EP1430260A1 - Kältegerät mit coldwall-verdampfer - Google Patents

Kältegerät mit coldwall-verdampfer

Info

Publication number
EP1430260A1
EP1430260A1 EP02776957A EP02776957A EP1430260A1 EP 1430260 A1 EP1430260 A1 EP 1430260A1 EP 02776957 A EP02776957 A EP 02776957A EP 02776957 A EP02776957 A EP 02776957A EP 1430260 A1 EP1430260 A1 EP 1430260A1
Authority
EP
European Patent Office
Prior art keywords
evaporator
inner container
wall surface
refrigerating appliance
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02776957A
Other languages
English (en)
French (fr)
Inventor
Michael Neumann
Walter Lipp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BSH Hausgeraete GmbH
Original Assignee
BSH Bosch und Siemens Hausgeraete GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Bosch und Siemens Hausgeraete GmbH filed Critical BSH Bosch und Siemens Hausgeraete GmbH
Publication of EP1430260A1 publication Critical patent/EP1430260A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/061Walls with conduit means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/006General constructional features for mounting refrigerating machinery components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • F25B2339/023Evaporators consisting of one or several sheets on one face of which is fixed a refrigerant carrying coil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2500/00Problems to be solved
    • F25D2500/02Geometry problems

Definitions

  • the present invention relates to a refrigeration device with a heat-insulating housing, an interior space surrounded by the housing, the housing comprising an inner container and an outer wall which jointly delimit a space, and with one arranged in the space in thermal contact with a vertical wall of the inner container Evaporator.
  • evaporators which are usually glued to the outside of the inner container, are also known as coldwall evaporators.
  • the inner containers of such refrigeration devices are usually manufactured from flat plastic material in a deep-drawing process. If an essentially cuboid body like the inner container of a refrigerator is to be drawn from flat material, the material is subjected to considerable stretching, particularly in the areas that form the edges of the inner container. In order to prevent tearing at the edges, it is customary to make the edges rounded, whereby the radius of curvature of the roundings can be 2 cm or more. In the area of the roundings, it is not possible to establish an intimate contact between the cold wall evaporator and the inner container, which would allow effective cooling of the interior. Therefore, in conventional refrigeration devices, the evaporator does not extend into the rounding area. The consequence of this is that the interior of the refrigerator is not effectively cooled at its upper end, at the level of the upper rounding, and an undesirable temperature stratification forms in the interior.
  • the object of the present invention is to provide a refrigeration device with a cold wall evaporator in which a temperature stratification in the interior is reduced.
  • the evaporator can be arranged at least very close to the transition area between the wall and the ceiling, which improves the cooling effect of the refrigerator in the vicinity of the ceiling and thus noticeably reduces the temperature stratification in its cooling space. Furthermore, the lower temperatures in the vicinity of the cold room ceiling create storage conditions for temperature-sensitive refrigerated goods.
  • the arrangement of the inclined wall surface is chosen particularly favorably because of the comparatively large transition radius of the vertical wall to the ceiling if the evaporator is provided on the vertical wall serving as the rear of the inner container.
  • the evaporator With the flat, sloping wall surface, the evaporator can be brought into intimate contact without difficulty; and the sloping wall surface can be pulled up to a smaller vertical distance from the ceiling of the inner container without causing a risk of breakage when pulling the inner container than is possible with a vertical wall.
  • the evaporator preferably extends over the entire inclined wall surface.
  • the angle between the inclined wall surface and the vertical is preferably at least 15 and at most 75 °, particularly preferably between 20 and 45 °.
  • the angle of the inclined wall surface to the vertical should not be so large that there is a risk that drops of condensation water forming on the inclined wall surface can fall freely and hit stored goods to be refrigerated; rather, it should be ensured that such drops run down the sloping wall surface in order to finally reach the vertical wall, at the lower end of which they are discharged. How large this angle may be depends on the material of the inner wall and its surface condition; in individual cases it is easy to determine experimentally.
  • Figure 1 is a schematic partial section through the inner container of a refrigerator according to the prior art
  • Figure 2 shows a partial section analogous to that of Figure 1 through an inner container of a refrigerator according to the invention
  • Figure 3 shows a further partial section according to a preferred embodiment of the invention
  • Figures 4 to 6 are perspective external views of the inner container of a refrigerator according to various embodiments of the invention.
  • Figure 7 is a front view of an evaporator according to another embodiment of the invention.
  • FIG. 1 shows a partial section through the inner container 1 'of a conventional refrigeration device. You can see a part of the ceiling 2 'and the rear wall 3' of the inner container, as well as a rounding 4 'connecting both.
  • the radius of curvature of the rounding 4 ' is selected such that, when the inner container 1' is formed, there is a reasonable certainty that there is no break between the ceiling 2 'and the rear wall 3'.
  • a radius of curvature of the order of 2 cm is typically required for this.
  • a cold wall evaporator 5 'arranged on the rear wall 3 extends to a dash-dotted line at which the vertical rear wall 3' merges into the rounded portion 4 '. The upper edge of the evaporator thus ends at a distance h 'of approximately 2 cm below the ceiling 2'.
  • FIG. 2 shows a section through the same corner of the inner container 1 of a refrigeration device according to the invention.
  • a first rounding 4a, a flat wall surface 6 oriented obliquely to the vertical and a second rounding 4b are successively formed between the ceiling 2 and the rear wall 3.
  • the radius of curvature of the roundings 4a, 4b in FIG. 2 is the same as for the rounding 4 'in FIG. 1.
  • An evaporator 5 attached to the foam side of the rear wall 3 of the inner container 1 comprises a main section 7 which extends in a conventional manner along the vertical rear wall 3 and an additional section 8 which extends along a horizontal one Kink line, also inclined at an angle ⁇ to the vertical, adjoins the main section 7 at the top. If the radius of curvature on the inside of the evaporator 5 facing the rear wall 3 is not greater than that on the outside of the rounding 4a, it is possible to bring the evaporator 5 into intimate contact with the rear wall 3 as well as with the inclined wall surface 6 at the same time and so to effectively cool the wall surface 6. As the comparison of FIGS. 1 and 2 shows, this leads to a significant reduction in the non-cooled height h of the interior in comparison to FIG.
  • FIG. 4 shows a perspective view of an inner container 1 of a refrigerator with an evaporator 5 mounted on its rear wall 3 according to a first exemplary embodiment.
  • the evaporator 5 is essentially constructed from a good heat-conducting metal plate 10, which is glued to a surface on the rear wall 3 and the inclined wall surface 6, and on the opposite surface of which a cooling coil 9 is laid in a meandering manner in a conventional manner.
  • the cooling coil 9 here extends only over the part of the metal plate 10 forming the main section 7, but not over the additional section 8. This is cooled solely by heat conduction from the main section 7. This configuration is useful if the additional section 8 is only a small height of a few cm and / or the angle ⁇ to the vertical is relatively large.
  • FIG. 5 shows an embodiment which is suitable for an additional section 8 of greater height.
  • the cooling coil 9 extends to the additional section 8, and the forward and return flow of the cooling coil 9 each comprise a horizontal line section 1, which extends along an edge between the main section 7 and the additional section 8 of the evaporator 5.
  • Such an evaporator can be manufactured in a simple manner by first attaching the entire cooling coil 9 to a flat metal plate and then bending it in order to form the main section 7 and additional to form section 8. With this kink, the line sections 11 are each only subjected to torsion, but there are no tensile forces which could lead to a narrowing of the line cross section of the cooling coil during the transition over the edge.
  • the evaporator 5 is composed of two separate metal plates, which each form the main section 7 and the additional section 8.
  • the two sections 7, 8 are connected at a short distance by glued or soldered plates 12, which make the evaporator manageable before it is mounted on the rear wall 3 without risk of damage to the cooling coil 9 crossing the gap.
  • the additional section 8 can be easily bent by hand so that it comes to lie exactly on the inclined wall surface 6. Due to the distance provided between the main section 7 and the additional section 8, a sharp kinking of the cooling coil 9 during the transition between the two sections is avoided.
  • FIG. 7 shows a plan view of a further exemplary embodiment of an evaporator which is provided for mounting on an inner container 1 with an inclined wall surface.
  • the metal plate 10 of the evaporator is divided into a main section 7 and an additional section 8 by a plurality of punched openings 13, 14.
  • the openings 13, which are elongated along the horizontal bending edge between the main and additional sections, ensure that the two sections can be easily bent with respect to one another, by means of which the evaporator can be easily adapted to the orientation of the inclined wall surface during assembly.
  • the openings 14 are each arranged where the cooling coil 9 crosses the edge between the main section 7 and the additional section 8, and they have a greater extent transversely to this edge than the elongated openings 13. When the evaporator 5 is bent, the sections of the cooling coil 9 crossing the edge can thus dip into the openings 14 and can thus be bent without tension and without the risk of kinking.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Removal Of Water From Condensation And Defrosting (AREA)

Abstract

Ein Kältegerät hat ein wärmeisolierendes Gehäuse und einen von dem Gehäuse umgebenen Innenraum. Das Gehäuse umfasst einen Innenbehälter (1) und eine Aussenwand, die gemeinsam einen Zwischenraum begrenzen, und einen in dem Zwischenraum in thermischem Kontakt mit einer vertikalen Wand (3) des Innenbehälters angeordneten Verdampfer (5). Zwischen der vertikalen Wand (3) und einer Decke (2) des Innenbehälters (1) ist wenigstens eine ebene schräge Wandfläche (6) gebildet, auf die sich der Verdampfer (5) erstreckt.

Description

Kältegerät mit Coldwall-Verdampfer
Die vorliegende Erfindung betrifft ein Kältegerät mit einem wärmeisolierenden Gehäuse, einem von dem Gehäuse umgebenen Innenraum, wobei das Gehäuse einen Innenbehälter und eine Außenwand umfasst, die gemeinsam einen Zwischenraum begrenzen, und mit einem in dem Zwischenraum in thermischem Kontakt mit einer vertikalen Wand des Innenbehälters angeordneten Verdampfer. Derartige Verdampfer, die meist auf die Außenseite des Innenbehälters aufgeklebt sind, sind auch als Coldwall-Verdampfer bekannt.
Die Innenbehälter derartiger Kältegeräte werden meist in einem Tiefziehverfahren aus Kunststoff-Flachmaterial hergestellt. Wenn aus Flachmaterial ein im wesentlichen quader- förmiger Körper wie der Innenbehälter eines Kältegerätes gezogen werden soll, so ist das Material insbesondere in den Bereichen, die die Kanten des Innenbehälters bilden, einer erheblichen Streckung ausgesetzt. Um ein Reißen an den Kanten zu verhindern, ist es üblich, die Kanten abgerundet auszuführen, wobei der Krümmungsradius der Abrundun- gen 2 cm oder mehr betragen kann. Im Bereich der Abrundungen ist es nicht möglich, einen innigen Kontakt zwischen dem Coldwall-Verdampfer und dem Innenbehälter herzustellen, der eine wirksame Kühlung des Innenraumes ermöglichen würde. Daher erstreckt sich bei herkömmlichen Kältegeräten der Verdampfer nicht in den Bereich der Abrundungen. Dies hat zur Folge, dass der Innenraum des Kältegerätes an seinem oberen Ende, in Höhe der oberen Abrundung, nicht wirksam gekühlt wird und sich eine unerwünschte Temperaturschichtung im Innenraum ausbildet.
Aufgabe der vorliegenden Erfindung ist, ein Kältegerät mit Coldwall-Verdampfer zu schaffen, bei dem eine Temperaturschichtung im Innenraum reduziert ist.
Die Aufgabe wird gelöst durch ein Kältegerät mit den Merkmalen des Anspruches 1.
Durch die Schrägfläche zwischen der vertikalen Wand und der Decke kann der Verdampfer zumindest sehr nah am Übergangsbereich zwischen Wand und Decke angeordnet werden, wodurch im Nahbereich unterhalb der Decke die Kühlwirkung des Kältegerätes verbessert und damit die Temperaturschichtung in dessen Kühlraum merkbar verringert ist. Ferner sind durch die tieferen Temperaturen im Nahbereich der Kühlraumdecke Lagerbedingungen für temperaturempfindliches Kühlgut geschaffen.
Besonders günstig ist die Anordnung der schrägen Wandfläche wegen des verhältnismä- ßig großen Übergangsradius der vertikalen Wand zur Decke gewählt, wenn der Verdampfer an der als Rückseite des Innenbehälters dienenden vertikalen Wand vorgesehen ist.
Somit ergibt sich durch diese Anordnung der Schrägfläche die größte Einbringung an Kühlleistung in den Kühlraum.
Mit der ebenen schrägen Wandfläche kann der Verdampfer ohne Schwierigkeiten in großflächigen innigen Kontakt gebracht werden; und die schräge Wandfläche kann bis in einen geringeren vertikalen Abstand von der Decke des Innenbehälters hochgezogen werden, ohne eine Bruchgefahr beim Ziehen des Innenbehälters zu bewirken, als dies mit eine vertikalen Wand möglich ist.
Der Verdampfer erstreckt sich vorzugsweise über die gesamte schräge Wandfläche.
Der Winkel zwischen der schrägen Wandfläche und der Vertikalen beträgt vorzugsweise wenigstens 15 und höchstens 75°, besonders bevorzugt zwischen 20 und 45°.
Der Winkel der schrägen Wandfläche zur Vertikalen sollte nicht so groß sein, dass die Gefahr besteht, dass sich an der schrägen Wandfläche bildendende Kondenswassertrop- fen frei herunterfallen können und auf gelagertes Kühlgut treffen können; vielmehr sollte gewährleistet sein, dass solche Tropfen an der schrägen Wandfläche abwärts laufen, um schließlich die vertikale Wand zu erreichen, an deren unterem Ende sie abgeführt werden. Wie groß dieser Winkel sein darf, hängt vom Material der Innenwand und ihrer Oberflächenbeschaffenheit hat; er ist im Einzelfall experimentell leicht zu ermitteln.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen mit Bezug auf die beigefügten Figuren. Es zeigen: Figur 1 einen schematischen Teilschnitt durch den Innenbehälter eines Kältegerätes nach dem Stand der Technik;
Figur 2 einen Teilschnitt analog dem der Figur 1 durch einen Innenbehälter eines erfindungsgemäßen Kältegerätes;
Figur 3 einen weiteren Teilschnitt gemäß einer bevorzugten Ausgestaltung der Erfindung;
Figuren 4 bis 6 perspektivische Außenansichten des Innenbehälters eines Kältegerätes gemäß verschiedenen Ausgestaltungen der Erfindung; und
Figur 7 eine Frontalansicht eines Verdampfers gemäß einer weiteren Ausgestaltung der Erfindung.
Figur 1 zeigt einen Teilschnitt durch den Innenbehälter 1' eines herkömmlichen Kältegerä- tes. Zu sehen ist ein Teil der Decke 2' und der Rückwand 3' des Innenbehälters, sowie eine beide verbindende Abrundung 4'. Der Krümmungsradius der Abrundung 4' ist so gewählt, dass beim Formen des Innenbehälters 1' mit hinreichender Sicherheit kein Bruch zwischen Decke 2' und Rückwand 3' auftritt. Hierfür ist typischerweise ein Krümmungsradius in der Größenordnung von 2 cm erforderlich. Ein an der Rückwand 3 angeordneter Coldwall-Verdampfer 5' erstreckt sich bis zu einer strichpunktierten Linie, an der die vertikale Rückwand 3' in die Abrundung 4' übergeht. Die obere Kante des Verdampfers endet also in einem Abstand h' von ca. 2 cm unterhalb der Decke 2'.
Figur 2 zeigt einen Schnitt durch die gleiche Ecke des Innenbehälters 1 eines erfindungs- gemäßen Kältegerätes. Bei diesem Gerät sind zwischen der Decke 2 und der Rückwand 3 aufeinanderfolgend eine erste Abrundung 4a, eine schräg zur vertikalen orientierte ebene Wandfläche 6 und eine zweite Abrundung 4b ausgebildet. Der Krümmungsradius der Abrundungen 4a, 4b in Figur 2 ist der gleiche wie bei der Abrundung 4' in Figur 1. Die schräge Wandfläche erstreckt sich unter einem Winkel α = 30° zur Vertikalen.
Ein an der Schaumseite der Rückwand 3 des Innenbehälters 1 angebrachter Verdampfer 5 umfasst einen sich in herkömmlicher Weise entlang der vertikalen Rückwand 3 erstreckenden Hauptabschnitt 7 und einen Zusatzabschnitt 8, der sich entlang eine horizontalen Knicklinie, ebenfalls unter dem Winkel α gegen die Vertikale geneigt, oben an den Hauptabschnitt 7 anschließt. Wenn der Krümmungsradius an der der Rückwand 3 zugewandten Innenseite des Verdampfers 5 nicht größer ist als der der Außenseite der Abrundung 4a, so ist es möglich, den Verdampfer 5 gleichzeitig mit der Rückwand 3 als auch mit der schrägen Wandfläche 6 in innigen Kontakt zu bringen und so die Wandfläche 6 wirksam zu kühlen. Wie der Vergleich der Figuren 1 und 2 zeigt, führt dies zu einer deutlichen Verringerung der nicht gekühlten Höhe h des Innenraumes im Vergleich zur Figur 1 , ohne dass hierfür der Krümmungsradius der Abrundungen 4a, 4b gegenüber 4' reduziert werden muss. Im hier gezeigten Fall ist h = 1/2 x h'; allgemein gilt h = (1-sinα) h'. Zu beachten ist allerdings, dass der Krümmungsradius einer Abrundung zwischen zwei ebenen Wand- flächen beim Tiefziehen des Innenbehälters 1 um so kleiner gewählt werden kann, je stumpfer der Winkel ist, in dem die zwei Wandflächen aufeinandertreffen, ohne dass die Gefahr des Brechens besteht. Dies ermöglicht eine weitere Reduzierung der ungekühlten Höhe h, wie in Figur 3 gezeigt, wo die Abrundungen 4a, 4b praktisch auf Linien reduziert sind und der Zusatzabschnitt 8 des Verdampfers 5 bis in Höhe der Decke 2 reicht.
Figur 4 zeigt eine perspektivische Ansicht eines Innenbehälters 1 eines Kältegerätes mit an dessen Rückwand 3 montiertem Verdampfer 5 gemäß einem ersten Ausführungsbeispiel. Der Verdampfer 5 ist im wesentlichen aufgebaut aus einer gut wärmeleitenden Metallplatte 10, die mit einer Oberfläche an der Rückwand 3 und der schrägen Wandfläche 6 verklebt ist, und an deren gegenüberliegender Oberfläche eine Kühlschlange 9 in herkömmlicher Weise mäanderartig verlegt ist. Die Kühlschlange 9 erstreckt sich hier nur über den den Hauptabschnitt 7 bildenden Teil der Metallplatte 10, nicht aber über den Zusatzabschnitt 8. Dieser ist allein durch Wärmeleitung vom Hauptabschnitt 7 her gekühlt. Diese Ausgestaltung ist zweckmäßig, wenn der Zusatzabschnitt 8 nur eine geringe Höhe von wenigen cm hat, und/oder der Winkel α zur Vertikalen relativ groß ist.
Figur 5 zeigt eine Ausgestaltung, die für einen Zusatzabschnitt 8 größerer Höhe geeignet ist. Bei dieser Ausgestaltung erstreckt sich die Kühlschlange 9 auf den Zusatzabschnitt 8, und Vor- und Rücklauf der Kühlschlange 9 umfassen jeweils einen horizontalen Leitungs- abschnitt 1 , der sich entlang einer Kante zwischen Hauptabschnitt 7 und Zusatzabschnitt 8 des Verdampfers 5 erstreckt. Ein solcher Verdampfer kann auf einfache Weise angefertigt werden, indem zunächst die gesamte Kühlschlange 9 auf einer ebenen Metallplatte angebracht wird und diese anschließend geknickt wird, um Hauptabschnitt 7 und Zusatz- abschnitt 8 zu bilden. Bei dieser Knickung werden die Leitungsabschnitte 11 jeweils nur in Torsion beansprucht, es wirken jedoch keine Zugkräfte, die zu einer Verengung des Leitungsquerschnittes der Kühlschlange beim Übergang über die Kante führen könnten.
Bei der in Figur 6 gezeigten dritten Ausgestaltung ist der Verdampfer 5 aus zwei getrenn- ten Metallplatten zusammengesetzt, die jeweils den Hauptabschnitt 7 und die Zusatzabschnitt 8 bilden. Die zwei Abschnitt 7, 8 sind in einem geringen Abstand durch aufgeklebte oder -gelötete Plättchen 12 verbunden, die den Verdampfer vor seiner Montage an der Rückwand 3 ohne Gefahr einer Beschädigung der den Spalt kreuzenden Kühlschlange 9 handhabbar machen. Bei der Montage an der Rückwand 3 kann der Zusatzabschnitt 8 leicht von Hand gebogen werden, so dass er exakt an der schrägen Wandfläche 6 zu liegen kommt. Durch den zwischen Hauptabschnitt 7 und Zusatzabschnitt 8 vorgesehenen Abstand wird ein scharfes Knicken der Kühlschlange 9 beim Übergang zwischen den zwei Abschnitten vermieden.
Figur 7 zeigt eine Draufsicht auf ein weiteres Ausführungsbeispiel eines Verdampfers, der zur Montage an einem Innenbehälter 1 mit schräger Wandfläche vorgesehen ist. Die Metallplatte 10 des Verdampfers ist durch eine Mehrzahl von eingestanzten Öffnungen 13, 14 in Hauptabschnitt 7 und Zusatzabschnitt 8 unterteilt. Die entlang der horizontalen Biegekante zwischen Haupt- und Zusatzabschnitt langgestreckten Öffnungen 13 gewährleis- ten eine leichte Biegbarkeit der zwei Abschnitte gegeneinander, durch die der Verdampfer bei der Montage leicht an die Orientierung der schrägen Wandfläche angepasst werden kann. Die Öffnungen 14 sind jeweils dort angeordnet, wo die Kühlschlange 9 die Kante zwischen Hauptabschnitt 7 und Zusatzabschnitt 8 kreuzt, und sie weisen quer zu dieser Kante eine größere Ausdehnung als die langgestreckten Öffnungen 13 auf. Beim Biegen des Verdampfers 5 können so die die Kante kreuzenden Abschnitte der Kühlschlange 9 in die Öffnungen 14 eintauchen und so spannungsfrei und ohne Gefahr des Abknickens gebogen werden.

Claims

Patentansprüche
1. Kältegerät mit einem eine Außenwand aufweisenden wärmeisolierenden Gehäuse und einem von dem Gehäuse umgebenen Innenraum, dessen Auskleidung durch einen Innenbehälter (1) gebildet ist, wobei der Innenraum von einem Verdampfer gekühlt ist, dadurch gekennzeichnet, dass zwischen der vertikalen Wand (3) und einer Decke (2) des Innenbehälters wenigstens eine ebene schräge Wandfläche (6) gebildet ist, und dass der Verdampfer (5) sich bis in die schräge Wandfläche (6) erstreckt.
2. Kältegerät nach Anspruch 1, dadurch gekennzeichnet, dass Verdampfer (5) an der als Rückseite des Innenbehälters (1) dienenden vertikalen Wand (3) vorgesehen ist.
3. Kältegerät nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Verdampfer (5) auf der vom Innenraum abgewandten Außenseite des Innenbehälters (1), in wärmeleitendem Kontakt mit diesem, angeordnet ist.
4. Kältegerät nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Verdampfer (5) die gesamte schräge Wandfläche (6) überdeckt.
5. Kältegerät nach Anspruch 1 oder 4, dadurch gekennzeichnet, dass die schräge Wandfläche (6) einen Winkel zur Vertikalen von wenigstens 15° und höchstens 75°, vorzugsweise zwischen 20° und 45°, bildet.
6. Kältegerät nach Anspruch 1, 4 oder 5, dadurch gekennzeichnet, dass die schräge Wandfläche einen Winkel zur Vertikalen bildet, der klein genug ist, um das Ablaufen von sich an der schrägen Wandfläche (6) bildenden Kondenswasser- tropfen auf die vertikale Wand zu gewährleisten.
EP02776957A 2001-09-04 2002-09-02 Kältegerät mit coldwall-verdampfer Withdrawn EP1430260A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE2001143241 DE10143241A1 (de) 2001-09-04 2001-09-04 Kältegerät mit Coldwall-Verdampfer
DE10143241 2001-09-04
PCT/EP2002/009784 WO2003021171A1 (de) 2001-09-04 2002-09-02 Kältegerät mit coldwall-verdampfer

Publications (1)

Publication Number Publication Date
EP1430260A1 true EP1430260A1 (de) 2004-06-23

Family

ID=7697620

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02776957A Withdrawn EP1430260A1 (de) 2001-09-04 2002-09-02 Kältegerät mit coldwall-verdampfer

Country Status (6)

Country Link
EP (1) EP1430260A1 (de)
CN (1) CN1313785C (de)
DE (1) DE10143241A1 (de)
PL (1) PL200155B1 (de)
RU (1) RU2259519C2 (de)
WO (1) WO2003021171A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR0301427A (pt) * 2003-05-15 2004-12-21 Multibras Eletrodomesticos Sa Arranjo para circulação de ar por convecção natural em refrigerador
DE20317802U1 (de) * 2003-11-18 2005-03-31 Liebherr Hausgeraete Verdampfer für ein Kühl- und/oder Gefriergerät
DE202005000909U1 (de) * 2004-12-28 2006-05-04 Liebherr-Hausgeräte Ochsenhausen GmbH Kühl- und Gefriergerät
TR201716628T3 (tr) * 2008-09-09 2017-12-21 Arcelik As Bir buzdolabı.
DE102010029583A1 (de) * 2010-06-01 2011-12-01 BSH Bosch und Siemens Hausgeräte GmbH Kältegerät und Fertigungsverfahren dafür
WO2014086860A1 (en) * 2012-12-05 2014-06-12 Arcelik Anonim Sirketi A cooling device comprising an evaporator
CN104344624B (zh) * 2013-08-28 2016-11-09 海尔集团公司 制冷装置的软冷冻室及具有其的制冷装置
CN104344651B (zh) * 2013-08-28 2017-06-06 海尔集团公司 制冷装置的变温室及具有其的制冷装置
EP3686536B1 (de) * 2019-01-22 2021-05-26 ABB Power Grids Switzerland AG Verdampfer und herstellungsverfahren

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2509609A (en) * 1945-12-12 1950-05-30 Nash Kelvinator Corp Refrigerating apparatus
US2741898A (en) * 1951-07-09 1956-04-17 Whirlpool Seeger Corp Refrigerator evaporator
US2727361A (en) * 1952-12-06 1955-12-20 Admiral Corp Refrigerator system and assembly
US2986901A (en) * 1959-03-13 1961-06-06 Whirlpool Co Refrigerant evaporator
DE3204556C2 (de) * 1982-02-10 1986-11-13 Bosch-Siemens Hausgeräte GmbH, 8000 München Wärmeisoliertes Gehäuse, insbesondere für Haushalts-Kühlmöbel oder dergleichen
CN2220621Y (zh) * 1995-08-09 1996-02-21 佐秀臣 具有复式主蒸发器的冰箱冰柜
CN2407299Y (zh) * 1999-12-22 2000-11-22 青岛市家用电器研究所 一种冰箱用的冷藏室

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03021171A1 *

Also Published As

Publication number Publication date
PL367790A1 (en) 2005-03-07
PL200155B1 (pl) 2008-12-31
WO2003021171A1 (de) 2003-03-13
RU2259519C2 (ru) 2005-08-27
RU2004105928A (ru) 2005-02-27
DE10143241A1 (de) 2003-03-20
CN1551969A (zh) 2004-12-01
CN1313785C (zh) 2007-05-02

Similar Documents

Publication Publication Date Title
EP1430260A1 (de) Kältegerät mit coldwall-verdampfer
EP2567167B1 (de) Kältegerät und verdampfer dafür
EP2612085B1 (de) Kältegerät, insbesondere haushaltskältegerät
EP2678623A2 (de) Kältegerät mit verdunstungsschale
DE3204556C2 (de) Wärmeisoliertes Gehäuse, insbesondere für Haushalts-Kühlmöbel oder dergleichen
EP2612088B1 (de) Kältegerät und verfahren zur herstellung desselben
WO2008077699A1 (de) Wärmetauscheraggregat
DE102010003088A1 (de) Kältegerät mit Tauwasserverdunster
EP0010181A1 (de) Absorptionskühlmöbel
EP2438372B1 (de) Kältegerät
EP3425313B1 (de) Kältegerät
DE102018122904A1 (de) Gefriertruhe, insbesondere für Eiscreme-Produkte
EP2392875A2 (de) Kältegerät mit innen liegendem Verdampfer
DE102008063391A1 (de) Kältegerät mit Fachboden
DE102014222850A1 (de) NoFrost-Kältegerät
DE102019210190A1 (de) Thermoelektrische kühleinheit
DE19621054A1 (de) Wärmeisolierendes Gehäuse
WO2004057251A1 (de) Innenbehälter für ein kältegerät
EP2132505B1 (de) Kühlgerät
EP2104809A2 (de) Wärmetauscher
EP2531788B1 (de) Kältegerät
DE102022201627A1 (de) Kältegerät und Gerätekombination
DE102012218510B4 (de) Haushaltskältegerät mit in einem Überlappungsbereich zwischen Vakuumisolationselementen geführten Leitungen
WO2010139533A2 (de) Kältegerät
DE102009000840A1 (de) Kältegerät mit vergleichmäßiger Temperaturverteilung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040405

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20090420

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20091031