EP1448894B1 - Selbstansaugende hybridpumpe - Google Patents

Selbstansaugende hybridpumpe Download PDF

Info

Publication number
EP1448894B1
EP1448894B1 EP02787368A EP02787368A EP1448894B1 EP 1448894 B1 EP1448894 B1 EP 1448894B1 EP 02787368 A EP02787368 A EP 02787368A EP 02787368 A EP02787368 A EP 02787368A EP 1448894 B1 EP1448894 B1 EP 1448894B1
Authority
EP
European Patent Office
Prior art keywords
rotor
pump
hybrid pump
hybrid
rotor blades
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02787368A
Other languages
English (en)
French (fr)
Other versions
EP1448894A1 (de
Inventor
Thomas Salomon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tecalemit GmbH and Co KG
Original Assignee
Horn GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horn GmbH and Co KG filed Critical Horn GmbH and Co KG
Publication of EP1448894A1 publication Critical patent/EP1448894A1/de
Application granted granted Critical
Publication of EP1448894B1 publication Critical patent/EP1448894B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/40Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C2/08 or F04C2/22 and having a hinged member
    • F04C2/44Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C2/08 or F04C2/22 and having a hinged member with vanes hinged to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C5/00Rotary-piston machines or pumps with the working-chamber walls at least partly resiliently deformable

Definitions

  • the invention relates to a hybrid pump according to the preamble of claim 1.
  • centrifugal pumps In the construction of pumps for the promotion of fluids, especially liquids, the problem is that can be achieved with known centrifugal pumps, although a high efficiency and low operating noise of the pump, but these pumps are not self-priming, so a column of liquid from the Standstill out can not suck itself when the centrifugal pump is vented. This is particularly disadvantageous if such pumps have only short operating times and the pumped liquid column at standstill due to a height difference again runs out of the interior of the pump. Therefore, centrifugal pumps often have additional units with which before the actual operation of the centrifugal pump, the liquid column can be conveyed into the housing interior and thus the centrifugal pump does not run dry, but the housing interior is filled with liquid from the beginning.
  • Such a further developed vane pump is shown in DE 195 45 045 A1, in which the blades of the vane pump are mounted on a rotor and formed elastically, so that the aerodynamically curved wings of the rotor move during the entire rotational movement of the rotor along the inner surface of the housing interior and abut on this under variable bias.
  • the wings of the rotor separate individual volumes within the housing interior from each other, wherein the eccentricity between the rotor and the housing interior a corresponding delivery of a fluid and a pressure build-up in principle known for vane pump is possible.
  • the flexibility of the aerodynamically shaped wing of the rotor in this case has the advantage that only slight wear between the Gescouseinnenwandung and the blades of the rotor occurs because the wings adapt under elastic bias to the different distances to the housing inner wall and create the Gescouseinnenwandung.
  • the efficiency of this pump is by design not particularly high and the wear against e.g. Centrifugal pumps much higher.
  • Object of the present invention is therefore to develop a pump which is on the one hand self-priming and at the same time can work at high efficiencies and, moreover, is inexpensive to manufacture.
  • the invention relates to a pump with a housing, in each of which at least one suction port and a pressure port opens and in whose substantially circular enclosed housing interior, a rotor is arranged eccentrically, the periphery of a number of spaced, at least partially radially arranged rotor blades Has a resiliently deformable under the influence of centrifugal force elastically deformable material.
  • Such a pump is further developed in that the eccentricity of the rotor relative to the housing interior and the elasticity of the rotor blades are selected such that each rotor blade in a first range of low speed with its radially projecting end portion in the course of one revolution of the rotor is not or only temporarily applied to peripheral portions of the housing interior, whereas in a second region of higher speed all rotor blades with their radially projecting end under centrifugal force substantially during the entire revolution of the rotor abut against the inner wall of the housing interior.
  • This makes it possible to operate in the first range of low speed, the hybrid pump so that it works mainly as a pure flow pump substantially corresponding to a centrifugal pump.
  • the hybrid pump After exceeding a threshold value for the speed, however, the hybrid pump changes its operating behavior by deforming the rotor blades under the influence of centrifugal force elastically so that they rest with their radially projecting end portions substantially during the entire revolution of the rotor to the inner wall of the housing interior and thus partial volumes of Separate housing interior from each other liquid-tight.
  • This makes it possible to ensure self-priming of a liquid column with the hybrid pump operating essentially in accordance with a conventional vane pump, even if the hybrid pump has previously been in a ventilated state, for example due to a standstill.
  • a drive motor will accelerate the liquid pump operating without liquid content very quickly to its maximum speed, so that the hybrid pump is operated almost immediately in the second region of higher speed and works in this operating state so-to-speak as a vane pump self-priming and promotes fluid into the housing interior. If the pump is then filled with liquid as a result, the rotational speed of the drive motor will decrease to such an extent due to the acting counterrotating torques and the influence of the liquid that the operating state of the hybrid pump passes into the first low-speed region in which the hybrid pump operates quasi according to a centrifugal pump and promotes fluid at high efficiency.
  • the hybrid pump according to the invention therefore offers two essential functions of pumps, namely the self-priming and the operation with the highest possible efficiencies, in a single pump design.
  • the hybrid pump according to the invention is particularly for applications of great advantage in which often only briefly the operation at full capacity is required, but at the same time due to frequent downtime slumping of the liquid column from the pump can not be avoided.
  • this otherwise expensive constructions with check valves or the like. Must be provided to keep the liquid column in the pump, which are expensive and prone and beyond also negatively affect the efficiency of the pump, as the suction line by such internals no longer can be designed so freely throughout.
  • an advantageous embodiment provides that the elastic deformability of the rotor blades is selected such that from a certain speed of the rotor, the deformation of the rotor blades due to the centrifugal force compensates for the eccentricity, so that substantially all ends of the rotor blades abut the inner wall of the housing interior and each other form separated compression spaces.
  • the resulting due to the eccentricity of the hybrid pumping behavior can be adjusted depending on the elasticity of the rotor blades so that abut from a limit speed, the rotor blades not only on parts of the peripheral surface of the housing interior, but during the entire rotation with this in contact and thus the Partial volumes of the housing interior separate from each other, as is basically known in conventional vane pumps.
  • the hybrid pump can also promote particles contaminated with particles, since the deformability of the rotor blades permits corresponding deformations in the passage of even larger particles in which rigid rotor blades would break.
  • each rotor blade has an aerodynamically curved cross-sectional shape in which each rotor blade touches the inner wall of the housing interior under elastic prestressing, even at a slow rotation of the rotor at least at one point.
  • the interior of the hybrid pump is divided into two separate areas, at the same time can be adapted by the cross-sectional shape of both the elasticity of the rotor blades and their investment on the Gescouseinnenwandung under bias in wide limits to different operating conditions.
  • the rotor blades have a blade-shaped curvature and are resiliently deformable in the circumferential direction.
  • An improved effect on the elastic deformation of the rotor blades can be achieved if, during operation of the hybrid pump in the first region of low speed tribological forces of the fluid to be delivered act on each rotor blade, which deform the rotor blades in the direction of the axis of rotation of the rotor.
  • the limit speed may be relatively high, so that in the operating state of the hybrid pump according to a centrifugal pump and adequate flow rates can be realized.
  • the operating behavior of the hybrid pump also depends on the conveyed medium because of the deformability of the rotor blades.
  • Low viscosity fluids will be different due to different Toughness set a different deformation of the rotor blades at the same speed as in highly viscous fluids or gases, with the centrifugal force effects play a role.
  • the rotor blades are made of a plastic material, preferably of thermoplastic materials or polyurethane or EPDM or nitrile or neoprene.
  • a plastic material preferably of thermoplastic materials or polyurethane or EPDM or nitrile or neoprene.
  • Such materials provide sufficient deformability with high dimensional stability even over permanent load.
  • such materials are inexpensive to process, for example by means of injection molding and thus to produce the rotor blades or even the whole rotor inexpensively.
  • the running behavior of the hybrid pump is very quiet.
  • rotor and rotor blades are integrally formed.
  • the rotor and the rotor blades can be shaped simultaneously and integrally in one processing step, for example by means of injection molding or other production methods.
  • the number of parts of the pump is drastically reduced, which also reduces assembly costs and increased reliability.
  • the rotor blades are used from the resilient material in associated recesses of the rotor and fixed thereto. This allows the rotor itself to be made of a different material than the rotor blades, for instance with regard to strength properties or other boundary conditions.
  • substantially cylindrical thickenings are arranged on the radially projecting from the rotor ends of the rotor blades, which create a sealing against the inner wall of the housing interior and separate individual cells of the hybrid pump in the operating state corresponding to a vane pump.
  • the eccentricity of the arrangement of the rotor in the range up to 20%, preferably up to 2% of the outer diameter of the rotor including the rotor blades. Such a value for the eccentricity can be bridged without problems with the deformation of the rotor blades and without endangering the strength properties of the rotor blades.
  • a particularly simple construction of the hybrid pump can be realized if the rotor and the housing consist of essentially disc-shaped basic shapes which can be connected to one another in a fluid-tight manner.
  • prefabricated components can be mounted simplified, and the fluidic sealing of the individual parts to each other over the large contact surfaces of the individual disk-shaped basic shapes is easy to implement.
  • the inlet and / or the outlet of the fluid in the housing interior is perpendicular to the axis of rotation of the rotor of the hybrid pump. In this case, the fluid flows substantially tangentially to the circumference of the rotor blades. In another embodiment, it is also conceivable that the inlet and / or the outlet of the fluid into the housing interior takes place at least with a component parallel to the axis of rotation of the rotor of the hybrid pump.
  • FIG. 1 shows a schematic representation of a section through a hybrid pump 1 according to the invention, wherein the section extends approximately in the dividing plane of the plate-shaped housing 2 of the hybrid pump 1.
  • a rotor 5 is mounted rotatably with rotor blades 6 arranged thereon about an axis of rotation 8.
  • the axis of rotation 8 in this case has an eccentric arrangement to the symmetry axis 9 of the housing interior 3, wherein the size of the eccentricity is shown under the item number 14.
  • the arrangement of the axis of rotation 8 and the axis of symmetry 9 and the essential structure of such a hybrid pump 1 is basically known from DE 195 45 045 A1 and should therefore be explained only insofar as is relevant to the present invention.
  • the rotor blades 6 are in this case formed of an elastically deformable material which can deform from the blade-like configuration according to the figure 1 under the action of centrifugal force during rotation of the rotor 5 along the direction of rotation 17 such that the cylindrical thickenings 7 at the ends of Rotor blades 6 move more and more radially outward as the speed increases and during create the rotation over an ever longer circumferential length of the inner wall 4 of the housing interior 3.
  • the thickenings 7 of the rotor blades 6 are then in constant contact with the inner wall 4 of the housing interior 3, as can be seen in more detail in FIG.
  • the rotor blades 6 spread radially outward from the axis of rotation 8, and more and more contact the inner wall 4.
  • the rotor blades 6 also change their curved cross-sectional shape a little, in that in the regions along the circumferential direction of the Gezzauseinnenwandung 4, which are farther away from the axis of rotation 8 of the rotor 5, the rotor blades 6 in a stretched configuration.
  • this elongated configuration will then spring back in and return to the configuration which in this area in FIG. 1 or in FIG recognize.
  • the material of the rotor blades 6 may consist for example of thermoplastic materials, polyurethanes, EPDM, nitrile or neoprene, such materials having both a relatively large elastic deformability and high strength and low abrasion under load due to frictional contact.
  • the rotor 5 with the rotor blades 6 arranged thereon is, as can better be seen in FIG. 2, fixed on a drive shaft 13 on which a drive motor (not shown) can be flanged.
  • hybrid pump 1 The function of the hybrid pump 1 according to the invention can be described as follows in comparison with the combined in the hybrid pump 1 principles of centrifugal pump and vane pump.
  • a conventional centrifugal pump is not self-priming, so that before starting such a centrifugal pump, a fluid must be introduced into the suction side 10 and through the inlet 12 in the centrifugal pump. If the centrifugal pump is then put into operation, a volumetric flow of the fluid is fed in via the rotor 5 and the rotor blades 6 through the suction side 10 in the inflow direction 15, so that the centrifugal pump does not dry anymore. This volume flow occurs after passing through the housing interior through the pressure side 11 in the outflow 16 again from the centrifugal pump. At relatively low speeds below the limit speed, the hybrid pump according to the invention substantially exhibits these properties, since the rotor blades 6 have no or only a temporary contact with the housing inner wall 4, as in a centrifugal pump.
  • This self-priming property of the hybrid pump 1 according to the invention has the significant advantage that the use of the hybrid pump 1 requires no previous filling of the pump interior, which otherwise must be done either manually or by additional means. Without a user of such a hybrid pump 1 notices this, is sucked in the ventilated state of the hybrid pump 1 fluid in the operating state of the hybrid pump 1 according to a vane pump because the drive motor runs virtually empty and thus reaches a high speed above the limit speed, and then goes the hybrid pump 1 after successful suction automatically in the conveying operation according to a centrifugal pump, which allows high efficiency with low wear. This is always particularly useful when such pumps are only a short time in operation and then put into operation again after a long period of inactivity.
  • FIG. 4 shows in a sectional view and in the associated FIG. 5 a side view of a corresponding hybrid pump 1 according to the invention, in which the suction channel 10 is not within the plane perpendicular to the axis of rotation of the rotor 5 runs.
  • This makes it possible to make the inflow of the fluid through the suction channel 10 in the inflow 15 either as shown in solid lines in Figure 5 at an angle of eg 45 degrees, which of course is also possible, an inflow 15 'by a dashed lines shown intake passage 10 'substantially parallel to the axis of rotation 8 of the rotor 5 to realize. This may be fluidly interesting for certain applications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • High-Pressure Fuel Injection Pump Control (AREA)

Description

  • Die Erfindung betrifft eine Hybridpumpe gemäß Oberbegriff des Anspruches 1.
  • Bei der Konstruktion von Pumpen für die Förderung von Fluiden, insbesondere von Flüssigkeiten, besteht das Problem darin, das sich mit bekannten Kreiselpumpen zwar ein hoher Wirkungsgrad und ein geringes Betriebsgeräusch der Pumpe erzielen lassen, diese Pumpen aber nicht selbstansaugend sind, also eine Flüssigkeitssäule aus dem Stillstand heraus nicht selbst ansaugen können, wenn die Kreiselpumpe belüftet ist. Dies ist insbesondere dann von Nachteil, wenn derartige Pumpen nur kurze Betriebszeiten haben und die geförderte Flüssigkeitssäule im Stillstand aufgrund einer Höhendifferenz wieder aus dem Inneren der Pumpe heraus läuft. Daher weisen Kreiselpumpen oft Zusatzaggregate auf, mit denen vor dem eigentlichen Betrieb der Kreiselpumpe die Flüssigkeitssäule in den Gehäuseinnenraum hinein gefördert werden kann und die Kreiselpumpe somit nicht trocken läuft, sondern der Gehäuseinnenraum von Anfang an mit Flüssigkeit gefüllt ist.
  • Andere Pumpenbauformen wie etwa Impellerpumpen bekannter Bauart sind zwar selbstansaugend, weisen jedoch nur einen geringen Wirkungsgrad auf, da beispielsweise die innere Reibung der Pumpe überwunden werden muß
  • Eine andere Bauform von Pumpen stellt die Flügelzellenpumpe dar, bei der auf einem Rotor angeordnete, radial abstehende Flügel Teilvolumina des Gehäuseinnenraumes abteilen und darin während der Rotation des Rotors jeweils Flüssigkeit gefördert wird. Nachteilig hierbei ist vor allem, daß die Flügel der Flügelzellenpumpen sehr genau gepaßt sein müssen, da sie relativ verschieblich zum Rotor angeordnet sind und bei Flügelzellenpumpen aufgrund der Reibung zwischen den Flügeln und der Gehäuseinnenwandung hoher Verschleiß der Pumpe auftritt. Dafür sind Flügelzellenpumpen auch im belüfteten Zustand selbstansaugend.
  • Eine derartige, weiter entwickelte Flügelzellenpumpe zeigt die DE 195 45 045 A1, bei der die Flügel der Flügelzellenpumpe auf einem Rotor befestigt und elastisch ausgebildet sind, so daß die strömungsgünstig gekrümmten Flügel des Rotors sich während der ganzen Rotationsbewegung des Rotors entlang der Innenfläche des Gehäuseinnenraumes bewegen und an diesem unter variabler Vorspannung anliegen. Damit trennen die Flügel des Rotors einzelne Volumina innerhalb des Gehäuseinnenraumes voneinander ab, wobei durch die Exzentrizität zwischen Rotor und Gehäuseinnenraum eine entsprechende Förderung eines Fluides und ein Druckaufbau in für Flügelzellenpumpe grundsätzlich bekannter Weise möglich ist. Die Flexibilität der strömungsgünstig geformten Flügel des Rotors hat hierbei den Vorteil, daß nur geringer Verschleiß zwischen der Gehäuseinnenwandung und den Flügeln des Rotors auftritt, da sich die Flügel unter elastischer Vorspannung an die unterschiedlichen Abstände zur Gehäuseinnenwandung anpassen und an die Gehäuseinnenwandung anlegen. Allerdings ist auch der Wirkungsgrad dieser Pumpe bauartbedingt nicht besonders hoch auch ist der Verschleiß gegenüber z.B. Kreiselpumpen wesentlich höher.
  • Aufgabe der vorliegenden Erfindung ist es daher, eine Pumpe zu entwickeln, die einerseits selbstansaugend ist und gleichzeitig bei hohen Wirkungsgraden arbeiten kann und darüber hinaus preiswert herzustellen ist.
  • Die Lösung der erfindungsgemäßen Aufgabe ergibt sich aus den kennzeichnenden Merkmalen des Anspruches 1 in Zusammenwirken mit den Merkmalen des Oberbegriffes. Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.
  • Die Erfindung geht aus von einer Pumpe mit einem Gehäuse, in das je mindestens ein Sauganschluß und ein Druckanschluß einmündet und in dessen im wesentlichen kreisförmig umschlossenen Gehäuseinnenraum ein Rotor exzentrisch angeordnet ist, der am Umfang eine Anzahl von zueinander beabstandeten, zumindest abschnittsweise radial angeordneten Rotorschaufeln aus einem unter Fliehkrafteinfluß federnd elastisch verformbaren Material aufweist. Eine derartige Pumpe wird dadurch weiterentwickelt, daß die Exzentrizität des Rotors relativ zum Gehäuseinnenraum sowie die Elastizität der Rotorschaufeln derart gewählt sind, daß jede Rotorschaufel in einem ersten Bereich kleiner Drehzahl mit ihrem radial abstehenden Endbereich im Laufe einer Umdrehung des Rotors gar nicht oder nur zeitweise an Umfangsabschnitten des Gehäuseinnenraumes anliegt, wohingegen in einem zweiten Bereich größerer Drehzahl alle Rotorschaufeln mit ihren radial abstehenden Endbereichen unter Fliehkrafteinfluß im wesentlichen während der ganzen Umdrehung des Rotors an der Innenwandung des Gehäuseinnenraums anliegen. Hierdurch ist es möglich, in dem ersten Bereich kleiner Drehzahl die Hybridpumpe so zu betreiben, daß sie überwiegend als reine Strömungspumpe im wesentlichen entsprechend einer Kreiselpumpe arbeitet. Nach Überschreiten eines Schwellwertes für die Drehzahl ändert die Hybridpumpe aber ihr Betriebsverhalten, indem sich die Rotorschaufeln unter dem Fliehkrafteinfluß soweit elastisch verformen, daß sie mit ihren radial abstehenden Endbereichen im wesentlichen während der ganzen Umdrehung des Rotors an der Innenwandung des Gehäuseinnenraumes anliegen und damit Teilvolumina des Gehäuseinneren voneinander flüssigkeitsdicht abtrennen. Damit ist es möglich, mit der hierbei im wesentlichen entsprechend einer konventionellen Flügelzellenpumpe arbeitenden Hybridpumpe ein Selbstansaugen einer Flüssigkeitssäule zu gewährleisten, selbst wenn sich die Hybridpumpe vorher beispielsweise aufgrund eines Stillstandes in belüftetem Zustand befunden hat. Ist die Hybridpumpe beispielsweise aufgrund dieses Stillstandes leer gelaufen, so wird ein Antriebsmotor die ohne Flüssigkeitsinhalt arbeitende Hybridpumpe sehr schnell auf ihre maximale Drehzahl beschleunigen, so daß die Hybridpumpe nahezu unmittelbar in dem zweiten Bereich größerer Drehzahl betrieben wird und in diesem Betriebszustand sozusagen als Flügelzellenpumpe selbstansaugend arbeitet und Flüssigkeit in den Gehäuseinnenraum fördert. Ist die Pumpe dann hierdurch mit Flüssigkeit gefüllt, so wird durch die wirkenden gegenläufigen Drehmomente und den Einfluß der Flüssigkeit die Drehzahl des Antriebsmotors soweit absinken, daß der Betriebszustand der Hybridpumpe in den ersten Bereich kleiner Drehzahl übergeht, in dem die Hybridpumpe quasi entsprechend einer Kreiselpumpe arbeitet und bei hohem Wirkungsgrad die Flüssigkeit fördert. Dieser Übergang zwischen den beiden Betriebszuständen sichert daher den Betrieb der Hybridpumpe auch gegenüber Störungen ab, die sich bei Abreißen der Flüssigkeitssäule etwa bei reinen Kreiselpumpen einstellen können. In diesem Fall geht die Hybridpumpe nach eingetretenem Belüften selbsttätig wieder zu höheren Drehzahlen über, wodurch sich der selbstansaugende Betriebszustand entsprechend einer Flügelzellenpumpe wieder einstellt, mit dem die Flüssigkeit wieder angesaugt werden kann und nach erneuter Füllung der Hybridpumpe der Drehzahlabfall erneut eintritt.
  • Die erfindungsgemäße Hybridpumpe bietet daher zwei wesentliche Funktionen von Pumpen, nämlich die Selbstansaugung und den Betrieb mit möglichst hohen Wirkungsgraden, in einer einzigen Pumpenbauform an. Damit ist die erfindungsgemäße Hybridpumpe insbesondere für Einsatzbereiche von großem Vorteil, bei denen häufig nur kurzzeitig der Betrieb bei voller Förderleistung gefordert ist, gleichzeitig aber aufgrund häufiger Stillstände ein Absacken der Flüssigkeitssäule aus der Pumpe heraus nicht vermieden werden kann. Bei bekannten Pumpenkonstruktionen müssen hierfür ansonsten aufwendige Konstruktionen mit Rückschlagventilen oder dgl. vorgesehen werden, um die Flüssigkeitssäule in der Pumpe zu halten, die teuer und anfällig sind und darüber hinaus auch noch den Wirkungsgrad der Pumpe negativ beeinflussen, da die Saugleitung durch derartige Einbauten nicht mehr so frei durchgängig gestaltet werden kann. Derartige Vorkehrungen sind ansonsten beispielsweise für Pumpen zur fallweise Füllung von Behältern nicht zu vermeiden, mit denen etwa Kraftstoff in relativ geringen Mengen zur Befüllung von Fahrzeugen aus einem Vorratsbehälter abgezogen wird. Selbstverständlich sind eine Vielzahl von entsprechenden Anwendungen der erfindungsgemäßen Hybridpumpe denkbar.
  • Eine vorteilhafte Ausgestaltung sieht vor, daß die elastische Verformbarkeit der Rotorschaufeln derart gewählt ist, daß ab einer bestimmten Drehzahl des Rotors die Verformung der Rotorschaufeln aufgrund der Fliehkraft die Exzentrizität ausgleicht, so daß im wesentlichen alle Enden der Rotorschaufeln an der Innenwandung des Gehäuseinnenraumes anliegen und voneinander abgetrennte Kompressionsräume bilden. Das sich aufgrund der Exzentrizität der Hybridpumpe ergebende Förderverhalten kann dabei abhängig von der Elastizität der Rotorschaufeln so eingestellt werden, daß ab einer Grenzdrehzahl die Rotorschaufeln nicht nur an Teilen der Umfangsfläche des Gehäuseinnenraumes anliegen, sondern während der gesamten Rotation mit dieser in Berührung stehen und damit die Teilvolumina des Gehäuseinnenraumes voneinander abtrennen, wie dies bei konventionellen Flügelzellenpumpen grundsätzlich bekannt ist. Somit ist während des Betriebes der Hybridpumpe als reine Strömungspumpe entsprechend einer Kreiselpumpe unterhalb der Grenzdrehzahl der Verschleiß aufgrund der weitgehend fehlenden Reibung zwischen den Rotorschaufeln und der Gehäuseinnenwandung nicht vorhanden oder nur sehr gering, nur zur Füllung des Gehäuseinnenraumes mit der Flüssigkeit durch die Selbstansaugung im Betrieb entsprechend einer Flügelzellenpumpe legen sich die Rotorschaufel an die Gehäuseinnenwandung an. Damit ist der Verschleiß der Rotorschaufeln im Betrieb minimiert. Zusätzlich kann die Hybridpumpe auch mit Partikeln verschmutzte Medien fördern, da die Verformbarkeit der Rotorschaufeln entsprechende Verformungen bei Durchtritt auch größerer Partikel zuläßt, bei der starre Rotorschaufeln zu Bruch gehen würden.
  • Von Vorteil ist es, wenn jede Rotorschaufel eine strömungsgünstig gekrümmte Querschnittsform aufweist, bei der jede Rotorschaufel auch bei langsamer Drehung des Rotors zumindest an einer Stelle die Innenwandung des Gehäuseinnenraumes unter elastischer Vorspannung berührt. Hierdurch wird das Innere der Hybridpumpe in zwei voneinander getrennte Bereiche unterteilt, gleichzeitig kann durch die Querschnittsform sowohl die Elastizität der Rotorschaufeln als auch deren Anlage an der Gehäuseinnenwandung unter Vorspannung in weiten Grenzen an verschiedene Betriebsbedingungen angepaßt werden. Hierbei ist es von Vorteil, wenn die Rotorschaufeln eine schaufelförmige Krümmung aufweisen und in Umfangsrichtung federnd elastisch verformbar sind.
  • Eine verbesserte Wirkung hinsichtlich der elastischen Verformung der Rotorschaufeln läßt sich erreichen, wenn beim Betrieb der Hybridpumpe im ersten Bereich der kleinen Drehzahl tribologische Kräfte des zu fördernden Fluides auf jede Rotorschaufel einwirken, die die Rotorschaufeln in Richtung auf die Drehachse des Rotors hin verformen. Hierdurch wird trotz relativ elastischer Materialien der Rotorschaufeln verhindert, daß diese sich schon bei relativ geringer Drehzahl an die Gehäuseinnenwandung anlegen, da die tribologischen Kräfte des zu fördernden Fluides der elastischen Verformung unter den Zentrifugalkräften aufgrund der Rotation des Rotors entgegenwirken. Daher kann die Grenzdrehzahl relativ hoch liegen, so daß im Betriebszustand der Hybridpumpe entsprechend einer Kreiselpumpe auch adäquate Förderleistungen realisiert werden können. Darüber hinaus hängt das Betriebsverhalten der Hybridpumpe wegen der Verformbarkeit der Rotorschaufeln auch vom geförderten Medium ab. Bei niedrigviskosen Fluiden wird sich aufgrund unterschiedlicher Zähigkeit eine andere Verformung der Rotorschaufeln bei gleicher Drehzahl einstellen als bei hochviskosen Fluiden oder auch bei Gasen, wobei auch die Fliehkrafteffekte eine Rolle spielen.
  • Eine denkbare Ausgestaltung sieht vor, daß die Rotorschaufeln aus einem Kunststoffmaterial, vorzugsweise aus thermoplatischen Materialien oder Polyurethan oder EPDM oder Nitril oder Neopren gebildet sind. Derartige Materialien bieten eine ausreichende Verformbarkeit bei gleichzeitig hoher Formbeständigkeit auch über dauerhafte Belastung. Gleichzeitig sind derartige Materialien etwa im Wege von Spritzgießverfahren kostengünstig zu verarbeiten und damit die Rotorschaufeln bzw. auch der ganze Rotor kostengünstig herzustellen. Auch ist das Laufverhalten der Hybridpumpe sehr geräuscharm.
  • Dies kann in einer ersten Ausgestaltung dadurch erreicht werden, daß Rotor und Rotorschaufeln einstückig ausgebildet sind. Hier können etwa der Rotor und die Rotorschaufeln in einem Verarbeitungsgang etwa mittels Spritzgießen oder sonstiger Herstellverfahren gleichzeitig und einstückig geformt werden. Hierdurch wird die Teilezahl der Pumpe drastisch reduziert, wodurch zudem die Montagekosten gesenkt und die Betriebssicherheit erhöht wird. Auch ist es in einer anderen Ausgestaltung denkbar, daß die Rotorschaufeln aus dem federnd elastischen Material in zugeordnete Ausnehmungen des Rotors eingesetzt und an diesem festgelegt sind. Dies ermöglicht es, daß der Rotor selbst aus einem anderen Material als die Rotorschaufeln bestehen kann, etwa im Hinblick auf Festigkeitseigenschaften oder sonstige Randbedingungen.
  • Weiterhin ist es von Vorteil, wenn an den radial vom Rotor abstehenden Enden der Rotorschaufeln im wesentlichen zylindrische Verdickungen angeordnet sind, die sich an die Innenwandung des Gehäuseinnenraums abdichtend anlegen und im Betriebszustand entsprechend einer Flügelzellenpumpe einzelne Zellen der Hybridpumpe voneinander trennen. Diese Verdickungen, die im Betriebszustand entsprechend einer Flügelzellenpumpe einem entsprechenden Verschleiß aufgrund der Reibung an der Gehäuseinnenwandung unterliegen, verlängern damit aufgrund ihrer umfangreichen Massen im Verhältnis zu den Rotorschaufeln selbst die Standzeit des Rotors, gleichzeitig bilden sie für die angreifenden Zentrifugalkräfte eine entsprechende Massenverteilung und eine vergrößerte Anlagefläche der Rotorschaufeln an der Innenwandung des Gehäuseinnenraumes.
  • Von Vorteil ist es, wenn die Exzentrizität der Anordnung des Rotors im Bereich bis zu 20 %, vorzugsweise bis zu 2 % des Außendurchmessers des Rotors einschließlich der Rotorschaufeln liegt. Ein derartiger Wert für die Exzentrizität läßt sich mit der Verformung der Rotorschaufeln unproblematisch und ohne Gefährdung der Festigkeitseigenschaften der Rotorschaufeln überbrücken.
  • Einen besonders einfachen Aufbau der Hybridpumpe kann man dann realisieren, wenn der Rotor und das Gehäuse aus im wesentlichen scheibenförmigen Grundformen besteht, die fluidisch abdichtend miteinander verbindbar sind. Hierdurch können vorgefertigte Bauteile vereinfacht montiert werden, auch ist die fluidische Abdichtung der einzelnen Teile zueinander über die großen Anlageflächen der einzelnen scheibenförmigen Grundformen einfach zu realisieren.
  • Weiterhin ist es denkbar, der Eintritt und/oder der Austritt des Fluides in den Gehäuseinnenraum senkrecht zur Drehachse des Rotors der Hybridpumpe erfolgt. Hierbei strömt das Fluid im wesentlichen tangential an den Umfang der Rotorschaufeln an. In einer anderen Ausgestaltung ist es auch denkbar, daß der Eintritt und/oder der Austritt des Fluides in den Gehäuseinnenraum zumindest mit einer Komponente parallel zur Drehachse des Rotors der Hybridpumpe erfolgt.
  • Weiterhin ist es denkbar, daß als Antrieb der Hybridpumpe ein Universalmotor einsetzbar ist.
  • Eine besonders bevorzugte Ausführungsform der erfindungsgemäßen Hybridpumpe zeigt die Zeichnung.
  • Es zeigen:
  • Figur 1
    - einen ersten Schnitt durch eine erfindungsgemäße Hybridpumpe in schematischer Darstellung bei geringer Drehzahl im Betriebszustand entsprechend einer Kreislpumpe,
    Figur 2
    - einen Schnitt entlang der Linie AB durch die Hybridpumpe gemäß Figur 1,
    Figur 3
    - einen Schnitt durch eine erfindungsgemäße Hybridpumpe gemäß Figur 1 bei höherer Drehzahl im Betriebszustand entsprechend einer Flügelzellenpumpe,
    Figur 4
    - eine Variation der erfindungsgemäßen Hybridpumpe gemäß Figur 1 mit schräg zur Rotationsachse des Rotors geneigtem Einlaß,
    Figur 5
    - eine Ansicht der Hybridpumpe gemäß Figur 4 mit zwei denkbaren Anordnungen des Saugkanals.
  • In der Figur 1 ist in einer schematischen Darstellung ein Schnitt durch eine erfindungsgemäße Hybridpumpe 1 dargestellt, wobei der Schnitt etwa in der Teilungsebene des plattenförmig ausgebildeten Gehäuses 2 der Hybridpumpe 1 verläuft. Hierdurch sind der Ansaugkanal 10 und der Auslaßkanal 11 sowie der Gehäuseinnenraum 3 zu erkennen, in dem ein Rotor 5 mit daran angeordneten Rotorschaufeln 6 um eine Drehachse 8 drehbar gelagert ist. Die Drehachse 8 weist hierbei eine exzentrische Anordnung zur Symmetrieachse 9 des Gehäuseinnenraumes 3 auf, wobei die Größe der Exzentrizität unter der Sachnummer 14 dargestellt ist. Die Anordnung der Drehachse 8 bzw. der Symmetrieachse 9 sowie der wesentliche Aufbau einer derartigen Hybridpumpe 1 ist etwa aus der DE 195 45 045 A1 grundsätzlich bekannt und soll daher hier nur soweit erläutert werden, wie dies für die vorliegende Erfindung von Belang ist.
  • Unterschiedlich zu den bekannten Flügelzellenpumpen ist bei der erfindungsgemäßen Hybridpumpe 1 jedoch, das die Rotorschaufeln 6 des Rotors 5 im Ruhezustand der Hybridpumpe 1 bzw. unterhalb einer Grenzdrehzahl sich nicht oder nur partiell an die Innenwandung 4 des Gehäuseinnenraumes 3 anlegen. Die Rotorschaufeln 6 sind hierbei aus einem elastisch verformbaren Material gebildet, das sich aus der schaufelartigen Konfiguration gemäß der Figur 1 unter der Wirkung der Fliehkraft bei der Rotation des Rotors 5 entlang der Drehrichtung 17 derart verformen kann, daß die zylindrische Verdickungen 7 an den Enden der Rotorschaufeln 6 sich bei Erhöhung der Drehzahl mehr und mehr radial nach außen bewegen und sich während der Rotation über eine immer längere Umfangslänge an die Innenwandung 4 des Gehäuseinnenraumes 3 anlegen. Nach Überschreiten der Grenzdrehzahl stehen die Verdickungen 7 der Rotorschaufeln 6 dann in einem dauernden Kontakt mit der Innenwandung 4 des Gehäuseinnenraumes 3, wie dies in der Figur 3 näher zu erkennen ist.
  • Unter dem Einfluß der Zentrifugalkraft spreizen sich bildlich gesprochen die Rotorschaufeln 6 radial nach außen von der Drehachse 8 ab und legen sich dabei immer mehr an die Innenwandung 4 an. Hierbei verändern die Rotorschaufeln 6 auch ihre gekrümmte Querschnittsform ein wenig, indem in den Bereichen entlang der Umfangsrichtung der Gehäuseinnenwandung 4, die weiter von der Drehachse 8 des Rotors 5 entfernt sind, die Rotorschaufeln 6 in eine gestreckte Konfiguration übergehen. In den Bereichen entlang der Umfangsrichtung der Gehäuseinnenwandung 4, die wieder näher zur Drehachse 8 des Rotors 5 angeordnet sind, wird diese gestreckte Konfiguration dann wieder einfedern und in die Konfiguration zurückgehen, die in diesem Bereich in der Figur 1 bzw. in der Figur 3 zu erkennen ist.
  • Das Material der Rotorschaufeln 6 kann beispielsweise aus thermoplastischen Materialien, Polyurethanen, EPDM, Nitril oder Neopren bestehen, wobei derartige Materialien sowohl eine relativ große elastische Verformbarkeit aufweisen als auch hohe Festigkeiten und geringen Abrieb bei Belastung durch reibungsbehafteten Kontakt.
  • Der Rotor 5 mit dem daran angeordneten Rotorschaufeln 6 ist dabei, wie in der Figur 2 besser zu erkennen, auf einer Antriebswelle 13 festgelegt, an der ein nicht dargestellter Antriebsmotor angeflanscht sein kann.
  • Die Funktion der erfindungsgemäßen Hybridpumpe 1 läßt sich dabei im Vergleich mit den in der Hybridpumpe 1 kombinierten Prinzipien von Kreiselpumpe und Flügelzellenpumpe wie folgt beschreiben.
  • Eine konventionelle Kreiselpumpe ist nicht selbstansaugend, so daß vor Inbetriebnahme einer derartigen Kreiselpumpe ein Fluid in die Saugseite 10 und durch den Einlaß 12 in die Kreiselpumpe eingebracht werden muß. Wird dann die Kreiselpumpe in Betrieb genommen, so wird über den Rotor 5 und die Rotorschaufeln 6 durch die Saugseite 10 in Einströmrichtung 15 ein Volumenstrom des Fluides nachgefördert, so daß die Kreiselpumpe nicht mehr trocken fällt. Dieser Volumenstrom tritt nach dem Durchlaufen des Gehäuseinnenraumes durch die Druckseite 11 in Ausströmrichtung 16 wieder aus der Kreiselpumpe aus. Bei relativ geringen Drehzahlen unterhalb der Grenzdrehzahl zeigt die erfindungsgemäße Hybridpumpe im wesentlichen diese Eigenschaften, da die Rotorschaufeln 6 wie bei einer Kreiselpumpe keine oder nur eine zeitweise Berührung zur Gehäuseinnenwandung 4 aufweisen.
  • Durch die exzentrische Anordnung des Rotors 5 bei der erfindungsgemäßen Hybridpumpe 1 bilden sich aber bei höherer Drehzahl, wie in der Figur 3 besser zu erkennen, durch die Verformung der Rotorschaufeln 6 die Kompressionsräume 18, wobei das kleinste Volumen in dem Kompressionsraum V1 vorliegt, die Volumina der Kompressionsräume V2, V3 und V4 jeweils immer größer werden, bis sich ab dem Kompressionsraum V5 bis hin zum Kompressionsraum V8 das Volumen wieder verkleinert. Hierdurch ergibt sich durch die Formänderung der Rotorschaufeln 6 aufgrund der Fliehkraftwirkung ein Aufbau und ein Betriebszustand der Hybridpumpe wie bei einer Flügelzellenpumpe, wenn die Drehzahl der Rotors 5 eine Grenzdrehzahl überschreitet, bei sich alle Rotorschaufeln 6 an die Innenwandung 4 des Gehäuseinnenraumes 3 über den ganzen Umfang einer Umdrehung anlegen. Hierdurch ist die erfindungsgemäße Hybridpumpe 1 in diesem Betriebzustand selbstansaugend, d. h. es wird das Fluid in Einströmrichtung 15 in gewissen Grenzen von alleine angesaugt, so daß sich der Innenraum 3 des Gehäuses 2 von alleine mit Fluid füllen kann.
  • Ein derartiges, von konventionellen Flügelzellenpumpen grundsätzlich bekanntes Verhalten stellt sich auch bei der erfindungsgemäßen Hybridpumpe ein, allerdings erst dann, wenn die Drehzahl des Rotors 5 über einen Grenzwert hinaus steigt. Vorher ist durch die relativ große Exzentrizität 14 und die Ausgangskonfiguration der Rotorschaufeln 6 im unbelasteten Zustand der Aufbau der Kompressionsräume 18 nicht gewährleistet, da die Verdickungen 7 an den Enden der Rotorschaufeln 6 sich nicht dichtend an die Innenwandung 4 des Gehäuseinnenraumes 3 anlegen, wie dies in der Figur 1 deutlich zu erkennen ist. Hierdurch ist in diesem Betriebzustand, von dem die Figur 1 nur einen von der Drehzahl abhängigen Zustand darstellt, eine Förderung des Fluides wie bei einer herkömmlichen Flügelzellenpumpe nicht gewährleistet. In diesem Betriebzustand arbeiten der Rotor 5 und die Rotorschaufel 6 jedoch wie bei einer herkömmlichen Strömungspumpeentsprechend einer Kreiselpumpe.
  • Erst bei Überschreiten der Grenzdrehzahl, bei der die Zentrifugalkräfte auf die Rotorschaufeln 6 so groß werden, daß sich die Enden 7 der Rotorschaufeln 6 über die ganze Umdrehung an die Innenwandung 4 des Gehäuseinnenraumes 3 anlegen, wird dann der selbstansaugende Betrieb der Hybridpumpe 1 entsprechend einer Flügelzellenpumpe aufgenommen.
  • Diese selbstansaugende Eigenschaft der erfindungsgemäßen Hybridpumpe 1 hat den wesentlichen Vorteil, daß die Benutzung der Hybridpumpe 1 kein vorhergehendes Befüllen des Pumpeninnenraumes erfordert, das sonst entweder manuell oder durch zusätzliche Einrichtungen vorgenommen werden muß. Ohne daß ein Benutzer einer derartigen Hybridpumpe 1 dies bemerkt, wird im belüfteten Zustand der Hybridpumpe 1 Fluid im Betriebszustand der Hybridpumpe 1 entsprechend einer Flügelzellenpumpe eingesaugt, da der Antriebsmotor quasi leer läuft und damit eine hohe Drehzahl oberhalb der Grenzdrehzahl erreicht, und dann geht die Hybridpumpe 1 nach erfolgtem Ansaugen automatisch in den Förderbetrieb entsprechend einer Kreiselpumpe über, der einen hohen Wirkungsgrad bei geringem Verschleiß ermöglicht. Dies ist immer dann besonders praktisch, wenn derartige Pumpen nur kurze Zeit in Betrieb sind und dann nach längerem Stillstand erneut in Betrieb genommen werden. Herkömmliche Pumpen laufen in dieser Zeit häufig leer, so daß die entsprechenden Vorkehrungen für die Befüllung der Pumpe vorab getroffen werden müssen. Derartige Einsatzfelder ergeben sich beispielsweise beim Umfüllen von Behältern, beispielsweise bei der Betankung von Fahrzeugen aus entsprechenden Kanistern oder Tonnen, aber auch in einer Vielzahl anderer denkbarer Anwendungsgebiete.
  • In der Figur 4 ist in einer Schnittdarstellung und in der zugehörigen Figur 5 in einer Seitenansicht eine entsprechende erfindungsgemäße Hybridpumpe 1 dargestellt, bei der der Saugkanal 10 nicht innerhalb der Ebene senkrecht zur Drehachse des Rotors 5 verläuft. Hierdurch ist es möglich, die Einströmung des Fluides durch den Saugkanal 10 in Einströmrichtung 15 entweder wie in der Figur 5 mit ausgezogenen Linien dargestellt unter einem Winkel von z.B. 45 Grad vorzunehmen, wobei selbstverständlich auch möglich ist, eine Einströmrichtung 15' durch einen gestrichelt dargestellten Ansaugkanal 10' im wesentlichen parallel zur Drehachse 8 des Rotors 5 zu realisieren. Dies kann strömungstechnisch für bestimmte Anwendungen interessant sein.
  • Sachnummernliste
  • 1
    - Hybridpumpe
    2
    - Gehäuse
    3
    - Gehäuseinnenraum
    4
    - Gehäuseinnenwandung
    5
    - Rotor
    6
    - Rotorschaufel
    7
    - Verdickungen
    8
    - Drehachse Rotor
    9
    - Symmetrieachse Gehäuseinnenraum
    10
    - Saugkanal
    11
    - Druckkanal
    12
    - Einlaß
    13
    - Antriebswelle
    14
    - Exzentrizität
    15
    - Einströmrichtung
    16
    - Ausströmrichtung
    17
    - Drehrichtung Rotor
    18
    - Kompressionsräume

Claims (19)

  1. Hybridpumpe (1) mit einem Gehäuse (2), in das je mindestens ein Sauganschluß (10) und ein Druckanschluß (11) einmündet und in dessen im wesentlichen kreisförmig umschlossenen Gehäuseinnenraum (3) ein Rotor (5) exzentrisch angeordnet ist, der am Umfang eine Anzahl von zueinander beabstandeten, zumindest abschnittsweise radial angeordneten Rotorschaufeln (6) aus einem federnd elastisch verformbaren Material aufweist,
    dadurch gekennzeichnet, daß
    die Exzentrizität (14) des Rotors (5) relativ zum Gehäuseinnenraum (3) sowie die Elastizität der Rotorschaufeln (6) derart gewählt sind, daß jede Rotorschaufel (6) in einem ersten Bereich kleiner Drehzahl mit ihrem radial abstehenden Endbereich (7) im Laufe einer Umdrehung des Rotors (5) gar nicht oder nur zeitweise an Umfangsabschnitten (4) des Gehäuseinnenraumes (3) anliegt, so daß die Hybridpumpe nicht selbstansaugend arbeitet, wohingegen in einem zweiten Bereich größerer Drehzahl alle Rotorschaufeln (6) mit ihren radial abstehenden Endbereichen (7) unter Fliehkrafteinfluß im wesentlichen während der ganzen Umdrehung des Rotors (5) an der Innenwandung (4) des Gehäuseinnenraums (3) anliegen, so daß die Hybridpumpe selbstansaugend arbeitet.
  2. Hybridpumpe (1) gemäß Anspruch 1, dadurch gekennzeichnet, daß die elastische Verformbarkeit der Rotorschaufeln (6) derart gewählt ist, daß ab einer bestimmten Drehzahl des Rotors (5) die Verformung der Rotorschaufeln (6) aufgrund der Fliehkraft die Exzentrizität (14) ausgleicht, so daß im wesentlichen alle Enden (7) der Rotorschaufeln (6) gleichzeitig an der Innenwandung (4) des Gehäuseinnenraumes (3) anliegen und voneinander abgetrennt Kompressionsräume (18) entsprechend einer Flügelzellenpumpe bilden.
  3. Hybridpumpe (1) gemäß einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß jede Rotorschaufel (6) eine strömungsgünstig gekrümmte Querschnittsform aufweist, bei der jede Rotorschaufel (6) auch bei langsamer Drehung des Rotors (5) zumindest an einer Stelle die Innenwandung (4) des Gehäuseinnenraumes (3) unter elastischer Vorspannung berührt.
  4. Hybridpumpe (1) gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Hybridpumpe (1) im ersten Bereich der kleinen Drehzahl ausschließlich oder überwiegend als Strömungspumpe ähnlich wie eine Kreiselpumpe arbeitet.
  5. Hybridpumpe (1) gemäß Anspruch 4, dadurch gekennzeichnet, daß der Betrieb der Hybridpumpe (1) im ersten Bereich der kleinen Drehzahl keine Selbstansaugung eines flüssigen Mediums erlaubt.
  6. Hybridpumpe (1) gemäß einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, daß beim Betrieb der Hybridpumpe (1) im ersten Bereich der kleinen Drehzahl tribologische Kräfte des zu fördernden Fluides auf jede Rotorschaufel (6) einwirken, die die Rotorschaufel (6) in Richtung auf die Drehachse (8) des Rotors (5) hin verformen.
  7. Hybridpumpe (1) gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Hybridpumpe (1) im zweiten Bereich der höheren Drehzahl ausschließlich oder überwiegend als Verdrängerpumpe ähnlich einer Flügelzellenpumpe arbeitet.
  8. Hybridpumpe (1) gemäß Anspruch 7, dadurch gekennzeichnet, daß der Betrieb der Hybridpumpe (1) im ersten Bereich der kleinen Drehzahl einen hohen Wirkungsgrad erlaubt.
  9. Hybridpumpe (1) gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Rotorschaufeln (6) eine schaufelförmige Krümmung aufweisen und in Umfangsrichtung (17) federnd elastisch verformbar sind.
  10. Hybridpumpe (1) gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Rotorschaufeln (6) aus einem Kunststoffinaterial, vorzugsweise aus thermoplastischen Materialien oder Polyurethan oder EPDM oder Nitril oder Neopren gebildet sind.
  11. Hybridpumpe (1) gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß Rotor (5) und Rotorschaufeln (6) einstückig ausgebildet sind.
  12. Hybridpumpe (1) gemäß einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Rotorschaufeln (6) aus dem federnd elastischen Material in zugeordnete Ausnehmungen des Rotors (5) eingesetzt und an diesem festgelegt sind.
  13. Hybridpumpe (1) gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß an den radial vom Rotor (5) abstehenden Enden der Rotorschaufeln (6) im wesentlichen zylindrische Verdickungen (7) angeordnet sind, die sich an die Innenwandung (4) des Gehäuseinnenraums (3) abdichtend anlegen und einzelne Zellen (18) voneinander trennen.
  14. Hybridpumpe (1) gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Exzentrizität (14) der Anordnung des Rotors (5) im Bereich bis zu 20 %, vorzugsweise bis zu 2 % des Durchmessers des Rotors (5) liegt.
  15. Hybridpumpe (1) gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Volumina der Kompressionsräume (18) ausgehend von einem Minimum im Bereich der Saugseite (10) über ein Maximum zu einem Minimum im Bereich der Druckseite (11) der Hybridpumpe (1) variiert.
  16. Hybridpumpe (1) gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der Rotor (5) und das Gehäuse (2) aus im wesentlichen scheibenförmigen Grundformen besteht, die fluidisch abdichtend miteinander verbindbar sind.
  17. Hybridpumpe (1) gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der Eintritt (10) und/oder der Austritt (11) des Fluides in den Gehäuseinnenraum (3) senkrecht zur Drehachse (8) des Rotors (5) der Hybridpumpe (1) erfolgt.
  18. Hybridpumpe (1) gemäß Anspruch 17, dadurch gekennzeichnet, daß der Eintritt (10) und/oder der Austritt (11) des Fluides in den Gehäuseinnenraum (3) zumindest mit einer Komponente parallel zur Drehachse (8) des Rotors (5) der Hybridpumpe (1) erfolgt.
  19. Hybridpumpe (1) gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß als Antrieb der Hybridpumpe (1) ein Universalmotor einsetzbar ist.
EP02787368A 2001-11-28 2002-11-17 Selbstansaugende hybridpumpe Expired - Lifetime EP1448894B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10158146 2001-11-28
DE10158146A DE10158146A1 (de) 2001-11-28 2001-11-28 Selbstansaugende Hybridpumpe
PCT/DE2002/004241 WO2003048582A1 (de) 2001-11-28 2002-11-17 Selbstansaugende hybridpumpe

Publications (2)

Publication Number Publication Date
EP1448894A1 EP1448894A1 (de) 2004-08-25
EP1448894B1 true EP1448894B1 (de) 2007-05-09

Family

ID=7707124

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02787368A Expired - Lifetime EP1448894B1 (de) 2001-11-28 2002-11-17 Selbstansaugende hybridpumpe

Country Status (12)

Country Link
US (1) US7014417B2 (de)
EP (1) EP1448894B1 (de)
JP (1) JP2005511959A (de)
CN (1) CN1596343A (de)
AT (1) ATE362050T1 (de)
AU (1) AU2002351678A1 (de)
BR (1) BR0214484A (de)
CZ (1) CZ2004654A3 (de)
DE (2) DE10158146A1 (de)
ES (1) ES2286306T3 (de)
PL (1) PL368880A1 (de)
WO (1) WO2003048582A1 (de)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7682301B2 (en) 2003-09-18 2010-03-23 Thoratec Corporation Rotary blood pump
DE10344379B4 (de) * 2003-09-23 2008-09-11 Mankiewicz Gebr. & Co (Gmbh & Co Kg) Verwendung einer Zweikomponenten-Zusammensetzung zur Herstellung von flexiblen Polyurethan-Gelcoats für Kunstharz-Verbundwerkstoffe, Verfahren zur Herstellung der Verbundwerkstoffe und Verbundwerkstoffe
WO2006029643A1 (de) * 2004-09-16 2006-03-23 Horn Gmbh & Co. Kg Hybridpumpe
US7393181B2 (en) 2004-09-17 2008-07-01 The Penn State Research Foundation Expandable impeller pump
WO2006050496A1 (en) * 2004-11-02 2006-05-11 E.I. Dupont De Nemours And Company Substituted anthracenes and electronic devices containing the substituted anthracenes
DE202005007789U1 (de) * 2005-05-12 2006-09-21 Horn Gmbh & Co. Kg Pumpe, insbesondere Hybridpumpe
AU2007230945B2 (en) 2006-03-23 2013-05-02 The Penn State Research Foundation Heart assist device with expandable impeller pump
AU2007233078B2 (en) 2006-03-31 2011-11-24 Thoratec Corporation Rotary blood pump
DE202007012565U1 (de) * 2007-09-07 2009-01-22 Horn Gmbh & Co. Kg Hybridpumpe zum Fördern eines flüssigen Pumpmediums
DE202007013162U1 (de) 2007-09-19 2009-02-12 Horn Gmbh & Co. Kg Pumpenbaugruppe zum Fördern von Flüssigkeiten
WO2011003043A1 (en) 2009-07-01 2011-01-06 The Penn State Research Foundation Blood pump with expandable cannula
DE102010028061A1 (de) * 2010-04-22 2011-10-27 Robert Bosch Gmbh Flügelzellenpumpe
US8485961B2 (en) 2011-01-05 2013-07-16 Thoratec Corporation Impeller housing for percutaneous heart pump
US8597170B2 (en) 2011-01-05 2013-12-03 Thoratec Corporation Catheter pump
US8591393B2 (en) 2011-01-06 2013-11-26 Thoratec Corporation Catheter pump
WO2012094641A2 (en) 2011-01-06 2012-07-12 Thoratec Corporation Percutaneous heart pump
US8721517B2 (en) 2012-05-14 2014-05-13 Thoratec Corporation Impeller for catheter pump
US9446179B2 (en) 2012-05-14 2016-09-20 Thoratec Corporation Distal bearing support
US9872947B2 (en) 2012-05-14 2018-01-23 Tc1 Llc Sheath system for catheter pump
DE102013008168A1 (de) 2012-05-14 2013-11-14 Thoratec Corporation Laufrad für Katheterpumpe
US9327067B2 (en) 2012-05-14 2016-05-03 Thoratec Corporation Impeller for catheter pump
EP4186557A1 (de) 2012-07-03 2023-05-31 Tc1 Llc Motoranordnung für katheterpumpe
US9358329B2 (en) 2012-07-03 2016-06-07 Thoratec Corporation Catheter pump
US9421311B2 (en) 2012-07-03 2016-08-23 Thoratec Corporation Motor assembly for catheter pump
KR101491211B1 (ko) * 2012-10-30 2015-02-06 현대자동차주식회사 차량용 가변 오일 펌프
EP4122520A1 (de) 2013-03-13 2023-01-25 Tc1 Llc Flüssigkeitsbehandlungssystem
US11033728B2 (en) 2013-03-13 2021-06-15 Tc1 Llc Fluid handling system
US11077294B2 (en) 2013-03-13 2021-08-03 Tc1 Llc Sheath assembly for catheter pump
US9308302B2 (en) 2013-03-15 2016-04-12 Thoratec Corporation Catheter pump assembly including a stator
EP2968742B1 (de) 2013-03-15 2020-12-02 Tc1 Llc Katheterpumpenanordnung mit einem stator
KR101669519B1 (ko) * 2014-02-28 2016-10-26 동아대학교 산학협력단 Orc 발전 시스템용 터빈
WO2015160942A1 (en) 2014-04-15 2015-10-22 Thoratec Corporation Catheter pump with off-set motor position
US10105475B2 (en) 2014-04-15 2018-10-23 Tc1 Llc Catheter pump introducer systems and methods
EP3131599B1 (de) 2014-04-15 2019-02-20 Tc1 Llc Katheterpumpe mit zugangsports
EP3131615B1 (de) 2014-04-15 2021-06-09 Tc1 Llc Sensoren für katheterpumpen
EP3183024B1 (de) 2014-08-18 2019-09-18 Tc1 Llc Führungsfunktionen für perkutane katheterpumpe
US9675739B2 (en) 2015-01-22 2017-06-13 Tc1 Llc Motor assembly with heat exchanger for catheter pump
WO2016118784A1 (en) 2015-01-22 2016-07-28 Thoratec Corporation Attachment mechanisms for motor of catheter pump
US9770543B2 (en) 2015-01-22 2017-09-26 Tc1 Llc Reduced rotational mass motor assembly for catheter pump
US9907890B2 (en) 2015-04-16 2018-03-06 Tc1 Llc Catheter pump with positioning brace
EP3487549B1 (de) 2016-07-21 2021-02-24 Tc1 Llc Fluiddichtungen für katheterpumpenmotoranordnung
EP3808402A1 (de) 2016-07-21 2021-04-21 Tc1 Llc Gasgefüllte kammer für eine katheterpumpenmotoranordnung
WO2018139508A1 (ja) * 2017-01-27 2018-08-02 テルモ株式会社 インペラ及び血液ポンプ
CN108621467A (zh) * 2017-03-16 2018-10-09 光大水务(深圳)有限公司 污泥挤压成型机
DE102017107643A1 (de) 2017-04-10 2018-10-11 Biotrans Ag Impellerpumpe
WO2021262551A1 (en) 2020-06-26 2021-12-30 LeimbachCausey, LLC Multi-chamber impeller pump
CN111832137B (zh) * 2020-07-29 2022-11-29 上海凯泉泵业(集团)有限公司 一种基于数据库的离心泵智能化设计方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2258371A (en) * 1938-05-30 1941-10-07 Wernert Karl Rotary piston machine with rotor of yieldable material
US2404678A (en) * 1944-06-05 1946-07-23 Wuensch Charles Erb Impeller
DE1002630B (de) 1954-03-31 1957-02-14 Kuyl & Rottinghuis Fluessigkeitspumpe
FR1154842A (fr) 1956-07-17 1958-04-17 Jabsco Pump Co Pompe à rotor avec aubage radial
US3080824A (en) * 1961-02-27 1963-03-12 James A Boyd Fluid moving device
JPH0291487A (ja) * 1988-09-27 1990-03-30 Aisin Seiki Co Ltd オイルポンプ
DE19545045A1 (de) * 1995-09-06 1997-03-13 Joma Polytec Kunststofftechnik Flügelzellenpumpe
US5993158A (en) * 1997-10-17 1999-11-30 Dbs Manufacturing, Inc. Method and apparatus for aeration using flexible blade impeller
US6203302B1 (en) * 1998-10-15 2001-03-20 Hypro Corporation Rubber impeller pump
US6264450B1 (en) * 2000-01-13 2001-07-24 Keith F. Woodruff Flexible vane pump

Also Published As

Publication number Publication date
CN1596343A (zh) 2005-03-16
CZ2004654A3 (cs) 2004-08-18
BR0214484A (pt) 2004-09-14
ATE362050T1 (de) 2007-06-15
DE10158146A1 (de) 2003-06-18
JP2005511959A (ja) 2005-04-28
US7014417B2 (en) 2006-03-21
AU2002351678A1 (en) 2003-06-17
US20050019198A1 (en) 2005-01-27
EP1448894A1 (de) 2004-08-25
ES2286306T3 (es) 2007-12-01
PL368880A1 (en) 2005-04-04
DE50210134D1 (de) 2007-06-21
WO2003048582A1 (de) 2003-06-12

Similar Documents

Publication Publication Date Title
EP1448894B1 (de) Selbstansaugende hybridpumpe
EP1766239B1 (de) Einflügelvakuumpumpe
EP1766237B1 (de) Einflügelvakuumpumpe
DE102008036273B4 (de) Rotationskolbenpumpe mit Taschen für Schmiermittel
EP2913530A1 (de) Rotationspumpe mit Kunststoffverbundstruktur
DE102015100215A1 (de) Seitenkanalgebläse für eine Verbrennungskraftmaschine
DE1553031A1 (de) Drehkolbenpumpe fuer zaehfluessige Medien
EP1406015B1 (de) Innenzahnradpumpe mit verbesserter Füllung
EP2783073B1 (de) Flüssigkeitsring-vakuumpumpe und flügelrad dafür
WO2008058983A1 (de) Seitenkanalpumpe
DE2160047A1 (de) Radialgeblaese
DE19626211C2 (de) Flügelzellenpumpe
DE4008522C2 (de)
EP1789682B1 (de) Hybridpumpe
WO2017021117A1 (de) Verdrängerpumpe zur förderung eines fluides für einen verbraucher eines kraftfahrzeuges
WO2016139230A1 (de) Rotationskolbenpumpe
EP0894198B1 (de) Peripheralpumpe
DE2423773A1 (de) Geraeuscharme fluegelzelleneinrichtung, insbesondere -pumpe
WO2009019101A1 (de) Verdrängerpumpe
DE112005002761B4 (de) Kombinationspumpe
DE102006032219A1 (de) Förderaggregat
DE10339765B4 (de) Exzenterpumpe
DD142817A3 (de) Mehrstufige seitenkanalpumpe
DE102021133555A1 (de) Gerotor-Einheit und Pumpe bzw. Motor mit einer Gerotor-Einheit
DE2244444A1 (de) Fluegelzellenverdichter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040528

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: RO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070509

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KELLER & PARTNER PATENTANWAELTE AG

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50210134

Country of ref document: DE

Date of ref document: 20070621

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070613

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2286306

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070509

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070809

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070509

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071009

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070509

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20091113

Year of fee payment: 8

Ref country code: CZ

Payment date: 20091113

Year of fee payment: 8

Ref country code: SE

Payment date: 20091112

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20091116

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20091224

Year of fee payment: 8

BERE Be: lapsed

Owner name: HORN G.M.B.H. & CO. KG

Effective date: 20101130

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101117

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 2643

Country of ref document: SK

Effective date: 20101117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101117

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101118

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20111128

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20121130

Year of fee payment: 11

Ref country code: CH

Payment date: 20121122

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20121120

Year of fee payment: 11

Ref country code: ES

Payment date: 20121127

Year of fee payment: 11

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20130601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20131127

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20131125

Year of fee payment: 12

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131202

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131117

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50210134

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141117