EP1432897B1 - Verfahren zum schutz von abgasreiningungssystemen von brennkraftmaschinen vor thermischer überbelastung - Google Patents

Verfahren zum schutz von abgasreiningungssystemen von brennkraftmaschinen vor thermischer überbelastung Download PDF

Info

Publication number
EP1432897B1
EP1432897B1 EP02782788A EP02782788A EP1432897B1 EP 1432897 B1 EP1432897 B1 EP 1432897B1 EP 02782788 A EP02782788 A EP 02782788A EP 02782788 A EP02782788 A EP 02782788A EP 1432897 B1 EP1432897 B1 EP 1432897B1
Authority
EP
European Patent Office
Prior art keywords
temperature
value
exhaust gas
engine
exhaust system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02782788A
Other languages
English (en)
French (fr)
Other versions
EP1432897A1 (de
Inventor
Ekkehard Pott
Michael Zillmer
Michael Lindlau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP1432897A1 publication Critical patent/EP1432897A1/de
Application granted granted Critical
Publication of EP1432897B1 publication Critical patent/EP1432897B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry

Definitions

  • the invention relates to a method for operating an internal combustion engine, in particular a motor vehicle, with an exhaust system having an exhaust gas purification system, wherein an engine lambda value is set to a temperature-dependent engine lambda value in a manner different from normal operation as a function of a modeled or measured temperature at at least one critical point of the exhaust system an exhaust gas temperature is lowered when the determined temperature at the at least one location of the exhaust system exceeds a predetermined first temperature value, the engine lambda value is only then changed to lower the exhaust gas temperature from the value for normal operation in a temperature-dependent engine lambda value when the measurement temperature of the predetermined first temperature value has exceeded for a predetermined period, according to the preamble of claim 1.
  • Catalysts of internal combustion engines age when exposed to high temperatures, whereby the light-off behavior deteriorates, ie a same conversion rate is achieved only at higher catalyst temperature, and / or the peak conversion rate, which in 3-way catalysts usually> 99% for HC, CO and NOx is decreasing. This process increases disproportionately with increasing aging rates.
  • a maximum permissible catalytic converter temperature is predetermined and the engine lambda is set as a function of the deviation of the determined catalytic converter temperature from the maximum permissible catalytic converter temperature. It is also known to additionally monitor one or more exhaust gas or catalyst temperatures at different points of the exhaust gas purification system for deviations from predetermined maximum temperatures and to adjust the engine lambda as a function of the most critical point.
  • DE 196 09 923 describes a stepped phase-in of overheating protection measures. It is first taken a first, less pronounced measure whose success in terms of a Temperature reduction is checked, in case of insufficient temperature reduction, a second, more effective measure is taken. A disadvantage of this method is that a certain overloading of the exhaust gas purification is accepted in order to achieve a reduction in consumption.
  • JP 63 045445 A a method for preventing the overheating of an exhaust system of an internal combustion engine is known in which based on a basic injection of fuel and a rotational speed, an initial value for a fuel scribing is set, the amount of fuel is reduced, if an exhaust gas temperature is longer than for exceeds a value of 800 ° C for a predetermined time.
  • the invention has for its object to improve a method of the type mentioned above in such a way that a reduction of the additional consumption is achieved by an exhaust gas and exhaust gas purification system conditioned engine lambda adjustment without overloading the exhaust gas purification.
  • the predetermined period of time is selected differently for different critical points of the exhaust system.
  • Distances are made in the component protection-related adjustment of the engine lambda value and a distinction is made between short-term loads, for example during acceleration processes, and longer-lasting load, for example when driving at full throttle uphill. Different dynamics of the temperature change at different locations in the exhaust system can be taken into account.
  • the predetermined period of time is chosen the longer the closer the critical point of the exhaust system to an engine block of the internal combustion engine.
  • the temperature is preferably determined at at least one critical point upstream, downstream and / or at a main catalyst and / or precatalyst.
  • the engine torque is converted from the normal operation value to the temperature-dependent engine lambda value before the predetermined period has elapsed, if the detected temperature exceeds a second predetermined temperature value within the predetermined time period which is greater than the predetermined one first temperature value.
  • the predetermined second temperature value is selected differently for different critical locations of the exhaust system.
  • an exposure time of the temperature or the exceeding of a predetermined first temperature is used as a criterion for setting a motor lambda value.
  • a continuous load temperature limit can be exceeded by a predetermined temperature difference without specifying a deviating from normal operation, temperature-dependent Motorlambda value. If the temperature overload lasts longer, the engine lambda value is transferred immediately or filtered to the temperature-dependent engine lambda value in order to avoid or reduce damage due to a thermal permanent load.
  • the location of the occurrence of the temperature exceeding in the exhaust system is taken into account in the determination of the temperature-dependent engine lambda value.
  • the temperature decreases considerably further downstream and in particular behind the catalyst (s).
  • heating and cooling processes take place more quickly in front of a pre-catalyst close to the engine than in the center of a large-volume main catalytic converter arranged further away from the engine.
  • a temperature overload in the exhaust upstream of a near-engine first catalyst can be allowed for a longer period than a temperature overload at subsequent critical points of the exhaust system, as in negative load or speed changes or setting a Temperature-dependent engine lambda value at a location close to the engine with a faster cooling and thus remedy the critical situation can be expected.
  • a predetermined second temperature value which is higher than the predetermined first temperature value for this measuring point, i.
  • the temperature difference between the measuring temperature and the predetermined first temperature value is greater than a predetermined value, it makes sense to set the temperature-dependent engine lambda value before the end of the predetermined period to exclude irreversible catalyst damage.
  • Figures 1 and 2 graphically illustrate a dynamic part protection according to the invention.
  • the time is plotted on a horizontal axis 10, an exhaust gas temperature in front of a precatalyst on a first vertical axis 12 and a motor lambda value on a second vertical axis 14.
  • Value 16 on axis 14 corresponds to a motor lambda value of 1
  • line 18 corresponds to the predetermined first temperature value (900 ° C in this example)
  • line 20 corresponds to the predetermined second temperature value (in this example 940 ° C).
  • Graph 22 shows the temperature profile of the exhaust gas temperature over time without component protection intervention
  • graph 24 shows the temperature profile of the exhaust gas temperature over time with prior art component protection intervention
  • graph 26 shows the temperature profile of the exhaust gas temperature over time with component protection intervention according to the inventive method.
  • Graph 28 shows the progression of the engine lambda over time with no component protection intervention.
  • Graph 30 shows the history of the engine lambda over time with prior art component protection intervention and Graph 30 shows the progression of the engine lambda over time with component protection intervention in accordance with the method of the present invention.
  • Reference numeral 34 denotes a first time T0
  • reference numeral 36 denotes a second time T1
  • reference numeral 38 denotes a third time T2
  • reference numeral 40 denotes a fourth time T3
  • reference numeral 42 denotes a fifth time T4.
  • reference numeral 44 denotes a sixth time TKR. The time difference between the third and fourth times 38 and 40 corresponds to the predetermined period 46.
  • FIG. 1 graphically illustrates a load jump at partial load full load at time T0 34, for example when entering a longer, steep grade.
  • the Exhaust gas purification system includes, by way of example, a close to the engine primary catalyst and a further downstream arranged main catalyst, wherein in Fig. 1, the time course of the exhaust gas temperature (axis 12) is illustrated before the precatalyst.
  • the exhaust gas temperature rises rapidly before the pre-catalyst after time T0 34 as a result of the load jump at time T0 34, and approaches a critical temperature threshold at time Tl 36 in the form of the predetermined first temperature value 18 at 900 ° C.
  • the engine lambda (graph 30) is already set at values ⁇ 1 (graph 24) from time T1 to 36 to safely exclude exhaust gas temperatures> 900 ° C.
  • it is first checked in a time interval 46 between T2 38 to T3 40 whether the temperature difference threshold of 40K or the predetermined second temperature value of 940 ° C is exceeded. In the example of FIG. 1, this is not the case, so that after lapse of the time interval 46 of, for example, 5 seconds by gradual (or immediate) setting a corresponding motor lambda value (graph 32) after the time T3 40, the exhaust gas temperature (graph 26) below the continuous load threshold 18 is lowered. Thus, the resulting from the change in the engine lambda value more consumption only at a later date. Overall, the exhaust gas temperature (graph 26) for the interval T2 38 to T4 42 is above the endurance limit 18.
  • Fig. 3 illustrates the meaning of different time intervals (predetermined period) for the admission of thermal overload for two different positions or measuring points in the exhaust system.
  • On a vertical axis 48 is the temperature and on a horizontal axis 40, the time is plotted.
  • Line 52 indicates a maximum allowable temperature for the pre-catalyst and line 54 denotes a maximum allowable temperature for the main catalyst.
  • Graph 56 shows the profile of the exhaust gas temperature upstream of the precatalyst without component protection intervention and graph 60 shows the profile of the exhaust gas temperature upstream of the precatalyst with component protection intervention according to the invention.
  • Graph 62 shows the course of the exhaust gas temperature upstream of the main catalytic converter without component protection intervention.
  • Graph 64 shows the course of the exhaust gas Exhaust gas temperature upstream of the prior art component protection intervention catalyst and
  • Graph 66 shows the exhaust gas temperature progression prior to the main component protection intervention catalyst of the present invention.
  • the endurance threshold 52 is exceeded after a load step at time TA 68 and the component protection is initiated at time TB 70.
  • the exhaust gas temperature is again below the steady state load threshold 52.
  • component protection is initiated at TA '74.
  • the time interval from time TA '74 to time TB' 76 corresponds to the time interval from time TA 68 to time TB 70.
  • the temperature rises more slowly than the exhaust gas temperature before the pre-catalyst because of the higher thermal inertia of the upstream exhaust system. For this reason, however, the cooling takes longer and overall, the component critical interval from time TA '74 to time TC' 78 (graph 64) is longer than the interval from time TA 68 to time TC 72.
  • temperature-sensitive NOx storage catalytic converters is greatly damaged by the long exposure time, even if the temperature peak exceeds the steady-state load value 54 less than the exhaust gas temperature (graph 60) before the pre-catalyst.
  • the temperature peak and the duration of the temperature excess are much lower.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Betreiben einer Brennkraftmaschine, insbesondere eines Kraftfahrzeuges, mit einer Abgasanlage mit Abgasreinigungssystem, wobei ein Motorlambdawert in Abhängigkeit von einer modellierten oder gemessenen Temperatur an wenigstens einer kritischen Stelle der Abgasanlage derart vom Normalbetrieb abweichend auf einen temperaturabhängigen Motorlambdawert eingestellt wird, dass eine Abgastemperatur abgesenkt wird, wenn die ermittelte Temperatur an der wenigstens einen Stelle der Abgasanlage einen vorbestimmten ersten Temperaturwert überschreitet, wobei der Motorlambdawert erst dann zur Absenkung der Abgastemperatur vom Wert für den Normalbetrieb in einen temperaturabhängigen Motorlambdawert verändert wird, wenn die Messtemperatur den vorbestimmten ersten Temperaturwert für einen vorbestimmten Zeitraum überschritten hat, gemäß dem Oberbegriff des Anspruchs 1.
  • Katalysatoren von Brennkraftmaschinen, beispielsweise in Kraftfahrzeugen, altern bei Beaufschlagung mit hohen Temperaturen, wobei sich das Anspringverhalten verschlechtert, d.h. eine gleiche Konvertierungsrate wird erst bei höherer Katalysatortemperatur erreicht, und/oder die Spitzenkonvertierungsrate, die bei 3-Wege-Katalysatoren üblicherweise >99% für HC, CO und NOx beträgt, nimmt ab. Dieser Prozess nimmt mit steigender Alterungsrate überproportional zu.
  • Im Abgasstrang einer Brennkraftmaschine können sehr hohe Abgas- und Katalysatortemperaturen von ggf. über 1.000 °C auftreten, die ggf. binnen kurzer Einwirkdauer einen Abgaskatalysator in unzulässiger Weise schädigen, so dass Emissionsgrenzwerte nicht mehr eingehalten werden. Dies ist insbesondere bei Abgasreinigungssystemen mit zumindest einem motornahen Katalysator (Vorkatalysator oder Hauptkatalysator) der Fall, da über die kurze nicht-adiabate Abgasleitung auch nur wenig Wärme abgeführt wird.
  • Es ist bekannt, die Abgastemperatur bei zumindest nahezu Motorvolllast durch unterstöchiometrischen Motorbetrieb zu begrenzen. Der in den Brennraum eingebrachte Kraftstoff wird wegen des Sauerstoffmangels nicht vollständig verbrannt. Dadurch erreichen die Brennraumgase bei gleicher zugeführter Energie eine geringere Temperatur. Zusätzlich kühlt die Verdampfungsenthalpie des Kraftstoffes die Brennraumgase. Ferner wird in diesem Betriebsmodus der Restsauerstoff im Abgas abgesenkt, so dass weniger Exothermie in dem bzw. den Katalysatoren erzeugt wird.
  • Üblicherweise wird eine maximal zulässige Abgaskatalysatortemperatur vorgegeben und das Motorlambda in Abhängigkeit von der Abweichung der ermittelten Abgaskatalysatortemperatur von der maximal zulässigen Abgaskatalysatortemperatur eingestellt. Ebenso ist es bekannt, zusätzlich eine oder mehrere Abgas bzw. Katalysatortemperaturen an verschiedenen Stellen des Abgasreinigungssystems auf Abweichungen von vorbestimmten Maximaltemperaturen zu überwachen und das Motorlambda in Abhängigkeit von der kritischsten Stelle einzustellen.
  • Nachteilig ist, dass mit diesen Maßnahmen eine unerwünschte Verbrauchserhöhung verbunden ist. Daher werden Bestrebungen unternommen, den Mehrverbrauch dieser Bauteilschutzmaßnahmen so weit wie möglich zu begrenzen. So wird beispielsweise in der DE 196 09 923 ein gestuftes Phase-In von Überhitzungsschutzmaßnahmen beschrieben. Es wird zunächst eine erste, schwächer ausgeprägte Maßnahme ergriffen, deren Erfolg hinsichtlich einer Temperaturabsenkung geprüft wird, wobei im Falle nicht ausreichender Temperaturabsenkung eine zweite, stärker wirksame Maßnahme ergriffen wird. Nachteilig bei diesem Verfahren ist, dass eine gewisse Überlastung der Abgasreinigung in Kauf genommen wird, um eine Verbrauchsminderung zu erreichen.
  • Aus der JP 63 045445 A ist ein Verfahren zum Verhindern der Überhitzung eines Abgassystems einer Brennkraftmaschine bekannt, bei dem basierend auf einer Grundeinspritzung von Kraftstoff und einer Drehzahl ein Initialwert für eine Kraftstoffeinsritzung gesetzt wird, wobei die Kraftstoffmenge reduziert wird, wenn eine Abgastemperatur länger als für eine vorbestimmte Zeit einen Wert von 800 °C übersteigt.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der obengenannten Art dahingehend zu verbessern, dass eine Minderung des Mehrverbrauchs durch eine Abgas- und Abgasreinigungsanlagentemperatur bedingte Motorlambdaeinstellung ohne Überlastung der Abgasreinigung erzielt wird.
  • Diese Aufgabe wird erfindungsgemäß durch ein Verfahren der o.g. Art mit den in Anspruch 1 gekennzeichneten Merkmalen gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben.
  • Dazu ist es erfindungsgemäß vorgesehen, dass der vorbestimmte Zeitraum für unterschiedliche kritische Stellen der Abgasanlage unterschiedlich gewählt wird.
  • Dies hat den Vorteil, dass kurzfristige Überschreitungen der Grenztemperatur für das Abgasreinigungssystem, welche durch anschließende Abkühlphasen zeitnah wieder ausgeglichen werden, erkannt werden können, so dass dort keine Abweichung vom Wert des Motorlambdawertes vom Normalbetrieb durchgeführt wird, so dass sich im Gesamtbetrieb ein reduzierter Kraftstoffverbrauch durch weniger aggressiv greifende Bauteilschutzmaßnahmen mittels Veränderung des Motorlambdawertes ergeben. Ferner wird eine unterschiedliche Wichtung der verschiedenen temperaturkritischen
  • Stellen bei der bauteilschutzbedingten Einstellung des Motorlambdawertes erzielt und es wird zwischen kurzzeitigen Belastungen, beispielsweise bei Beschleunigungsvorgängen, und länger andauernder Belastung, beispielsweise bei Vollgasfahrt bergauf, unterschieden. Es können unterschiedliche Dynamiken der Temperaturveränderung an verschiedenen Stellen in der Abgasanlage berücksichtigt werden.
  • Beispielsweise wird der vorbestimmte Zeitraum um so länger gewählt, je näher die kritische Stelle der Abgasanlage an einem Motorblock der Brennkraftmaschine liegt.
  • Bevorzugt wird die Temperatur an wenigstens einer kritischen Stelle stromauf, stromab und/oder an einem Hauptkatalysator und/oder Vorkatalysator bestimmt.
  • Um eine irreversible Schädigung des Abgasreinigungssystems zu verhindern, wird der Mo-torlambdawert vor Ablauf des vorbestimmten Zeitraumes vom Wert für den Normalbetrieb in den temperaturabhängigen Motorlambdawert überführt, wenn die ermittelte Temperatur innerhalb des vorbestimmten Zeitraumes einen zweiten vorbestimmten Temperaturwert überschreitet, welcher größer ist als der vorbestimmte erste Temperaturwert.
  • Zum Berücksichtigen von unterschiedlichen Dynamiken der Temperaturveränderung an verschiedenen Stellen in der Abgasanlage wird der vorbestimmte zweite Temperaturwert für unterschiedliche kritischen Stellen der Abgasanlage unterschiedlich gewählt. Beispielsweise wird der vorbestimmte zweite Temperaturwert umso höher gewählt, je näher die kritische Stelle der Abgasanlage an einem Motorblock der Brennkraftmaschine liegt.
  • Weitere Merkmale, Vorteile und vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den abhängigen Ansprüchen, sowie aus der nachstehenden Beschreibung der Erfin-dung anhand der beigefügten Zeichnung. Diese zeigt in
  • Fig. 1
    eine graphische Darstellung eines ersten Temperaturverlaufes der Abgastemperatur vor einem Vorkatalysator sowie eines Motorlambdawertes über die Zeit mit und ohne Eingriff in den Motorlambdawert gemäß dem erfindungsgemäßen Verfahren,
    Fig.2
    eine graphische Darstellung eines zweiten Temperaturverlaufes der Abgastemperatur vor einem Vorkatalysator sowie eines Motorlambdawertes über die Zeit mit und ohne Eingriff in den Motorlambdawert gemäß dem erfindungsgemäßen Verfahren und
    Fig. 3
    eine graphische Darstellung des Temperaturverlaufes der Abgastemperatur vor einem Vorkatalysator und vor einem Hauptkatalysator über die Zeit mit und ohne Eingriff in den Motorlambdawert gemäß dem erfindungsgemäßen Verfahren.
  • Erfindungsgemäß wird eine Einwirkdauer der Temperatur bzw. der Überschreitung einer vorbestimmten ersten Temperatur als Kriterium für die Einstellung eines Motorlambdawertes herangezogen. Für einen vorbestimmten Zeitraum kann eine Dauerbelastungs-Temperaturgrenze um eine vorgegebene Temperaturdifferenz ohne Vorgabe eines vom Normalbetrieb abweichend, temperaturabhängigen Motorlambdawertes überschritten werden. Hält die Temperaturüberlastung länger an, so wird der Motorlambdawert sofort oder gefiltert auf den temperaturabhängigen Motorlambdawert überführt, um Schäden durch eine thermische Dauerbelastung zu vermeiden bzw. zu mindern.
  • Ferner wird der Ort des Auftretens der Temperaturüberschreitung im Abgassystem bei der Ermittlung des temperaturabhängigen Motorlambdawertes berücksichtigt. Nahe am Zylinderkopf herrscht wegen der bis zu dieser Laufstrecke noch geringen thermischen Trägheit der Abgasanlage eine sehr schnell der Last folgende Temperaturdynamik, die weiter stromab und insbesondere hinter dem bzw. den Katalysatoren deutlich nachläßt. Somit laufen Erhitzungs- und Abkühlvorgänge vor einem motornahen Vorkatalysator schneller ab als in der Mitte eines motorferner angeordneten großvolumigen Hauptkatalysators. Daher kann eine Temperaturüberlastung im Abgas stromauf eines motornahen ersten Katalysators für einen längeren Zeitraum zugelassen werden als eine Temperaturüberlastung an nachfolgenden kritischen Stellen der Abgasanlage, da bei negativen Last- oder Drehzahländerungen oder bei Einstellung eines temperaturabhängigen Motorlambdawertes an einer motornahen Stelle mit einer schnelleren Auskühlung und somit Behebung der kritischen Situation gerechnet werden kann.
  • Überschreitet jedoch die Meßtemperatur bereits innerhalb des vorbestimmten Zeitraums einen vorbestimmten zweiten Temperaturwert, welcher höher ist als der vorbestimmte erste Temperaturwert für diese Meßstelle, d.h. mit anderen Worten, wenn die Temperaturdifferenz zwischen Meßtemperatur und vorbestimmten ersten Temperaturwert größer als ein vorbestimmter Wert wird, so ist es sinnvoll, den temperaturabhängigen Motorlambdawert bereits vor Ablauf des vorgegebenen Zeitraumes einzustellen, um irreversible Katalysatorschädigungen auszuschließen.
  • Fig. 1 und 2 veranschaulichen graphisch einen erfindungsgemäßen, dynamischen Bauteilschutz. Hierbei ist auf einer horizontalen Achse 10 die Zeit, auf einer ersten vertikalen Achse 12 eine Abgastemperatur vor einem Vorkatalysator und auf einer zweiten vertikalen Achse 14 ein Motorlambdawert aufgetragen. Wert 16 auf der Achse 14 entspricht einem Motorlambdawert von 1, Linie 18 entspricht dem vorbestimmten ersten Temperaturwert (in diesem Beispiel 900ºC) und Linie 20 entspricht dem vorbestimmten zweiten Temperaturwert (in diesem Beispiel 940ºC). Graph 22 zeigt den Temperaturverlauf der Abgastemperatur über die Zeit ohne Bauteilschutzeingriff, Graph 24 zeigt den Temperaturverlauf der Abgastemperatur über die Zeit mit Bauteilschutzeingriff gemäß Stand der Technik und Graph 26 zeigt den Temperaturverlauf der Abgastemperatur über die Zeit mit Bauteilschutzeingriff gemäß dem erfindungsgemäßen Verfahren. Graph 28 zeigt den Verlauf des Motorlambdawertes über die Zeit ohne Bauteilschutzeingriff, Graph 30 zeigt den Verlauf des Motorlambdawertes über die Zeit mit Bauteilschutzeingriff gemäß Stand der Technik und Graph 30 zeigt den Verlauf des Motorlambdawertes über die Zeit mit Bauteilschutzeingriff gemäß dem erfindungsgemäßen Verfahren. Bezugsziffer 34 bezeichnet einen ersten Zeitpunkt T0, Bezugsziffer 36 bezeichnet einen zweiten Zeitpunkt T1, Bezugsziffer 38 bezeichnet einen dritten Zeitpunkt T2, Bezugsziffer 40 bezeichnet einen vierten Zeitpunkt T3 und Bezugsziffer 42 bezeichnet einen fünften Zeitpunkt T4. In Fig. 2 bezeichnet Bezugsziffer 44 einen sechsten Zeitpunkt TKR. Die Zeitdifferenz zwischen dem dritten und vierten Zeitpunkt 38 und 40 entspricht dem vorbestimmten Zeitraum 46.
  • Fig. 1 veranschaulicht graphisch einen Lastsprung Teillast-Vollast zum Zeitpunkt T0 34, beispielsweise bei Einfahrt in eine längere, starke Steigung. Das Abgasreinigungssystem umfaßt beispielhaft einen motornahen Vorkatalysator und einen weiter stromab angeordneten Hauptkatalysator, wobei in Fig. 1 der zeitliche Verlauf der Abgastemperatur (Achse 12) vor dem Vorkatalysator veranschaulicht ist. Die Abgastemperatur steigt vor dem Vorkatalysator nach dem Zeitpunkt T0 34 infolge des Lastsprunges zum Zeitpunkt T0 34 schnell an und nähert sich zum Zeitpunkt T1 36 einer kritischen Temperaturschwelle in Form der vorbestimmten ersten Temperaturwertes 18 bei 900ºC. Im Stand der Technik (Graphen 24, 30) wird das Motorlambda (Graph 30) bereits ab dem Zeitpunkt T1 36 auf Werte <1 eingestellt (Graph 24), um Abgastemperaturen >900ºC sicher auszuschließen. Nach dem erfindungsgemäßen Verfahren wird zunächst in einem Zeitintervall 46 zwischen T2 38 bis T3 40 geprüft, ob die Temperaturdifferenzschwelle von 40K bzw. der vorbestimmte zweite Temperaturwert von 940ºC überschritten wird. In dem Beispiel gemäß Fig. 1 ist dies nicht der Fall, so daß nach Verstreichen des Zeitintervalls 46 von beispielsweise 5 Sekunden durch allmähliches (oder sofortiges) Einstellen eines entsprechenden Motorlambdawertes (Graph 32) nach dem Zeitpunkt T3 40 die Abgastemperatur (Graph 26) unter die Dauerbelastungsschwelle 18 absenkt wird. Damit setzt der aus der Veränderung des Motorlambdawertes resultierende Mehrverbrauch erst zu einem späteren Zeitpunkt ein. Insgesamt liegt die Abgastemperatur (Graph 26) für das Intervall T2 38 bis T4 42 oberhalb der Dauerbelastungsgrenze 18.
  • In dem alternativen Beispiel gemäß Fig. 2 wird noch innerhalb des Zeitintervalls 46 zum Zeitpunkt TKR 44 die Temperaturdifferenzschwelle (harte Schwelle) bzw. der vorbestimmte zweite Temperaturwert 20 von 940ºC überschritten und der Motorlambdawert (Graph 32) wird mit steilem Gradienten auf den zur Unterschreitung der Dauerbelastungsgrenze 18 erforderlichen Wert gesetzt. Damit fällt das Intervall T2 38 bis T4 42 kürzer aus als im Beispiel gemäß Fig. 1.
  • Fig. 3 veranschaulicht die Bedeutung unterschiedlicher Zeitintervalle (vorbestimmter Zeitraum) für die Zulassung thermischer Überlastung für zwei verschiedene Positionen bzw. Meßstellen in der Abgasanlage. Auf einer vertikalen Achse 48 ist die Temperatur und auf einer horizontalen Achse 40 ist die Zeit aufgetragen. Linie 52 bezeichnet eine maximal zulässige Temperatur für den Vorkatalysator und Linie 54 bezeichnet eine maximal zulässige Temperatur für den Hauptkatalysator. Graph 56 zeigt den Verlauf der Abgastemperatur vor dem Vorkatalysator ohne Bauteilschutzeingriff und Graph 60 zeigt den Verlauf der Abgastemperatur vor dem Vorkatalysator mit Bauteilschutzeingriff gemäß der Erfindung. Graph 62 zeigt den Verlauf der Abgastemperatur vor dem Hauptkatalysator ohne Bauteilschutzeingriff, Graph 64 zeigt den Verlauf der Abgastemperatur vor dem Hauptkatalysator mit Bauteilschutzeingriff gemäß Stand der Technik und Graph 66 zeigt den Verlauf der Abgastemperatur vor dem Hauptkatalysator mit Bauteilschutzeingriff gemäß der Erfindung.
  • Während vor dem Vorkatalysator (Graph 60) aufgrund der niedrigen thermischen Trägheit der Abgasanlage eine Änderung der Einstellung des Motorlambdawertes (Graph 64) sehr schnell eine Absenkung der Temperatur bewirkt, ist bei einer Meßstelle mitten im Hauptkatalysator auch bei sofortigem Einstellen eines temperaturbedingt niedrigen Motorlambdawertes nach Überschreiten einer kritischen Temperaturschwelle 54 nur mit einem langsamen Abnehmen der Bauteiltemperatur zu rechnen. Lange Zeitintervalle würden hier das Risiko einer thermischen Überlastung ansteigen lassen.
  • Bei der Abgastemperatur vor dem Vorkatalysator (Graph 60) wird nach einem Lastsprung zum Zeitpunkt TA 68 die Dauerbelastungsschwelle 52 überschritten und zum Zeitpunkt TB 70 der Bauteilschutz eingeleitet. Zum Zeitpunkt TC 72 ist die Abgastemperatur wieder unter der Dauerbelastungsschwelle 52.
  • Bei der Temperatur im Hauptkatalysator (Graph 64) nach einem gleichartigen Lastsprung wird zum Zeitpunkt TA' 74 der Bauteilschutz eingeleitet. Das Zeitintervall vom Zeitpunkt TA' 74 bis zum Zeitpunkt TB' 76 entspricht dem Zeitintervall vom Zeitpunkt TA 68 bis zum Zeitpunkt TB 70. Die Temperatur steigt wegen der höheren thermischen Trägheit der vorgeschalteten Abgasanlage langsamer an als die Abgastemperatur vor dem Vorkatalysator. Aus diesem Grunde dauert aber auch die Auskühlung länger und insgesamt ist das bauteilkritische Intervall vom Zeitpunkt TA' 74 bis zum Zeitpunkt TC' 78 (Graph 64) länger als das Intervall vom Zeitpunkt TA 68 bis zum Zeitpunkt TC 72. Insbesondere temperaturempfindliche NOx-Speicherkatalysatoren werden durch die lange Einwirkdauer sehr stark geschädigt, auch wenn die Temperaturspitze den Dauerbelastungswert 54 weniger stark übersteigt als die Abgastemperatur (Graph 60) vor dem Vorkatalysator. Bei dem erfindungsgemäßen verfahren gemäß Graph 66 fällt die Temperaturspitze und die Dauer der Temperaturüberschreitung (Intervall vom Zeitpunkt TA' 74 bis zum Zeitpunkt TC" 80) wesentlich geringer aus.

Claims (7)

  1. Verfahren zum Betreiben einer Brennkraftmaschine, insbesondere eines Kraftfahrzeuges, mit einer Abgasanlage mit Abgasreinigungssystem, wobei ein Motorlambdawert in Abhängigkeit von einer modellierten oder gemessenen Temperatur an wenigstens einer kritischen Stelle der Abgasanlage derart vom Normalbetrieb abweichend auf einen temperaturabhängigen Motorlambdawert eingestellt wird, dass eine Abgastemperatur abgesenkt wird, wenn die ermittelte Temperatur an der wenigstens einen Stelle der Abgasanlage einen vorbestimmten ersten Temperaturwert überschreitet, wobei der Motorlambdawert erst dann zur Absenkung der Abgastemperatur vom Wert für den Normalbetrieb in einen temperaturabhängigen Motorlambdawert verändert wird, wenn die Messtemperatur den vorbestimmten ersten Temperaturwert für einen vorbestimmten Zeitraum überschritten hat, dadurch gekennzeichnet, dass der vorbestimmte Zeitraum für unterschiedliche kritische Stellen der Abgasanlage unterschiedlich gewählt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der vorbestimmte Zeitraum um so länger gewählt wird, je näher die kritische Stelle der Abgasanlage an einem Motorblock der Brennkraftmaschine liegt.
  3. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die ermittelte Temperatur an wenigstens einer kritischen Stelle stromauf, stromab und/oder an einem Hauptkatalysator bestimmt wird.
  4. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die ermittelte Temperatur an wenigstens einer kritischen Stelle stromauf, stromab und/oder an einem Vorkatalysator bestimmt wird.
  5. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Motoriambdawert vor Ablauf des vorbestimmten Zeitraumes vom Wert für den Normalbetrieb in den temperaturabhängigen Motorlambdawert überführt wird, wenn die ermittelte Temperatur innerhalb des vorbestimmten Zeitraumes einen zweiten vorbestimmten Temperaturwert überschreitet, welcher größer ist als der erste vorbestimmte Temperaturwert.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass der vorbestimmte zweite Temperaturwert für unterschiedliche kritische Stellen der Abgasanlage unterschiedlich gewählt wird.
  7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass der vorbestimmte zweite Temperaturwert um so höher gewählt wird, je näher die kritische Stelle der Abgasanlage an einem Motorblock der Brennkraftmaschine liegt.
EP02782788A 2001-09-27 2002-09-06 Verfahren zum schutz von abgasreiningungssystemen von brennkraftmaschinen vor thermischer überbelastung Expired - Lifetime EP1432897B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10147619 2001-09-27
DE2001147619 DE10147619A1 (de) 2001-09-27 2001-09-27 Verfahren zum Schutz von Abgasreinigungssystemen von Brennkraftmaschinen vor thermischer Überbelastung
PCT/EP2002/009986 WO2003029634A1 (de) 2001-09-27 2002-09-06 Verfahren zum schutz von abgasreiningungssystemen von brennkraftmaschinen vor thermischer überbelastung

Publications (2)

Publication Number Publication Date
EP1432897A1 EP1432897A1 (de) 2004-06-30
EP1432897B1 true EP1432897B1 (de) 2007-05-02

Family

ID=7700458

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02782788A Expired - Lifetime EP1432897B1 (de) 2001-09-27 2002-09-06 Verfahren zum schutz von abgasreiningungssystemen von brennkraftmaschinen vor thermischer überbelastung

Country Status (5)

Country Link
EP (1) EP1432897B1 (de)
JP (1) JP2005504224A (de)
CN (1) CN1327117C (de)
DE (2) DE10147619A1 (de)
WO (1) WO2003029634A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10357887A1 (de) * 2003-11-14 2005-06-16 Volkswagen Ag Brennkraftmaschine mit einer Abgasreinigungsvorrichtung und Verfahren zum Betrieb einer Brennkraftmaschine
DE102004033394B3 (de) * 2004-07-09 2005-12-22 Siemens Ag Verfahren zur Steuerung einer Brennkraftmaschine
DE102005004880B4 (de) * 2005-02-03 2015-05-28 Robert Bosch Gmbh Verfahren und Vorrichtung zur Abgastemperaturregelung
FR2906570B1 (fr) * 2006-09-28 2008-12-19 Peugeot Citroen Automobiles Sa Procede d'optimisation des performances d'un moteur a combustion interne d'un vehicule, tel qu'un vehicule automobile
DE102008028354A1 (de) * 2008-06-13 2009-12-17 GM Global Technology Operations, Inc., Detroit Vorrichtung und Verfahren zum Reduzieren der Abgastemperatur eines Kfz-Motors
FR2986264B1 (fr) * 2012-01-26 2014-01-10 Peugeot Citroen Automobiles Sa Procede de protection thermique des composants de la ligne d'echappement d'un moteur thermique
JP6142468B2 (ja) * 2012-06-01 2017-06-07 トヨタ自動車株式会社 内燃機関の触媒保護装置
DE102019107514A1 (de) * 2019-03-25 2020-10-01 Volkswagen Aktiengesellschaft Verfahren zum Betreiben eines Verbrennungsmotors sowie Verbrennungsmotor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345445A (ja) * 1986-08-13 1988-02-26 Toyota Motor Corp 内燃機関の空燃比制御装置
JPH06146949A (ja) * 1992-11-09 1994-05-27 Toyota Motor Corp 内燃機関の燃料噴射制御装置
DE4344137B4 (de) * 1993-12-23 2006-03-09 Robert Bosch Gmbh System zum Schutz eines Katalysators im Abgassystem einer Brennkraftmaschine vor Übertemperatur
JPH08246932A (ja) * 1995-03-09 1996-09-24 Sanshin Ind Co Ltd エンジンの運転制御装置
DE19609923B4 (de) * 1996-03-14 2007-06-14 Robert Bosch Gmbh Verfahren zur Überwachung einer Überhitzungsschutzmaßnahme im Volllastbetrieb einer Brennkraftmaschine
US6272850B1 (en) * 1998-12-08 2001-08-14 Ford Global Technologies, Inc. Catalytic converter temperature control system and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE50210083D1 (de) 2007-06-14
DE10147619A1 (de) 2003-07-10
EP1432897A1 (de) 2004-06-30
CN1327117C (zh) 2007-07-18
WO2003029634A1 (de) 2003-04-10
JP2005504224A (ja) 2005-02-10
CN1561434A (zh) 2005-01-05

Similar Documents

Publication Publication Date Title
DE102012021882B4 (de) Verfahren zum Betreiben eines Ottomotors, Steuereinrichtung und Kraftfahrzeug mit einer solchen
EP1121513B1 (de) Verfahren zur stickoxidreduzierung im abgas einer mager betriebenen brennkraftmaschine
EP1432897B1 (de) Verfahren zum schutz von abgasreiningungssystemen von brennkraftmaschinen vor thermischer überbelastung
DE10144958B4 (de) Regeneration eines Partikelfilters einer Dieselbrennkraftmaschine
EP1366278B1 (de) Verfahren zur temperatursteuerung eines katalysatorsystems
EP1121519A1 (de) Verfahren und vorrichtung zur de-sulfatierung eines nox-speicherkatalysators
EP1581733B1 (de) Verfahren zur steuerung der temperatur eines katalysators sowie mehrzylindermotor mit lambdasplitfähiger abgasreinigungsanlage
DE102016222108A1 (de) Verfahren zum Einstellen eines Kraftstoff/Luft-Verhältnisses eines Verbrennungsmotors
EP0991853B1 (de) Verfahren zur überwachung der konvertierungsrate eines abgaskatalysators für eine brennkraftmaschine
EP1193376B1 (de) Regelung eines NOx-Speicherkatalysators
DE102016202349A1 (de) Verfahren und Vorrichtung zur Abgasnachbehandlung eines Verbrennungsmotors
EP1533500B1 (de) Verfahren und Vorrichtung zur Regeneration einer Abgasnachbehandlungseinrichtung
EP1203144B1 (de) Verfahren zur regelung eines arbeitsmodus einer verbrennungskraftmaschine
DE102018207627A1 (de) Verfahren und Anordnung zum Erwärmen von Abgasnachbehandlungs-einrichtungen sowie Kraftfahrzeug
EP3311012B1 (de) Verfahren zum betreiben eines abgasnachbehandlungssystems, abgasnachbehandlungssystem und brennkraftmaschine mit einem abgasnachbehandlungssystem
DE102006002640B4 (de) Verfahren zum Betreiben eines in einem Abgasbereich einer Brennkraftmaschine angeordneten Partikelfilters und Vorrichtung zur Durchführung des Verfahrens
DE19909796A1 (de) Verfahren und Vorrichtung zur Abgastemperaturerhöhung
EP1209332B1 (de) Verfahren und Vorrichtungen zur Regeneration eines NOx-Speicherkatalysators
DE102015005650A1 (de) Verfahren zum Betreiben einer Abgasanlage eines Fahrzeugs
EP3326880B1 (de) Verfahren zur steuerung eines hybridantriebs eines kraftfahrzeugs sowie hybridantrieb eines kraftfahrzeugs
DE102017218360B4 (de) Verfahren zum Kontrollieren einer Eigenschaft eines Motoröls und Antriebsanordnung
EP1167710B1 (de) Verfahren und Vorrichtung zur Erhöhung einer Katalysatortemperatur
EP1581729B1 (de) Verfahren zur steuerung einer verbrennungskraftmaschine sowie magerlauffahige verbrennungskraftmaschine
DE10057938A1 (de) Verfahren und Vorrichtung zur Regeneration eines NOx-Speicherkatalysators
DE10257172B4 (de) Verfahren zum Betreiben einer Verbrennungskraftmaschine mit einer flexiblen Anpassung der Bauteileschutzauslegung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040427

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CZ DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50210083

Country of ref document: DE

Date of ref document: 20070614

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070813

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070502

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071228

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070502

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 50210083

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180928

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180930

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50210083

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50210083

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190906