EP1447322B1 - Unterseeboot mit einem Flüssiggasbehälter - Google Patents

Unterseeboot mit einem Flüssiggasbehälter Download PDF

Info

Publication number
EP1447322B1
EP1447322B1 EP04002633A EP04002633A EP1447322B1 EP 1447322 B1 EP1447322 B1 EP 1447322B1 EP 04002633 A EP04002633 A EP 04002633A EP 04002633 A EP04002633 A EP 04002633A EP 1447322 B1 EP1447322 B1 EP 1447322B1
Authority
EP
European Patent Office
Prior art keywords
wall
tank
submarine
submarine according
filler bodies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04002633A
Other languages
English (en)
French (fr)
Other versions
EP1447322A1 (de
Inventor
Udo Dipl.-Ing. Benthien
Hans Dipl.-Ing. Pommer
Gunter Dipl.-Ing. Sattler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Marine Systems GmbH
Original Assignee
Howaldtswerke Deutsche Werft GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Howaldtswerke Deutsche Werft GmbH filed Critical Howaldtswerke Deutsche Werft GmbH
Publication of EP1447322A1 publication Critical patent/EP1447322A1/de
Application granted granted Critical
Publication of EP1447322B1 publication Critical patent/EP1447322B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/08Propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors

Definitions

  • the invention relates to a submarine with a tank for receiving and storage of liquefied gas, especially oxygen.
  • Submarines can be theirs electrical energy, in particular in diving operation wholly or partly derive from fuel cells in which, for example, oxygen and Hydrogen is catalytically oxidized to recover electrical energy.
  • fuel cells in which, for example, oxygen and Hydrogen is catalytically oxidized to recover electrical energy.
  • oxygen and Hydrogen is catalytically oxidized to recover electrical energy.
  • a tank is needed in which the oxygen is in liquid Shape can be stored.
  • cryogenic liquid gas especially oxygen
  • Such a known tank is constructed with two shells, so it is from a pressure-tight inner wall and a distance therefrom against vacuum solid outer wall, between which Perlite is filled as radiation insulation.
  • Perlite is filled as radiation insulation.
  • the gap additionally also evacuated.
  • the invention is based on the object Submarine with a tank for holding and storing LPG, especially of liquid oxygen, to create, in which as well the tank the submarine specific in particular military requirements enough.
  • the submarine is with a Tank for holding and storing liquid gas, in particular liquid Oxygen, equipped, which is built up two-shell, the between Inner wall and outer wall with packing for radiation insulation is provided, the heat conduction insulation between the outer wall and inner wall is evacuated and in addition the holding means intended for mechanical connection of outer wall and inner wall are what the insulating effect of the container does not have the required Affect the measure.
  • the retaining means are however in With regard to their dimensioning designed only for a static load, that is, around the inner container formed by the inner wall within the outer container formed by the outer wall as intended to keep.
  • the invention provides filler body, which is substantially Have spherical shape.
  • These fillers are therefore not only for Radiation insulation, as is well known, but they serve in particular for absorbing high shock loads, without losing the Insulation effect (even during the shock load) strongly influence. Due to the spherical shape of the packing - it does not have to be geometric ideal spherical shape can be realized, it is sufficient approximate Ball shape - in case of shock load occurring Forces are largely evenly distributed over the balls, in particular in the dimensioning according to the invention, the balls in behave like a solid body and thus very high forces be able to record.
  • glass beads since they are extremely dimensionally stable are, can be produced inexpensively and very high forces be able to record.
  • the glass beads are not solid, but designed as a hollow body. This will in particular the insulating effect increased without noticeable loss of stability to have.
  • micro glass beads used which have liquid-like flow behavior as bulk material, So get into tight spaces and thus manufacturing technology particularly favorable in between the inner wall and outer wall formed free space are fillable.
  • These glass microspheres are distributed liquid-like in the formed between the outer wall and inner wall Freiraum, however, act in case of sudden load, as they For example, by the pressure wave at a detonation occurs, similar like a solid. They thus fix the inner container with the required distance to the outer container and ensure the required Insulation even in case of stress.
  • the thermal conductivity of the microglass spheres due to the higher surface pressure between the balls slightly larger, but this takes after dropping the load to the same extent again.
  • the filling bodies of different Material and different sizes exist, but are preferred Microglass balls with a mean diameter of 20 to 120 used, in compressed form.
  • By compacting the in the space filled filler becomes a higher packing density and thus achieved a higher stability.
  • the compacting can be done by means of a known shaking device.
  • these are advantageous not designed as a solid but as a hollow balls and have a wall thickness, depending on the pressure requirement between 0.2 and 5 microns.
  • the structural design of the liquid oxygen tank according to the invention is, at least as far as the holding means between the inner and outer tanks As far as is relatively simple, as they are essentially for recording the static loads acting between the inner wall and the outer wall designed and designed.
  • the holding means are therefore only under normal static conditions, the inner tank in its position to keep the outer tank.
  • the holding means may be in the form of, for example, crosswise strained elongated ribbons between inner wall and outer wall be formed.
  • Such an arrangement is particularly advantageous because then the inner tank formed by the inner wall almost within the outer tank formed by the outer wall suspended can be, d. H. the retaining elements are only tensioned. These then do not need to be trained strangely and can one have comparatively small cross-section, so that the insulating effect between inner and outer containers by the bands comparatively little is worsened.
  • liquid gas in particular liquid oxygen under pressure and stored refrigerated
  • Submarine specific requirements regarding shock loading and Storage time for example, over a week
  • tank 1 for the storage of liquid Oxygen on a military submarine is more appropriate (not Placed in the submarine, this can be inside or be outside the pressure chamber.
  • the tank 1 has an inner wall 2 on, which forms a pressure-tight inner container (inner tank), in the the oxygen 3 is stored.
  • 3a is the liquid oxygen and 3b, the gaseous fraction within the tank 1.
  • the inner wall 2 is a substantially cylindrical and formed at the ends about hemispherical inner container, the on all sides with a substantially constant distance 4 to an outer wall 5 is arranged, which forms an outer container (outer tank), which is the has the same shape as the inner tank, but significantly larger to surround it with distance 4.
  • the inner container formed by the inner wall 2 is via straps 6 within the outer container 5 formed by the outer wall suspended.
  • the straps 6 are arranged on at least six sides, in pairs and crossed around these as possible to be able to train long.
  • the bands 6 are designed so that they are in Essentially carry the static load, which is the one filled with oxygen Inner container generated in particular by its weight.
  • the Belts 6 are formed as well as the inner and outer containers made of steel and welded to them.
  • the space formed between the inner wall 2 and outer wall 5 is with Microglass balls 7 completely filled, in addition to this Space have been compacted.
  • the so with compacted glass microspheres 7 filled room is then evacuated, d. H. placed under vacuum been made in order to achieve a high insulation effect in this way.
  • Due to the compression and evacuation of the microglass balls 7 are resistant to abrasion packed, so that even in normal operation no wear arises within the insulation. They take in case of shock for example, in the amount of 10 to 100 g occurring forces on, without the straps 6 are also noticeably burdened.
  • the insulation effect remains almost completely preserved completely restored immediately after loading.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

Die Erfindung betrifft ein Unterseeboot mit einem Tank zur Aufnahme und Lagerung von Flüssiggas, insbesondere Sauerstoff.
Unterseeboote, insbesondere für den militärischen Einsatz, können ihre elektrische Energie, insbesondere im Tauchbetrieb ganz oder teilweise aus Brennstoffzellen beziehen, in denen beispielsweise Sauerstoff und Wasserstoff zur Gewinnung elektrischer Energie katalytisch oxidiert wird. Um beispielsweise Sauerstoff in ausreichender Menge bootsseitig speichern zu können, ist ein Tank erforderlich, in dem der Sauerstoff in flüssiger Form gelagert werden kann.
Die Lagerung von tiefkaltem flüssigem Gas, insbesondere von Sauerstoff, zählt zumindest bei Anwendungen an Land zum Stand der Technik. Ein solcher bekannter Tank ist zweischalig aufgebaut, besteht also aus einer druckdichten Innenwand sowie einer mit Abstand dazu angeordneten gegen Vakuum feste Außenwand, zwischen denen Perlite als Strahlungsisolierung verfüllt ist. Zur Wärmleitungsisolierung ist der Zwischenraum zusätzlich auch evakuiert.
Weiterhin ist es bekannt, eine hohe Wärmeisolation durch Anordnung von mehreren mit Abstand zueinander angeordneten Alufolien und dazwischen befindlichen evakuierten Räumen zu erreichen.
Diese Anordnungen sind jedoch nur für die stationäre Anwendung geeignet, da sie nur in geringem Maße mechanischen Lasten, wie sie beispielsweise bei einen Aufprall oder einer Detonation auftreten, Stand halten.
Es zählt weiter zum Stand der Technik bei auf Fahrzeugen angeordneten zweischaligen Flüssigsauerstofftanks zwischen der Innen- und Außenwand Bänder vorzusehen, welche die Wandungen auch im Belastungsfalle mit Abstand zueinander halten. Doch sind auch diese Konstruktionen für den Einsatz in einem militärischen Unterseeboot nicht geeignet, da die Belastungen, die beispielsweise bei der Detonation einer Wasserbombe in der Nähe des Unterseebootes entstehen, im Bereich von dem zehn- bis hundertfachen der Erdbeschleunigung liegen (10 bis 100 g). Zwar wäre es konstruktiv denkbar, die bekannte Konstruktion, bei der Innenwand und Außenwand über Bänder miteinander verbunden sind, soweit zu verstärken, dass eine solche mechanische Belastung aufgenommen werden könnte, doch würden sich hierbei so große Bandquerschnitte ergeben, dass die erforderliche Isolierung zwischen Innen- und Außenwand nicht mehr realisierbar wäre, da die Wärmebrücken durch die Bänder die Isolierung unwirksam machen.
Vor diesem Hintergrund liegt der Erfindung die Aufgabe zugrunde, ein Unterseeboot mit einem Tank zur Aufnahme und Lagerung von Flüssiggas, insbesondere von flüssigen Sauerstoff, zu schaffen, bei dem auch der Tank den U-Boot spezifischen insbesondere militärischen Anforderungen genügt.
Diese Aufgabe wird gemäß der Erfindung durch die in Anspruch 1 angegebenen Merkmale gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen, der nachfolgenden Beschreibung sowie der Zeichnung angegeben.
Gemäß der vorliegenden Erfindung ist das Unterseeboot mit einem Tank zur Aufnahme und Lagerung von Flüssiggas, insbesondere von flüssigem Sauerstoff, ausgestattet, der zweischalig aufgebaut ist, der zwischen Innenwand und Außenwand mit Füllkörpern zur Strahlungsisolierung versehen ist, der zur Wärmeleitungsisolierung zwischen Außenwand und Innenwand evakuiert ist und bei dem darüber hinaus Haltemittel zum mechanischen Verbund von Außenwand und Innenwand vorgesehen sind, welche die Isolierwirkung des Behälters nicht über das erforderliche Maß hinaus beeinträchtigen. Die Haltemittel sind jedoch im Hinblick auf ihre Dimensionierung lediglich auf eine statische Last ausgelegt, also um den durch die Innenwand gebildeten Innenbehälter innerhalb des durch die Außenwand gebildeten Außenbehälters bestimmungsgemäß zu halten. Um die unterseebootspezifischen militärischen Anforderungen, insbesondere hinsichtlich der Schockbelastung, aufnehmen zu können, sieht die Erfindung Füllkörper vor, die im Wesentlichen Kugelform aufweisen. Diese Füllkörper dienen also nicht nur zur Strahlungsisolierung, wie dies an sich bekannt ist, sondern sie dienen insbesondere zur Aufnahme hoher Schockbelastungen, ohne dabei die Isolationswirkung (auch während der Schockbelastung) stark zu beeinflussen. Durch die Kugelform der Füllkörper - es muss hier keine geometrisch ideale Kugelform realisiert werden, es genügt eine angenäherte Kugelform - werden im Falle einer Schockbelastung die auftretenden Kräfte über die Kugeln weitgehend gleichmäßig verteilt, wobei insbesondere bei der erfindungsgemäßen Dimensionierung sich die Kugeln in ihrer Gesamtheit festkörperartig verhalten und somit sehr hohe Kräfte aufnehmen können.
Besonders geeignet hierfür sind Glaskugeln, da sie extrem formstabil sind, kostengünstig hergestellt werden können und sehr hohe Kräfte aufnehmen können.
In vorteilhafter Weiterbildung der Erfindung sind die Glaskugeln nicht massiv, sondern als Hohlkörper ausgebildet. Hierdurch wird insbesondere die Isolierwirkung gesteigert ohne merkliche Stabilitätseinbußen zu haben.
Bevorzugt werden als Füllkörper gemäß der Erfindung Mikroglaskugeln eingesetzt, die als Schüttgut flüssigkeitsähnliches Fließverhalten haben, also auch in enge Zwischenräume gelangen und somit fertigungstechnisch besonders günstig in den zwischen Innenwand und Außenwand gebildeten Freiraum verfüllbar sind. Diese Mikroglaskugeln verteilen sich flüssigkeitsähnlich in dem zwischen Außenwand und Innenwand gebildeten Freiraum, wirken jedoch im Falle plötzlicher Belastung, wie sie beispielsweise durch die Druckwelle bei einer Detonation auftritt, ähnlich wie ein Festkörper. Sie fixieren somit den Innenbehälter mit dem erforderlichen Abstand zum Außenbehälter und gewährleisten die erforderliche Isolierung auch im Belastungsfall. Zwar wird im Belastungsfall die Wärmeleitfähigkeit der Mikroglaskugeln aufgrund der höheren Flächenpressung zwischen den Kugeln gringfügig größer, doch nimmt diese nach Abfall der Belastung im gleichen Maße wieder ab.
Je nach Anwendungsfall können die Füllkörper aus unterschiedlichem Material und unterschiedlicher Größe bestehen, bevorzugt werden jedoch Mikroglaskugeln mit einem mittleren Durchmesser von 20 bis 120 µm eingesetzt, und zwar in verdichteter Form. Durch das Verdichten der in den Zwischenraum eingefüllten Füllkörper wird eine höhere Packungsdichte und somit eine höhere Stabilität erreicht. Das Verdichten kann mittels einer an sich bekannten Rütteleinrichtung erfolgen. Um die Wärmeleitfähigkeit der Mikroglaskugeln weiter zu verringern, sind diese vorteilhaft nicht als Vollkörper sondern als Hohlkugeln ausgebildet und weisen eine Wanddicke auf, die je nach Druckanforderung zwischen 0,2 und 5 µm liegt.
Die konstruktive Ausbildung des erfindungsgemäßen Flüssigsauerstofftanks ist, zumindest soweit es die Haltemittel zwischen Innen- und Außentank angeht, relativ einfach, da sie im Wesentlichen zur Aufnahme der zwischen Innenwand und Außenwand wirkenden statischen Lasten ausgelegt und ausgebildet ist. Die Haltemittel dienen also lediglich dazu, unter normalen statischen Bedingungen den Innentank in seiner Position zum Außentank zu halten. Sie brauchen nicht für eine erhöhte (dynamische) Belastung ausgelegt zu werden, was nicht nur konstruktiv von Vorteil ist, sondern auch hinsichtlich der Isolierwirkung Vorteile hat. Die Haltemittel können nämlich in Form von beispielsweise kreuzweise verspannten lang gestreckten Bändern zwischen Innenwand und Außenwand gebildet sein. Eine solche Anordnung ist besonders vorteilhaft, da dann der durch die Innenwand gebildeten Innentank quasi innerhalb des durch die Außenwand gebildeten Außentanks aufgehängt werden kann, d. h. die Halteelemente nur zugbelastet werden. Diese brauchen dann nicht eigensteif ausgebildet zu sein und können einen vergleichsweise geringen Querschnitt aufweisen, so dass die lsolierwirkung zwischen Innen- und Außenbehälter durch die Bänder vergleichsweise wenig verschlechtert wird.
Um ein Befüllen des flüssigen Sauerstoffs in den Tank und eine Entnahme von flüssigen Sauerstoff aus dem Tank zu ermöglichen, ist mindestens eine den Tank durchdringende Leitung vorzusehen sowie entsprechende Absperrmittel, in Form eines Absperrventils, eines Überdruckventils und dergleichen.
Mit der erfindungsgemäßen Lösung kann flüssiges Gas, insbesondere flüssiger Sauerstoff unter Druck und gekühlt gelagert werden, wobei die U-Boot spezifischen Anforderungen hinsichtlich Schockbelastung und Lagerungszeit (beispielsweise über eine Woche) ohne zusätzliche Einrichtungen zur Wärmeabfuhr erzielt werden können.
Die Erfindung ist nachfolgend anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert. Es zeigen:
Fig. 1
in stark vereinfachter schematischer Darstellung einen Flüssigsauerstofftank gemäß der Erfindung im Längsschnitt und
Fig. 2
den Tank nach Fig. 1 im Querschnitt.
Der anhand der Figuren dargestellte Tank 1 für die Lagerung von flüssigem Sauerstoff auf einem militärischen U-Boot ist an geeigneter (nicht dargestellter) Stelle im U-Boot angeordnet, dies kann innerhalb oder außerhalb des Druckraumes sein. Der Tank 1 weist eine Innenwand 2 auf, welche ein druckdichtes Innenbehältnis (Innentank) bildet, in dem der Sauerstoff 3 gelagert ist. In den Figuren ist mit 3a der flüssige Sauerstoff und mit 3b der gasförmige Anteil innerhalb des Tanks 1 gekennzeichnet. Die Innenwand 2 ist zu einem im Wesentlichen zylindrischen und an den Enden etwa halbkugelförmigen Innenbehälter geformt, der allseits mit im Wesentlichen konstanten Abstand 4 zu einer Außenwand 5 angeordnet ist, die ein äußeres Behältnis (Außentank) bildet, das die gleiche Form wie der Innentank aufweist, jedoch deutlich größer ist, um diesen mit Abstand 4 zu umgeben.
Der durch die Innenwand 2 gebildete Innenbehälter ist über Tragbänder 6 innerhalb des durch die Außenwand 5 gebildeten Außenbehälters aufgehängt. Die Tragbänder 6 sind an mindestens sechs Seiten angeordnet, und zwar jeweils paarweise und gekreuzt um diese möglichst lang ausbilden zu können. Die Bänder 6 sind so ausgelegt, dass sie im Wesentlichen die statische Last tragen, welche der mit Sauerstoff gefüllte Innenbehälter insbesondere durch seine Gewichtskraft erzeugt. Die Bänder 6 sind ebenso wie die Innen- und Außenbehälter aus Stahl gebildet und mit diesen verschweißt.
Der zwischen Innenwand 2 und Außenwand 5 gebildete Raum ist mit Mikroglaskugeln 7 vollständig gefüllt, die darüber hinaus in diesem Raum verdichtet worden sind. Der so mit verdichteten Mikroglaskugeln 7 ausgefüllte Raum ist danach evakuiert, d. h. unter Vakuum gesetzt worden, um auf diese Weise eine hohe Isolierwirkung zu erreichen. Durch die Verdichtung und Evakuierung sind die Microglaskugeln 7 abriebfest gepackt, so dass auch im normalen Betrieb keinerlei Verschleiß innerhalb der Isolierung entsteht. Sie nehmen die im Falle einer Schockbelastung beispielsweise in Höhe von 10 bis 100 g auftretenden Kräfte auf, ohne dass die Tragbänder 6 zusätzlich merklich belastet werden. Die Isolationswirkung bleibt dabei nahezu vollständig erhalten bzw. wird unmittelbar nach der Belastung vollständig wieder hergestellt.
Zum Befüllen und Entleeren des flüssigen Sauerstoffs ist nahe dem Boden des Tanks 1 eine die Innenwand 2 und die Außenwand 5 durchdringende Leitung 8 vorgesehen sowie ein Absperrventil 9, dass symbolisch für die hier gegebenenfalls noch vorzusehenden Sicherheits- und Ventilanordnungen steht.
Bezugszeichen
1 -
Tank
2 -
Innenwand
3 -
Sauerstoff
4 -
Abstand
5 -
Außenwand
6 -
Tragbänder
7 -
Mikroglaskugeln
8 -
Leitung
9 -
Absperrventil

Claims (9)

  1. Unterseeboot mit einem Tank (1) zur Aufnahme und Lagerung von Flüssiggas, insbesondere Sauerstoff (3), mit folgenden Merkmalen:
    1.1 der Tank (1) weist eine druckdichte Innenwand (2) auf
    1.2 der Tank (1) weist eine Außenwand (5) auf
    1.3 Außenwand (5) und Innenwand (2) sind über Haltemittel (6) mechanisch miteinander verbunden
    1.4 der zwischen Außenwand (5) und Innenwand (2) gebildete Freiraum ist mit Füllkörpern (7) ausgefüllt und evakuiert
    1.5 die Füllkörper (7) haben im wesentlichen Kugelform
  2. Unterseeboot nach Anspruch 1, bei dem die Füllkörper (7) durch Glaskugeln gebildet sind.
  3. Unterseeboot nach einem der vorhergehenden Ansprüche, bei dem die Füllkörper (7) durch Hohlkörper gebildet sind.
  4. Unterseeboot nach einem der vorhergehenden Ansprüche, bei dem die Füllkörper (7) durch Mikroglaskugeln (7) gebildet sind.
  5. Unterseeboot nach einem der vorhergehenden Ansprüche, bei dem die Füllkörper (7) einen Durchmesser von 20 bis 120 µm aufweisen.
  6. Unterseeboot nach einem der vorhergehenden Ansprüche, bei dem die Füllkörper (7) verdichtet sind.
  7. Unterseeboot nach einem der vorhergehenden Ansprüche, bei dem die Haltemittel (6) im Wesentlichen zur Aufnahme der zwischen Innenwand (2) und Außenwand (5) wirkenden statischen Lasten ausgelegt und ausgebildet sind.
  8. Unterseeboot nach einem der vorhergehenden Ansprüche, bei dem die Haltemittel (6) durch zwischen Innenwand (2) und Außenwand (5) angeordnete Bänder (6) gebildet sind.
  9. Unterseeboot nach einem der vorhergehenden Ansprüche, bei dem mindestens eine absperrbare Leitung (8) zum Befüllen und zur Entnahme in den Tank (1) bzw. aus dem Tank (1) vorgesehen ist.
EP04002633A 2003-02-12 2004-02-06 Unterseeboot mit einem Flüssiggasbehälter Expired - Lifetime EP1447322B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10305776A DE10305776A1 (de) 2003-02-12 2003-02-12 Unterseeboot
DE10305776 2003-02-12

Publications (2)

Publication Number Publication Date
EP1447322A1 EP1447322A1 (de) 2004-08-18
EP1447322B1 true EP1447322B1 (de) 2005-12-21

Family

ID=32668039

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04002633A Expired - Lifetime EP1447322B1 (de) 2003-02-12 2004-02-06 Unterseeboot mit einem Flüssiggasbehälter

Country Status (4)

Country Link
EP (1) EP1447322B1 (de)
KR (1) KR100673149B1 (de)
DE (2) DE10305776A1 (de)
ES (1) ES2252709T3 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4637488B2 (ja) * 2004-01-20 2011-02-23 三星エスディアイ株式会社 ゲル電解質および燃料電池用電極および燃料電池
KR102018745B1 (ko) * 2012-10-04 2019-11-04 대우조선해양 주식회사 외기독립추진 시스템이 탑재된 잠수함
KR101660579B1 (ko) * 2014-03-28 2016-09-27 대우조선해양 주식회사 잠수함의 액화산소탱크 구조
KR101651324B1 (ko) * 2014-03-28 2016-08-26 대우조선해양 주식회사 잠수함의 액화산소탱크 구조
KR101631742B1 (ko) * 2014-03-28 2016-06-17 대우조선해양 주식회사 잠수함의 액화산소탱크 및 그 제조방법
KR101603839B1 (ko) * 2014-06-03 2016-03-15 대우조선해양 주식회사 잠수함의 액화산소탱크 구조
CN112325150A (zh) * 2020-11-13 2021-02-05 广东清极氢能有限公司 一种具有多层抗压型内胆的高压储氢罐

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58146800A (ja) * 1982-02-25 1983-09-01 Ishikawajima Harima Heavy Ind Co Ltd 防液堤内に漏洩した低温液化ガスの蒸発抑制方法及び該方法に使用する抑制断熱材の格納箱
US4519415A (en) * 1982-05-07 1985-05-28 Chicago Bridge & Iron Company Liquid storage tank with emergency product removal apparatus
US5564588A (en) * 1990-09-21 1996-10-15 Ace Tank & Equipment Company Method and storage tank system for aboveground storage of flammable liquids

Also Published As

Publication number Publication date
KR100673149B1 (ko) 2007-01-22
ES2252709T3 (es) 2006-05-16
KR20040073362A (ko) 2004-08-19
DE10305776A1 (de) 2004-08-26
DE502004000188D1 (de) 2006-01-26
EP1447322A1 (de) 2004-08-18

Similar Documents

Publication Publication Date Title
DE3338879C2 (de) Druckgasbehälter
EP1128123B1 (de) Speicherbehälter für kryogene Flüssigkeiten mit verstärkten Wandungen
DE10392240B4 (de) Hybrid-Wasserstoffvorratsbehälter und Verfahren zur Lagerung von Wasserstoff in solch einem Behälter
DE2050759C3 (de) Tankschiff zum Transport von Flüssiggas sehr tiefer Temperatur
EP3037608A1 (de) Montagesystem für modulare Industrieanlagen
EP3062313B2 (de) Behälter für die Aufnahme von radioaktivem Inventar sowie Verfahren zur Herstellung des Behälters
EP1447322B1 (de) Unterseeboot mit einem Flüssiggasbehälter
DE2504467A1 (de) Schiff mit behaelter zum transport von fluessiggas
DE102009010261A1 (de) Schockdämpfer
EP2062834B1 (de) Vorrichtung zum Stabilisieren von Flüssigkeiten in einem Behälter
DE102021105609A1 (de) Strömungskörper für ein Luftfahrzeug mit integriertem Gastank
EP2008014B1 (de) Behälter für kryogene flüssigkeiten
DE68918600T2 (de) Luftschiff mit einer Regelanordnung für die Höhe.
DE19837886A1 (de) Speicherbehälter für kryogene Flüssigkeiten
DE102019132060A1 (de) Verfahren zum Herstellen eines Kraftfahrzeugs und Verfahren zum Herstellen einer Mehrzahl von Kraftfahrzeugen
DE1781330A1 (de) Seeschiff zur Aufnahme und Befoerderung kalter Fluessigkeiten
DE102017002211B4 (de) Abstandselement zur Verwendung in einer Halteanordnung, Halteanordnung und diese Halteanordnung umfassendes Fahrzeug
DE102004042001B4 (de) Speicherbehälter zur Speicherung von kryogenen Flüssigkeiten
DE2916073A1 (de) Druckkoerper fuer unterwasser-fahrzeuge oder -behaelter
DE1081037B (de) Luftfeder fuer Fahrzeuge
DE1802408A1 (de) Behaelter fuer feuergefaehrliches Material
DE102017100361A1 (de) Wasserstoffspeichertank und Brennstoffzellensystem sowie Kraftfahrzeug mit einem solchen
DE102015204910A1 (de) Kraftfahrzeug mit einem Druckbehälter
DE102014221530A1 (de) Druckgastank mit im Tank-Speicherraum vorgesehenen Teilvolumina
DE102010000966B4 (de) Druckspeicher, insbesondere Wasserstoffdruckspeicher

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

17P Request for examination filed

Effective date: 20040430

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BENTHIEN, UDO, DIPL.-ING.

Inventor name: SATTLER, GUNTER, DIPL.-ING.

Inventor name: POMMER, HANS, DIPL.-ING.

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HOWALDTSWERKE-DEUTSCHE WERFT GMBH

AKX Designation fees paid

Designated state(s): DE ES FR GB IT

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502004000188

Country of ref document: DE

Date of ref document: 20060126

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060206

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2252709

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060922

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004000188

Country of ref document: DE

Representative=s name: PATENTANWAELTE VOLLMANN & HEMMER, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004000188

Country of ref document: DE

Representative=s name: PATENTANWAELTE VOLLMANN & HEMMER, DE

Effective date: 20130206

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004000188

Country of ref document: DE

Owner name: THYSSENKRUPP MARINE SYSTEMS GMBH, DE

Free format text: FORMER OWNER: HOWALDTSWERKE-DEUTSCHE WERFT GMBH, 24143 KIEL, DE

Effective date: 20130206

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: THYSSENKRUPP MARINE SYSTEMS GMBH

Effective date: 20130313

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: THYSSENKRUPP MARINE SYSTEMS GMBH

Effective date: 20130912

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502004000188

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502004000188

Country of ref document: DE

Effective date: 20150206

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004000188

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004000188

Country of ref document: DE

Owner name: THYSSENKRUPP MARINE SYSTEMS GMBH, DE

Free format text: FORMER OWNER: THYSSENKRUPP MARINE SYSTEMS GMBH, 24143 KIEL, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230220

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230223

Year of fee payment: 20

Ref country code: GB

Payment date: 20230220

Year of fee payment: 20

Ref country code: DE

Payment date: 20220801

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230424

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 502004000188

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20240226

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20240205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20240207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20240207

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20240205