EP1433866A2 - Une Tôle en alliage d'Aluminium résistant au choc et son procédé de fabrication - Google Patents

Une Tôle en alliage d'Aluminium résistant au choc et son procédé de fabrication Download PDF

Info

Publication number
EP1433866A2
EP1433866A2 EP03029804A EP03029804A EP1433866A2 EP 1433866 A2 EP1433866 A2 EP 1433866A2 EP 03029804 A EP03029804 A EP 03029804A EP 03029804 A EP03029804 A EP 03029804A EP 1433866 A2 EP1433866 A2 EP 1433866A2
Authority
EP
European Patent Office
Prior art keywords
sheet
aluminum alloy
heat treated
slow
alloy sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03029804A
Other languages
German (de)
English (en)
Other versions
EP1433866A3 (fr
Inventor
Jr.John Butler
Jieh-Ren Yeh
Claude E Brichet
De Miera Vincente Martin Saenz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Howmet Aerospace Inc
Original Assignee
Alcoa Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcoa Inc filed Critical Alcoa Inc
Publication of EP1433866A2 publication Critical patent/EP1433866A2/fr
Publication of EP1433866A3 publication Critical patent/EP1433866A3/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions

Definitions

  • the present invention relates to aluminum alloys, and more particularly relates to aluminum sheet products in which alloy compositions and processing methods are controlled in order to produce improved crash resistance properties.
  • Autobody sheet requires a combination of good forming properties along with good strength after paint baking operations.
  • the forming properties require good stretch forming and good bending. This traditionally has been achieved with rapid water quenching from solution heat treat temperatures. However, rapid water quenching often results in distortion, surface irregularities and water staining that are unacceptable for outer auto body applications. Air quenching offers many advantages over water quenching with respect to eliminating quench distortion problems, but air quenching can lead to poor bending performance.
  • the present invention has been developed in view of the foregoing and to address other deficiencies of the prior art.
  • the present invention controls alloy compositions and quench rates to produce aluminum alloy sheet products exhibiting good as-processed formability and shape, and good crashworthiness and strength in the artificially aged condition.
  • An aspect of the invention is to provide a 6xxx alloy with a desired combination of strength and crashworthiness.
  • Another aspect of the present invention is to provide a heat treated and slow quenched aluminum alloy sheet comprising from about 0.5 to about 0.7 wt.% Si, from about 0.5 to about 0.7 wt.% Mg, from about 0.1 to about 0.3 wt.% Mn, and the balance Al and incidental impurities.
  • a further aspect of the present invention is to provide a method of treating an aluminum alloy sheet, the method comprising providing a heat treated aluminum alloy sheet comprising Si, Mg, Mn, and the balance aluminum and incidental impurities, and slow quenching the heat treated aluminum sheet at a rate of less than about 200°F/second.
  • Fig. 1 is a schematic diagram illustrating an aluminum sheet heat treating and slow quenching process in accordance with an embodiment of the present invention.
  • Fig. 2 is a graph of temperature versus time for a paint bake treatment.
  • Fig. 3 is a graph of yield strength versus line speed of a continuous heat treat furnace, illustrating strength properties for two different 6xxx alloys without a slow quench and with a slow quench in accordance with embodiments of the present invention.
  • Figs. 4a and 4b are graphs of tensile properties versus paint bake time at 185°C for two different alloys.
  • Figs. 5a-5c are computer generated illustrations taken from different views of a sample crash box made of alloy 6060 sheet without a slow quench.
  • Figs. 6a-6c are computer generated illustrations taken from different views of a sample crash box made of alloy 6xxA sheet with a slow quench.
  • Figs. 7a-7c are computer generated illustrations taken from different views of a sample crash box made of alloy 6060 sheet with a slow quench.
  • Figs. 8a-8c are computer generated illustrations taken from different views of a sample crash box made of alloy 6xxA sheet without a slow quench.
  • the present invention provides aluminum alloy sheet products having favorable crash resistant properties.
  • sheet refers to aluminum alloy products having thicknesses from 0.2 to 6.3 mm.
  • thicknesses for auto body sheet products, thicknesses of from 0.7 to 3.5 mm are preferred.
  • the aluminum alloy sheet products exhibit favorable crash resistance or crashworthiness properties.
  • crashworthiness is defined as the ability of a material to absorb energy by plastic deformation without appreciable cracking.
  • the crashworthiness of the sheet products can be quantified by critical fracture strain (CFS).
  • a preferred process path includes the following steps: casting of an aluminum alloy ingot by conventional or continuous methods; hot rolling; intermediate annealing; cold rolling; solution heat treating; and slow quenching, e.g., air quench or minimum distortion water quench.
  • the steps of solution heat treating and slow quenching preferably occur on a continuous heat treater or temper line.
  • the sheet may optionally be reheated and coil cooled.
  • the optional cooling step may be performed as an off-line batch process.
  • the steps of solution heat treating and slow quenching, in addition to an optional reheating step, are schematically illustrated in Fig. 1.
  • the aluminum alloy sheet may be run through a continuous heat treater to substantially dissolve soluble phases formed during upstream processing.
  • This process typically involves furnace temperatures of 800 to 1,100°F at speeds from 20 to 150 feet per minute. The temperature and dwell time in the furnace may be adjusted based upon alloy composition and gauge.
  • the sheet is quenched at a controlled rate to retain the solute in solid solution. This can be accomplished, for example, with air or minimum distortion water.
  • An aspect of this invention is the use of relatively slow quench rates that minimize sheet distortion while still developing favorable physical properties.
  • slow quench means quenching at a rate of less than about 200°F/second, preferably less than about 100°F/second. Quench rates for air type processes preferably range from about 20 to about 100°F/second, more preferably from about 40 to about 70°F/second. Water quench rates preferably range from 50 to 1,000°F/sec, more preferably from 100 to 200°F/second.
  • a heating unit may follow the quench unit and any coil handling equipment, preferably just ahead of the coiling equipment on the exit end of the line.
  • the heating unit raises the temperature of the sheet such that an elevated coiling temperature can be achieved.
  • a preferred range of coiling temperatures is from about 130 to about 190°F.
  • the warm coil is allowed to cool slowly, typically as a 5,000 to 50,000 lb. mass of metal. This typically results in cooling rates of from about 0.1 to about 5°F/hour.
  • the composition of the aluminum alloy sheet is controlled in order to provide favorable crash resistance properties.
  • the Si and Mg levels are controlled in order to provide high strengths.
  • the Mn level is sufficient to control the grain size of the sheet, particularly during heat treating.
  • Suitable alloys include 6xxx alloys such as 6009, 6060, 6063 and 6005. Typical, preferred and more preferred alloy composition ranges are listed in Table 1.
  • Alloy Compositions (Wt.%) Si Mg Mn Fe Cu Al Typical 0.5-0.7 0.5-0.7 0.1-0.3 0.35 max 0.20 max balance Preferred 0.56-0.68 0.54-0.66 0.12-0.18 0.15-0.30 0.10 max balance More Preferred 0.58-0.66 0.56-0.64 0.12-0.18 0.15-0.25 0.10 max balance
  • Al-Mg-Si-Mn alloy A particularly preferred Al-Mg-Si-Mn alloy is listed in Table 2.
  • Table 2 lists the preferred 6xxA alloy compositions and a 6060 alloy composition in wt.percentages, with the balance comprising aluminum and incidental impurities.
  • Aluminum Alloy Sheet Compositions Alloy Si % Fe % Cu % Mn % Mg % 6xxA target 0.62 0.20 - 0.15 0.60 min. 0.58 0.15 - 0.12 0.56 max. 0.66 0.25 0.10 0.18 0.64 6060 target 0.56 0.20 0.075 - 0.55 min. 0.53 0.15 0.05 - 0.52 max. 0.58 0.25 0.10 0.10 0.57
  • An advantage of the present invention is the improvement in the crashworthiness of the aluminum alloy sheet product, which may be measured by critical fracture strain (CFS) and axial crush tests.
  • CFS critical fracture strain
  • Fig. 2 is a temperature-time plot of a thermocoupled sheet sample during the paint bake treatment.
  • Fig. 3 plots yield strength of the alloys as a function of the processing variables.
  • the yield strength has the tendency to decrease at the fastest CHT line speeds due to incomplete dissolution of Mg 2 Si.
  • Guinier x-ray data showed the presence of Mg 2 Si in the materials processed at the faster line speeds. The influence of line speed on yield strength is most pronounced in the sheet which was processed without using the slow quench.
  • Fig. 4a is a graph of Rm, Rp0.2 and A values versus paint bake time at 185°C for the 6060 sample listed in Table 6 which was subjected to the slow quench and a CHT speed of 11 meters/minute.
  • Fig. 4b is a similar graph for the 6xxA sample which was likewise subjected to the slow quench and CHT speed of 11 meters/minute.
  • Crash boxes were assembled having a rectangular cross section measuring 63 mm by 133 mm. Welds or rivets may be used at approximately 1 inch on center with the first and last weld approximately 1 ⁇ 2 inch from the end. The number of spot welds or rivets specified were 20 per flange.
  • An adhesive sold under the designation Betamate 1494 by Gurit Essex is a one-component toughened epoxy that is applied warm along the side seams of the crash boxes, followed by riveting.
  • a pneumatic heated cartridge gun is used to dispense the adhesive at approximately 40 to 50°C (104 to 122°F). The metal components to be joined were also heated to approximately the same temperature to assist in application of the adhesive and improve flow and wettability.
  • Figs. 5-8 Computer generated illustrations of the crushed appearance of the boxes are shown in Figs. 5-8.
  • Figs. 5a-c are computer generated illustrations from different view of Sample No. 1 listed in Table 7.
  • Figs. 6a-c are computer generated illustrations of Sample No. 2.
  • Figs. 7a-c are computer generated illustrations of Sample No. 3.
  • Figs. 8a-c are computer generated illustrations of Sample No. 4. There were no significant differences among the quantifiable crush parameters for the samples tested.
  • the performance of the materials met the goals of a sheet alloy product for use in crash critical applications.
  • the paint baked sheet had yield strengths of about 235 MPa, total elongation of 15% and good static crush performance.
  • the T4 properties indicate acceptable formability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Air Bags (AREA)
EP03029804A 2002-12-23 2003-12-23 Une Tôle en alliage d'Aluminium résistant au choc et son procédé de fabrication Withdrawn EP1433866A3 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US43612302P 2002-12-23 2002-12-23
US436123P 2002-12-23

Publications (2)

Publication Number Publication Date
EP1433866A2 true EP1433866A2 (fr) 2004-06-30
EP1433866A3 EP1433866A3 (fr) 2004-07-07

Family

ID=32469630

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03029804A Withdrawn EP1433866A3 (fr) 2002-12-23 2003-12-23 Une Tôle en alliage d'Aluminium résistant au choc et son procédé de fabrication

Country Status (4)

Country Link
US (1) US20050000609A1 (fr)
EP (1) EP1433866A3 (fr)
JP (1) JP2004204352A (fr)
CA (1) CA2454210A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2872662A4 (fr) * 2012-07-16 2016-08-10 Alcoa Inc Alliages d'aluminium de la série 6xxx améliorés et procédés permettant de produire ces derniers
EP3097216A4 (fr) * 2014-01-21 2017-11-01 Arconic Inc. Alliages d'aluminium 6xxx
WO2019025335A1 (fr) * 2017-08-02 2019-02-07 Aleris Aluminum Duffel Bvba Panneau extérieur d'automobile constitué d'un produit en feuille d'alliage d'aluminium de série 6xxx
EP3245309B1 (fr) 2015-01-12 2019-06-12 Novelis, Inc. Tôle d'aluminium hautement déformable pour l'industrie automobile à striage réduit ou nul et procédé de préparation
CN114657406A (zh) * 2022-02-10 2022-06-24 山东南山铝业股份有限公司 一种绿色循环保级6系高包边汽车板生产方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8083871B2 (en) * 2005-10-28 2011-12-27 Automotive Casting Technology, Inc. High crashworthiness Al-Si-Mg alloy and methods for producing automotive casting
EP2712942B1 (fr) * 2012-09-27 2017-11-01 Hydro Aluminium Rolled Products GmbH Procédé et appareil de traitement thermique d'une pièce en aluminium et pièce en aluminium
US8636197B1 (en) * 2012-10-04 2014-01-28 Ford Global Technologies, Llc Bonding of roof panels
FR3008427B1 (fr) * 2013-07-11 2015-08-21 Constellium France Tole en alliage d'aluminium pour structure de caisse automobile

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2273077A1 (en) * 1974-05-31 1975-12-26 Cegedur Shock-resistant, deformable aluminium alloy extrusions - contg. silicon and magnesium and suitable for crash barriers and car bumpers
EP0805219A1 (fr) * 1996-05-03 1997-11-05 Aluminium Company Of America Pièces pour la châssis d'un véhicule ayant un absorption d'énergie amélioré, procédé pour leur fabrication et un alliage
WO1997044501A1 (fr) * 1996-05-22 1997-11-27 Alusuisse Technology & Management Ag Element de construction
EP0811700A1 (fr) * 1996-06-04 1997-12-10 Alusuisse Technology & Management AG Alliage d'aluminium du type AlMgSi soudable et apte à l'emboutissage profond
WO2000052216A1 (fr) * 1999-03-03 2000-09-08 Alusuisse Technology & Management Ag COMPOSANT STRUCTURAL CONSTITUE D'UN ALLIAGE D'ALUMINIUM DU TYPE AlMgSi
WO2002090609A1 (fr) * 2001-05-03 2002-11-14 Alcan International Limited Procede de fabrication de feuille en alliage d'aluminium presentant une excellente aptitude au pliage

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2273077A1 (en) * 1974-05-31 1975-12-26 Cegedur Shock-resistant, deformable aluminium alloy extrusions - contg. silicon and magnesium and suitable for crash barriers and car bumpers
EP0805219A1 (fr) * 1996-05-03 1997-11-05 Aluminium Company Of America Pièces pour la châssis d'un véhicule ayant un absorption d'énergie amélioré, procédé pour leur fabrication et un alliage
WO1997044501A1 (fr) * 1996-05-22 1997-11-27 Alusuisse Technology & Management Ag Element de construction
EP0811700A1 (fr) * 1996-06-04 1997-12-10 Alusuisse Technology & Management AG Alliage d'aluminium du type AlMgSi soudable et apte à l'emboutissage profond
WO2000052216A1 (fr) * 1999-03-03 2000-09-08 Alusuisse Technology & Management Ag COMPOSANT STRUCTURAL CONSTITUE D'UN ALLIAGE D'ALUMINIUM DU TYPE AlMgSi
WO2002090609A1 (fr) * 2001-05-03 2002-11-14 Alcan International Limited Procede de fabrication de feuille en alliage d'aluminium presentant une excellente aptitude au pliage

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.R. DAVIS: "Metals Handbook - Desk Edition" 1989 , ASM INTERNATIONAL , USA XP002278912 * page 429 * *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2872662A4 (fr) * 2012-07-16 2016-08-10 Alcoa Inc Alliages d'aluminium de la série 6xxx améliorés et procédés permettant de produire ces derniers
EP3097216A4 (fr) * 2014-01-21 2017-11-01 Arconic Inc. Alliages d'aluminium 6xxx
EP3245309B1 (fr) 2015-01-12 2019-06-12 Novelis, Inc. Tôle d'aluminium hautement déformable pour l'industrie automobile à striage réduit ou nul et procédé de préparation
EP3540085B1 (fr) 2015-01-12 2021-10-20 Novelis Inc. Tôle d'aluminium hautement déformable pour l'industrie automobile à striage réduit ou nul et procédé de préparation
WO2019025335A1 (fr) * 2017-08-02 2019-02-07 Aleris Aluminum Duffel Bvba Panneau extérieur d'automobile constitué d'un produit en feuille d'alliage d'aluminium de série 6xxx
CN114657406A (zh) * 2022-02-10 2022-06-24 山东南山铝业股份有限公司 一种绿色循环保级6系高包边汽车板生产方法

Also Published As

Publication number Publication date
US20050000609A1 (en) 2005-01-06
JP2004204352A (ja) 2004-07-22
CA2454210A1 (fr) 2004-06-23
EP1433866A3 (fr) 2004-07-07

Similar Documents

Publication Publication Date Title
US20220033947A1 (en) Aluminum alloy products and a method of preparation
RU2699496C2 (ru) Автомобильный алюминиевый лист высокой формуемости с уменьшенной или отсутствующей бороздчатостью поверхности и способ его получения
CA1204654A (fr) Produits en alliage d'aluminium 6xxx hautement resistants et tenaces au vieillissement artificiel a temperature elevee. et methode de production connexe
US11535919B2 (en) Method of making 6XXX aluminium sheets
CN107709590B (zh) 具有高机械强度的用于机动车辆车身的金属板
US5393357A (en) Method of minimizing strength anisotropy in aluminum-lithium alloy wrought product by cold rolling, stretching and aging
US20210292861A1 (en) Process for manufacturing thin sheets made of 7xxx aluminum alloy suitable for shaping and assembly
WO2020120267A1 (fr) Procédé de fabrication de tôles d'aluminium 6xxx présentant une haute qualité de surface
JP2012531521A (ja) 高い成形性要求を有する用途のためのAlMgSiストリップ
JP2018534434A (ja) 機械的強度とクラッシュ挙動との間の卓越した妥協点を有する自動車ボディ構造のコンポーネント
WO2020182506A1 (fr) Procédé de fabrication d'un produit de tôle de série 5xxx
JP2024532941A (ja) 高強度プレス硬化鋼部品及びその製造方法
EP1433866A2 (fr) Une Tôle en alliage d'Aluminium résistant au choc et son procédé de fabrication
JPS63235454A (ja) アルミニウムベース合金の平圧延製品の製造方法
EP0504218B1 (fr) Ameliorations apportees aux alliages d'aluminium
US4486244A (en) Method of producing superplastic aluminum sheet
EP0931170A1 (fr) Alliage d'aluminium destine a la fabrication de produits lamines
JP2004010982A (ja) 曲げ加工性とプレス成形性に優れたアルミニウム合金板
JPH0469220B2 (fr)
JPH0565583A (ja) ベークハード性及び成形性に優れた軽量缶用缶胴材とその製造方法
JPH03153837A (ja) 強度と成形性にすぐれた自動車用アルミニウム合金板
JPH02145754A (ja) キャンエンド用アルミニウム合金板の製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20040908

17Q First examination report despatched

Effective date: 20041029

AKX Designation fees paid

Designated state(s): BE CZ DE FR GB

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050309