EP1433866A2 - Une Tôle en alliage d'Aluminium résistant au choc et son procédé de fabrication - Google Patents
Une Tôle en alliage d'Aluminium résistant au choc et son procédé de fabrication Download PDFInfo
- Publication number
- EP1433866A2 EP1433866A2 EP03029804A EP03029804A EP1433866A2 EP 1433866 A2 EP1433866 A2 EP 1433866A2 EP 03029804 A EP03029804 A EP 03029804A EP 03029804 A EP03029804 A EP 03029804A EP 1433866 A2 EP1433866 A2 EP 1433866A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- sheet
- aluminum alloy
- heat treated
- slow
- alloy sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
- C22C21/08—Alloys based on aluminium with magnesium as the next major constituent with silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/05—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
Definitions
- the present invention relates to aluminum alloys, and more particularly relates to aluminum sheet products in which alloy compositions and processing methods are controlled in order to produce improved crash resistance properties.
- Autobody sheet requires a combination of good forming properties along with good strength after paint baking operations.
- the forming properties require good stretch forming and good bending. This traditionally has been achieved with rapid water quenching from solution heat treat temperatures. However, rapid water quenching often results in distortion, surface irregularities and water staining that are unacceptable for outer auto body applications. Air quenching offers many advantages over water quenching with respect to eliminating quench distortion problems, but air quenching can lead to poor bending performance.
- the present invention has been developed in view of the foregoing and to address other deficiencies of the prior art.
- the present invention controls alloy compositions and quench rates to produce aluminum alloy sheet products exhibiting good as-processed formability and shape, and good crashworthiness and strength in the artificially aged condition.
- An aspect of the invention is to provide a 6xxx alloy with a desired combination of strength and crashworthiness.
- Another aspect of the present invention is to provide a heat treated and slow quenched aluminum alloy sheet comprising from about 0.5 to about 0.7 wt.% Si, from about 0.5 to about 0.7 wt.% Mg, from about 0.1 to about 0.3 wt.% Mn, and the balance Al and incidental impurities.
- a further aspect of the present invention is to provide a method of treating an aluminum alloy sheet, the method comprising providing a heat treated aluminum alloy sheet comprising Si, Mg, Mn, and the balance aluminum and incidental impurities, and slow quenching the heat treated aluminum sheet at a rate of less than about 200°F/second.
- Fig. 1 is a schematic diagram illustrating an aluminum sheet heat treating and slow quenching process in accordance with an embodiment of the present invention.
- Fig. 2 is a graph of temperature versus time for a paint bake treatment.
- Fig. 3 is a graph of yield strength versus line speed of a continuous heat treat furnace, illustrating strength properties for two different 6xxx alloys without a slow quench and with a slow quench in accordance with embodiments of the present invention.
- Figs. 4a and 4b are graphs of tensile properties versus paint bake time at 185°C for two different alloys.
- Figs. 5a-5c are computer generated illustrations taken from different views of a sample crash box made of alloy 6060 sheet without a slow quench.
- Figs. 6a-6c are computer generated illustrations taken from different views of a sample crash box made of alloy 6xxA sheet with a slow quench.
- Figs. 7a-7c are computer generated illustrations taken from different views of a sample crash box made of alloy 6060 sheet with a slow quench.
- Figs. 8a-8c are computer generated illustrations taken from different views of a sample crash box made of alloy 6xxA sheet without a slow quench.
- the present invention provides aluminum alloy sheet products having favorable crash resistant properties.
- sheet refers to aluminum alloy products having thicknesses from 0.2 to 6.3 mm.
- thicknesses for auto body sheet products, thicknesses of from 0.7 to 3.5 mm are preferred.
- the aluminum alloy sheet products exhibit favorable crash resistance or crashworthiness properties.
- crashworthiness is defined as the ability of a material to absorb energy by plastic deformation without appreciable cracking.
- the crashworthiness of the sheet products can be quantified by critical fracture strain (CFS).
- a preferred process path includes the following steps: casting of an aluminum alloy ingot by conventional or continuous methods; hot rolling; intermediate annealing; cold rolling; solution heat treating; and slow quenching, e.g., air quench or minimum distortion water quench.
- the steps of solution heat treating and slow quenching preferably occur on a continuous heat treater or temper line.
- the sheet may optionally be reheated and coil cooled.
- the optional cooling step may be performed as an off-line batch process.
- the steps of solution heat treating and slow quenching, in addition to an optional reheating step, are schematically illustrated in Fig. 1.
- the aluminum alloy sheet may be run through a continuous heat treater to substantially dissolve soluble phases formed during upstream processing.
- This process typically involves furnace temperatures of 800 to 1,100°F at speeds from 20 to 150 feet per minute. The temperature and dwell time in the furnace may be adjusted based upon alloy composition and gauge.
- the sheet is quenched at a controlled rate to retain the solute in solid solution. This can be accomplished, for example, with air or minimum distortion water.
- An aspect of this invention is the use of relatively slow quench rates that minimize sheet distortion while still developing favorable physical properties.
- slow quench means quenching at a rate of less than about 200°F/second, preferably less than about 100°F/second. Quench rates for air type processes preferably range from about 20 to about 100°F/second, more preferably from about 40 to about 70°F/second. Water quench rates preferably range from 50 to 1,000°F/sec, more preferably from 100 to 200°F/second.
- a heating unit may follow the quench unit and any coil handling equipment, preferably just ahead of the coiling equipment on the exit end of the line.
- the heating unit raises the temperature of the sheet such that an elevated coiling temperature can be achieved.
- a preferred range of coiling temperatures is from about 130 to about 190°F.
- the warm coil is allowed to cool slowly, typically as a 5,000 to 50,000 lb. mass of metal. This typically results in cooling rates of from about 0.1 to about 5°F/hour.
- the composition of the aluminum alloy sheet is controlled in order to provide favorable crash resistance properties.
- the Si and Mg levels are controlled in order to provide high strengths.
- the Mn level is sufficient to control the grain size of the sheet, particularly during heat treating.
- Suitable alloys include 6xxx alloys such as 6009, 6060, 6063 and 6005. Typical, preferred and more preferred alloy composition ranges are listed in Table 1.
- Alloy Compositions (Wt.%) Si Mg Mn Fe Cu Al Typical 0.5-0.7 0.5-0.7 0.1-0.3 0.35 max 0.20 max balance Preferred 0.56-0.68 0.54-0.66 0.12-0.18 0.15-0.30 0.10 max balance More Preferred 0.58-0.66 0.56-0.64 0.12-0.18 0.15-0.25 0.10 max balance
- Al-Mg-Si-Mn alloy A particularly preferred Al-Mg-Si-Mn alloy is listed in Table 2.
- Table 2 lists the preferred 6xxA alloy compositions and a 6060 alloy composition in wt.percentages, with the balance comprising aluminum and incidental impurities.
- Aluminum Alloy Sheet Compositions Alloy Si % Fe % Cu % Mn % Mg % 6xxA target 0.62 0.20 - 0.15 0.60 min. 0.58 0.15 - 0.12 0.56 max. 0.66 0.25 0.10 0.18 0.64 6060 target 0.56 0.20 0.075 - 0.55 min. 0.53 0.15 0.05 - 0.52 max. 0.58 0.25 0.10 0.10 0.57
- An advantage of the present invention is the improvement in the crashworthiness of the aluminum alloy sheet product, which may be measured by critical fracture strain (CFS) and axial crush tests.
- CFS critical fracture strain
- Fig. 2 is a temperature-time plot of a thermocoupled sheet sample during the paint bake treatment.
- Fig. 3 plots yield strength of the alloys as a function of the processing variables.
- the yield strength has the tendency to decrease at the fastest CHT line speeds due to incomplete dissolution of Mg 2 Si.
- Guinier x-ray data showed the presence of Mg 2 Si in the materials processed at the faster line speeds. The influence of line speed on yield strength is most pronounced in the sheet which was processed without using the slow quench.
- Fig. 4a is a graph of Rm, Rp0.2 and A values versus paint bake time at 185°C for the 6060 sample listed in Table 6 which was subjected to the slow quench and a CHT speed of 11 meters/minute.
- Fig. 4b is a similar graph for the 6xxA sample which was likewise subjected to the slow quench and CHT speed of 11 meters/minute.
- Crash boxes were assembled having a rectangular cross section measuring 63 mm by 133 mm. Welds or rivets may be used at approximately 1 inch on center with the first and last weld approximately 1 ⁇ 2 inch from the end. The number of spot welds or rivets specified were 20 per flange.
- An adhesive sold under the designation Betamate 1494 by Gurit Essex is a one-component toughened epoxy that is applied warm along the side seams of the crash boxes, followed by riveting.
- a pneumatic heated cartridge gun is used to dispense the adhesive at approximately 40 to 50°C (104 to 122°F). The metal components to be joined were also heated to approximately the same temperature to assist in application of the adhesive and improve flow and wettability.
- Figs. 5-8 Computer generated illustrations of the crushed appearance of the boxes are shown in Figs. 5-8.
- Figs. 5a-c are computer generated illustrations from different view of Sample No. 1 listed in Table 7.
- Figs. 6a-c are computer generated illustrations of Sample No. 2.
- Figs. 7a-c are computer generated illustrations of Sample No. 3.
- Figs. 8a-c are computer generated illustrations of Sample No. 4. There were no significant differences among the quantifiable crush parameters for the samples tested.
- the performance of the materials met the goals of a sheet alloy product for use in crash critical applications.
- the paint baked sheet had yield strengths of about 235 MPa, total elongation of 15% and good static crush performance.
- the T4 properties indicate acceptable formability.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
- Air Bags (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US43612302P | 2002-12-23 | 2002-12-23 | |
US436123P | 2002-12-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1433866A2 true EP1433866A2 (fr) | 2004-06-30 |
EP1433866A3 EP1433866A3 (fr) | 2004-07-07 |
Family
ID=32469630
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03029804A Withdrawn EP1433866A3 (fr) | 2002-12-23 | 2003-12-23 | Une Tôle en alliage d'Aluminium résistant au choc et son procédé de fabrication |
Country Status (4)
Country | Link |
---|---|
US (1) | US20050000609A1 (fr) |
EP (1) | EP1433866A3 (fr) |
JP (1) | JP2004204352A (fr) |
CA (1) | CA2454210A1 (fr) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2872662A4 (fr) * | 2012-07-16 | 2016-08-10 | Alcoa Inc | Alliages d'aluminium de la série 6xxx améliorés et procédés permettant de produire ces derniers |
EP3097216A4 (fr) * | 2014-01-21 | 2017-11-01 | Arconic Inc. | Alliages d'aluminium 6xxx |
WO2019025335A1 (fr) * | 2017-08-02 | 2019-02-07 | Aleris Aluminum Duffel Bvba | Panneau extérieur d'automobile constitué d'un produit en feuille d'alliage d'aluminium de série 6xxx |
EP3245309B1 (fr) | 2015-01-12 | 2019-06-12 | Novelis, Inc. | Tôle d'aluminium hautement déformable pour l'industrie automobile à striage réduit ou nul et procédé de préparation |
CN114657406A (zh) * | 2022-02-10 | 2022-06-24 | 山东南山铝业股份有限公司 | 一种绿色循环保级6系高包边汽车板生产方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8083871B2 (en) * | 2005-10-28 | 2011-12-27 | Automotive Casting Technology, Inc. | High crashworthiness Al-Si-Mg alloy and methods for producing automotive casting |
EP2712942B1 (fr) * | 2012-09-27 | 2017-11-01 | Hydro Aluminium Rolled Products GmbH | Procédé et appareil de traitement thermique d'une pièce en aluminium et pièce en aluminium |
US8636197B1 (en) * | 2012-10-04 | 2014-01-28 | Ford Global Technologies, Llc | Bonding of roof panels |
FR3008427B1 (fr) * | 2013-07-11 | 2015-08-21 | Constellium France | Tole en alliage d'aluminium pour structure de caisse automobile |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2273077A1 (en) * | 1974-05-31 | 1975-12-26 | Cegedur | Shock-resistant, deformable aluminium alloy extrusions - contg. silicon and magnesium and suitable for crash barriers and car bumpers |
EP0805219A1 (fr) * | 1996-05-03 | 1997-11-05 | Aluminium Company Of America | Pièces pour la châssis d'un véhicule ayant un absorption d'énergie amélioré, procédé pour leur fabrication et un alliage |
WO1997044501A1 (fr) * | 1996-05-22 | 1997-11-27 | Alusuisse Technology & Management Ag | Element de construction |
EP0811700A1 (fr) * | 1996-06-04 | 1997-12-10 | Alusuisse Technology & Management AG | Alliage d'aluminium du type AlMgSi soudable et apte à l'emboutissage profond |
WO2000052216A1 (fr) * | 1999-03-03 | 2000-09-08 | Alusuisse Technology & Management Ag | COMPOSANT STRUCTURAL CONSTITUE D'UN ALLIAGE D'ALUMINIUM DU TYPE AlMgSi |
WO2002090609A1 (fr) * | 2001-05-03 | 2002-11-14 | Alcan International Limited | Procede de fabrication de feuille en alliage d'aluminium presentant une excellente aptitude au pliage |
-
2003
- 2003-12-22 US US10/743,549 patent/US20050000609A1/en not_active Abandoned
- 2003-12-23 EP EP03029804A patent/EP1433866A3/fr not_active Withdrawn
- 2003-12-23 CA CA002454210A patent/CA2454210A1/fr not_active Abandoned
- 2003-12-24 JP JP2003427659A patent/JP2004204352A/ja not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2273077A1 (en) * | 1974-05-31 | 1975-12-26 | Cegedur | Shock-resistant, deformable aluminium alloy extrusions - contg. silicon and magnesium and suitable for crash barriers and car bumpers |
EP0805219A1 (fr) * | 1996-05-03 | 1997-11-05 | Aluminium Company Of America | Pièces pour la châssis d'un véhicule ayant un absorption d'énergie amélioré, procédé pour leur fabrication et un alliage |
WO1997044501A1 (fr) * | 1996-05-22 | 1997-11-27 | Alusuisse Technology & Management Ag | Element de construction |
EP0811700A1 (fr) * | 1996-06-04 | 1997-12-10 | Alusuisse Technology & Management AG | Alliage d'aluminium du type AlMgSi soudable et apte à l'emboutissage profond |
WO2000052216A1 (fr) * | 1999-03-03 | 2000-09-08 | Alusuisse Technology & Management Ag | COMPOSANT STRUCTURAL CONSTITUE D'UN ALLIAGE D'ALUMINIUM DU TYPE AlMgSi |
WO2002090609A1 (fr) * | 2001-05-03 | 2002-11-14 | Alcan International Limited | Procede de fabrication de feuille en alliage d'aluminium presentant une excellente aptitude au pliage |
Non-Patent Citations (1)
Title |
---|
J.R. DAVIS: "Metals Handbook - Desk Edition" 1989 , ASM INTERNATIONAL , USA XP002278912 * page 429 * * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2872662A4 (fr) * | 2012-07-16 | 2016-08-10 | Alcoa Inc | Alliages d'aluminium de la série 6xxx améliorés et procédés permettant de produire ces derniers |
EP3097216A4 (fr) * | 2014-01-21 | 2017-11-01 | Arconic Inc. | Alliages d'aluminium 6xxx |
EP3245309B1 (fr) | 2015-01-12 | 2019-06-12 | Novelis, Inc. | Tôle d'aluminium hautement déformable pour l'industrie automobile à striage réduit ou nul et procédé de préparation |
EP3540085B1 (fr) | 2015-01-12 | 2021-10-20 | Novelis Inc. | Tôle d'aluminium hautement déformable pour l'industrie automobile à striage réduit ou nul et procédé de préparation |
WO2019025335A1 (fr) * | 2017-08-02 | 2019-02-07 | Aleris Aluminum Duffel Bvba | Panneau extérieur d'automobile constitué d'un produit en feuille d'alliage d'aluminium de série 6xxx |
CN114657406A (zh) * | 2022-02-10 | 2022-06-24 | 山东南山铝业股份有限公司 | 一种绿色循环保级6系高包边汽车板生产方法 |
Also Published As
Publication number | Publication date |
---|---|
US20050000609A1 (en) | 2005-01-06 |
JP2004204352A (ja) | 2004-07-22 |
CA2454210A1 (fr) | 2004-06-23 |
EP1433866A3 (fr) | 2004-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220033947A1 (en) | Aluminum alloy products and a method of preparation | |
RU2699496C2 (ru) | Автомобильный алюминиевый лист высокой формуемости с уменьшенной или отсутствующей бороздчатостью поверхности и способ его получения | |
CA1204654A (fr) | Produits en alliage d'aluminium 6xxx hautement resistants et tenaces au vieillissement artificiel a temperature elevee. et methode de production connexe | |
US11535919B2 (en) | Method of making 6XXX aluminium sheets | |
CN107709590B (zh) | 具有高机械强度的用于机动车辆车身的金属板 | |
US5393357A (en) | Method of minimizing strength anisotropy in aluminum-lithium alloy wrought product by cold rolling, stretching and aging | |
US20210292861A1 (en) | Process for manufacturing thin sheets made of 7xxx aluminum alloy suitable for shaping and assembly | |
WO2020120267A1 (fr) | Procédé de fabrication de tôles d'aluminium 6xxx présentant une haute qualité de surface | |
JP2012531521A (ja) | 高い成形性要求を有する用途のためのAlMgSiストリップ | |
JP2018534434A (ja) | 機械的強度とクラッシュ挙動との間の卓越した妥協点を有する自動車ボディ構造のコンポーネント | |
WO2020182506A1 (fr) | Procédé de fabrication d'un produit de tôle de série 5xxx | |
JP2024532941A (ja) | 高強度プレス硬化鋼部品及びその製造方法 | |
EP1433866A2 (fr) | Une Tôle en alliage d'Aluminium résistant au choc et son procédé de fabrication | |
JPS63235454A (ja) | アルミニウムベース合金の平圧延製品の製造方法 | |
EP0504218B1 (fr) | Ameliorations apportees aux alliages d'aluminium | |
US4486244A (en) | Method of producing superplastic aluminum sheet | |
EP0931170A1 (fr) | Alliage d'aluminium destine a la fabrication de produits lamines | |
JP2004010982A (ja) | 曲げ加工性とプレス成形性に優れたアルミニウム合金板 | |
JPH0469220B2 (fr) | ||
JPH0565583A (ja) | ベークハード性及び成形性に優れた軽量缶用缶胴材とその製造方法 | |
JPH03153837A (ja) | 強度と成形性にすぐれた自動車用アルミニウム合金板 | |
JPH02145754A (ja) | キャンエンド用アルミニウム合金板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
17P | Request for examination filed |
Effective date: 20040908 |
|
17Q | First examination report despatched |
Effective date: 20041029 |
|
AKX | Designation fees paid |
Designated state(s): BE CZ DE FR GB |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20050309 |