines where one data line stops and the next one begins.
- another read gradient 88 is applied to form a second data line in k-space.
- the second read gradient comprises a y-component 88a and an x-component 88b.
- the second read gradient 88 is slightly different than the first read gradient 86.
- the read direction of the second read gradient 88 is shifted less than one degree from the read direction of the first read gradient 84.
- data lines are stepped in a rotational fashion about a center of k-space 100.
- the first read gradient 84 generates a data line 102 in k-space.
- the second read gradient 88 generates a second data line 103 with a slightly different read direction than the first data line 102.
- the preferred sequence makes 256 steps around 180° making the angle 106 between each data line approximately 0.70°. Of course, more or fewer steps can be taken, it is preferred, however, that the angle between data lines be no greater than 10° as the sequence will become sensitive to motion of the subject, as discussed in the background. Additional data lines are generated with additional cycles of the described two echo embodiment.
- additional data lines can be read by utilizing additional reversal gradients.
- the second reversal gradient is approximately the same amplitude of the reversal gradient 86, with a small change in the direction of the third read gradient, producing data line 104.
- about four gradient recalled echoes may be induced from one RF excitation pulse. After four echoes, the phase errors accumulated in the gradient recalled echoes may become too large.
- RF echoes 90 and 94 occur in time windows 92, and 96 respectively and are disposed symmetrically about a time TE.
- the group of echoes is centered on the time TE, for example, in a three echo embodiment, the second echo is centered on the time TE.
- the 180° refocusing pulse 78 occurs at a time TE/2, as implied, the time TE/2 occurs at half the value of time TE.
- the RF echoes are received in the absence of phase encoding.
- Projection reconstruction methods are used to form the image .
- the receiver 52 receives a real part and an imaginary part of the magnetic resonance signals.
- the reconstruction processor 54 adds the squares of the real and imaginary parts and takes the square root. Simplified, if the real part is x and the imaginary part is y the reconstruction processor performs the operation X ⁇ l— 2 to obtain the magnitude data of the received
- no reversal gradients are used. Instead, subsequent gradients are substantially opposite each other. That is, if the first gradient lobe is positive, the second is negative, and so forth.
- the frequency encoding gradients run subsequently with no interruption, or possibly with a small gradient pulse in- between to adjust the starting point of the data line.
- the data lines are read in opposite directions, and the arrowheads in FIGURE 3 would likewise alternate.
- the diffusion gradient pulses 76, 82 are both applied before the refocusing pulse 80.
- the pulses have opposite signs.
- the diffusion gradient pulses 76, 82 contain a component in the direction of the slice select gradient . Despite this modification, the requirement that the diffusion gradient be orthogonal to the read gradient can still be fulfilled.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Vascular Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Radiology & Medical Imaging (AREA)
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- High Energy & Nuclear Physics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US988465 | 1997-12-10 | ||
US09/988,465 US6445184B1 (en) | 2001-11-20 | 2001-11-20 | Multiple gradient echo type projection reconstruction sequence for MRI especially for diffusion weighted MRI |
PCT/US2002/037000 WO2003044555A1 (fr) | 2001-11-20 | 2002-11-19 | Sequence de reconstruction de projection de type a echo de gradient multiple destinee a une irm et notamment a une irm a diffusion ponderee |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1449004A1 true EP1449004A1 (fr) | 2004-08-25 |
EP1449004B1 EP1449004B1 (fr) | 2008-12-31 |
Family
ID=25534143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02782317A Expired - Lifetime EP1449004B1 (fr) | 2001-11-20 | 2002-11-19 | Sequence de reconstruction de projection de type a echo de gradient multiple destinee a une irm et notamment a une irm a diffusion ponderee |
Country Status (5)
Country | Link |
---|---|
US (1) | US6445184B1 (fr) |
EP (1) | EP1449004B1 (fr) |
JP (1) | JP2005509509A (fr) |
DE (1) | DE60230662D1 (fr) |
WO (1) | WO2003044555A1 (fr) |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6751495B2 (en) * | 2000-03-31 | 2004-06-15 | Brigham & Womens' Hospital | Method of fast and reliable tissue differentiation using diffusion-weighted magnetic resonance imaging |
US7193416B2 (en) * | 2001-12-10 | 2007-03-20 | Koninklijke Philips Electronics N.V. | Open magnetic resonance imaging (MRI) magnet system |
DE10219528A1 (de) * | 2002-05-02 | 2003-11-13 | Philips Intellectual Property | Schnelles Kernresonanz-Bildgebungsverfahren mit Gradienten-Echos |
WO2007038206A1 (fr) * | 2005-09-22 | 2007-04-05 | Wisconsin Alumni Research Foundation | Reconstruction par retroprojection a forte contrainte en rmi ponderee par diffusion |
US8406849B2 (en) * | 2006-03-31 | 2013-03-26 | University Of Utah Research Foundation | Systems and methods for magnetic resonance imaging |
EP1959397B1 (fr) * | 2007-02-19 | 2019-08-07 | Wisconsin Alumni Research Foundation | Reconstruction HYPR itérative d'images médicales |
US8320647B2 (en) | 2007-11-20 | 2012-11-27 | Olea Medical | Method and system for processing multiple series of biological images obtained from a patient |
US8339138B2 (en) * | 2008-10-15 | 2012-12-25 | University Of Utah Research Foundation | Dynamic composite gradient systems for MRI |
US8274283B2 (en) * | 2009-04-27 | 2012-09-25 | Siemens Aktiengesellschaft | Method and apparatus for diffusion tensor magnetic resonance imaging |
WO2013001415A1 (fr) * | 2011-06-28 | 2013-01-03 | Koninklijke Philips Electronics N.V. | Irm présentant une séparation de différentes espèces chimiques à l'aide d'un modèle spectral |
EP2610632A1 (fr) | 2011-12-29 | 2013-07-03 | Koninklijke Philips Electronics N.V. | Imagerie par RM avec séparation eau/graisse de type Dixon et connaissance préalable de l'inhomogénéité du champ magnétique principal |
EP2626718A1 (fr) * | 2012-02-09 | 2013-08-14 | Koninklijke Philips Electronics N.V. | IRM avec correction de mouvement utilisant des navigateurs acquis avec une technique de Dixon |
CN103513202B (zh) * | 2012-06-16 | 2016-04-27 | 上海联影医疗科技有限公司 | 一种磁共振成像中的dixon水脂分离方法 |
KR101301490B1 (ko) | 2012-06-19 | 2013-08-29 | 한국과학기술원 | 자기공명영상장치 및 확산강조영상획득방법 |
CN102928796B (zh) * | 2012-09-28 | 2014-12-24 | 清华大学 | 快速扩散磁共振成像和重建方法 |
DE102012217992A1 (de) | 2012-10-02 | 2014-04-03 | Siemens Aktiengesellschaft | Verfahren und Magnetresonanzanlage zur Erfassung von MR-Daten mit Diffusionsinformation |
DE102012217997A1 (de) | 2012-10-02 | 2014-04-03 | Siemens Aktiengesellschaft | Verfahren zur zeitabhängigen Intensitätskorrektur von diffusionsgewichteten MR-Bildern und Magnetresonanz-Anlage |
US9897677B2 (en) * | 2013-09-04 | 2018-02-20 | Samsung Electronics Co., Ltd. | Method for correcting errors associated with asynchronous timing offsets between transmit and receive clocks in MRI wireless radiofrequency coils |
KR101560463B1 (ko) * | 2013-12-30 | 2015-10-16 | 가천대학교 산학협력단 | 오프 공명 라디오주파수 펄스를 사용하는 자기 공명 영상 시스템에서 인공물 및 원하지 않는 신호를 제거하는 자기 공명 영상 획득 방법 |
WO2016077438A2 (fr) | 2014-11-11 | 2016-05-19 | Hyperfine Research, Inc. | Séquences d'impulsions pour résonance magnétique à faible champ |
US10088539B2 (en) | 2016-04-22 | 2018-10-02 | General Electric Company | Silent multi-gradient echo magnetic resonance imaging |
TW202012951A (zh) | 2018-07-31 | 2020-04-01 | 美商超精細研究股份有限公司 | 低場漫射加權成像 |
US11202583B2 (en) * | 2019-02-07 | 2021-12-21 | Yale University | Magnetic resonance gradient accessory providing tailored gradients for diffusion encoding |
CN111839515B (zh) * | 2019-04-26 | 2024-03-08 | 西门子医疗系统有限公司 | 利用磁共振成像的胎儿胼胝体体积的测量方法及磁共振成像装置 |
WO2021108216A1 (fr) | 2019-11-27 | 2021-06-03 | Hyperfine Research, Inc. | Techniques de suppression de bruit dans un environnement d'un système d'imagerie par résonance magnétique |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4833407A (en) | 1987-06-24 | 1989-05-23 | Picker International, Inc. | Scan time reduction using conjugate symmetry and recalled echo |
US5270654A (en) * | 1991-07-05 | 1993-12-14 | Feinberg David A | Ultra-fast multi-section MRI using gradient and spin echo (grase) imaging |
US5300886A (en) * | 1992-02-28 | 1994-04-05 | The United States Of America As Represented By The Department Of Health & Human Services | Method to enhance the sensitivity of MRI for magnetic susceptibility effects |
US5833609A (en) | 1996-11-26 | 1998-11-10 | Picker International, Inc. | Rotating diffusion MR imaging reduced motion artifacts |
-
2001
- 2001-11-20 US US09/988,465 patent/US6445184B1/en not_active Expired - Fee Related
-
2002
- 2002-11-19 WO PCT/US2002/037000 patent/WO2003044555A1/fr active Application Filing
- 2002-11-19 JP JP2003546130A patent/JP2005509509A/ja active Pending
- 2002-11-19 EP EP02782317A patent/EP1449004B1/fr not_active Expired - Lifetime
- 2002-11-19 DE DE60230662T patent/DE60230662D1/de not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
See references of WO03044555A1 * |
Also Published As
Publication number | Publication date |
---|---|
JP2005509509A (ja) | 2005-04-14 |
EP1449004B1 (fr) | 2008-12-31 |
US6445184B1 (en) | 2002-09-03 |
DE60230662D1 (de) | 2009-02-12 |
WO2003044555A1 (fr) | 2003-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6445184B1 (en) | Multiple gradient echo type projection reconstruction sequence for MRI especially for diffusion weighted MRI | |
US5909119A (en) | Method and apparatus for providing separate fat and water MRI images in a single acquisition scan | |
US8228063B2 (en) | Magnetic resonance imaging apparatus and magnetic resonance imaging method | |
US6147492A (en) | Quantitative MR imaging of water and fat using a quadruple-echo sequence | |
JP3734086B2 (ja) | 核磁気共鳴イメージング装置 | |
EP1391746B1 (fr) | Imagerie à résonance magnétique parallele utilisant des signaux d'écho navigateurs | |
JP4049649B2 (ja) | 磁気共鳴撮影装置 | |
JP3968352B2 (ja) | Mri装置 | |
JP4395516B2 (ja) | 脂肪抑制を用いる血管の等方性画像形成 | |
US5537039A (en) | Virtual frequency encoding of acquired NMR image data | |
WO1995004946A1 (fr) | Appareil et procede d'imagerie par echo rare utilisant une couverture en spirale d'espace k | |
US5051699A (en) | Magnetic resonance imaging system | |
RU2683605C1 (ru) | Параллельная мр-томография с картированием чувствительности с помощью рч-катушки | |
US20040064032A1 (en) | Data acquisition method and apparatus for MR imaging | |
EP1037067A1 (fr) | Méthode d'IRM non-CPMG à échos de spin rapides | |
JPH0549611A (ja) | 磁気共鳴映像装置 | |
US7148685B2 (en) | Magnetic resonance imaging with fat suppression | |
US20050001619A1 (en) | MRI method and apparatus with elimination of the ambiguity artifact | |
US6611143B2 (en) | MRI apparatus generating odd and/or even echo images with sensitivity distribution of coils | |
JPH05269112A (ja) | 流れ補償されたssfpパルスシーケンスを使用するnmrイメージング法 | |
JP2003010148A (ja) | Mrイメージング方法およびmri装置 | |
US7518364B1 (en) | Species separation using selective spectral supression in balanced steady-state free precession imaging | |
CN110215209B (zh) | 一种磁共振成像方法和磁共振成像系统 | |
JP2000157507A (ja) | 核磁気共鳴撮影装置 | |
US7157909B1 (en) | Driven equilibrium and fast-spin echo scanning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040621 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
17Q | First examination report despatched |
Effective date: 20070904 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB NL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 60230662 Country of ref document: DE Date of ref document: 20090212 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081231 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20091001 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20091119 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20100730 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091119 |