EP1426454A1 - Method for producing a formed component with at least two regions of structure having different ductility and continuous furnace therefor - Google Patents

Method for producing a formed component with at least two regions of structure having different ductility and continuous furnace therefor Download PDF

Info

Publication number
EP1426454A1
EP1426454A1 EP03026402A EP03026402A EP1426454A1 EP 1426454 A1 EP1426454 A1 EP 1426454A1 EP 03026402 A EP03026402 A EP 03026402A EP 03026402 A EP03026402 A EP 03026402A EP 1426454 A1 EP1426454 A1 EP 1426454A1
Authority
EP
European Patent Office
Prior art keywords
temperature
zone
continuous furnace
furnace
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03026402A
Other languages
German (de)
French (fr)
Inventor
Jürgen Krogmeier
Patrick Dr. Reinhold
Johannes Dr. Böke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Benteler Automobiltechnik GmbH
Original Assignee
Benteler Automobiltechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Benteler Automobiltechnik GmbH filed Critical Benteler Automobiltechnik GmbH
Publication of EP1426454A1 publication Critical patent/EP1426454A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0056Furnaces through which the charge is moved in a horizontal straight path
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0006Details, accessories not peculiar to any of the following furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/02Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity of multiple-track type; of multiple-chamber type; Combinations of furnaces
    • F27B9/021Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity of multiple-track type; of multiple-chamber type; Combinations of furnaces having two or more parallel tracks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/04Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity adapted for treating the charge in vacuum or special atmosphere
    • F27B9/045Furnaces with controlled atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/14Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment
    • F27B9/20Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/14Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment
    • F27B9/20Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace
    • F27B9/24Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace being carried by a conveyor
    • F27B9/2469Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace being carried by a conveyor the conveyor being constituted by rollable bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/36Arrangements of heating devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • C21D2221/02Edge parts

Definitions

  • the invention relates to a method for producing a molded component at least two structural areas of different ductility from a semi-finished product made of hardenable steel with heating in a continuous furnace and one Hardening process according to the preamble of claim 1 and a method for Production of a molded component with at least two areas different Ductility from a semi-finished product made of hardened steel with heating in one Continuous furnace according to the preamble in claim 7 and a continuous furnace Heating of metallic workpieces according to the preamble of claim 9.
  • Example chassis components such as handlebars or cross members or structural components such as door impact beams, B-pillars, struts or bumpers, with over the molded component distribute consistent material properties. This happens through a complete heating of the molded components with a subsequent hardening that can be followed by a starting process for compensation.
  • certain areas have a high strength, other areas have a high strength Relative to this, have higher ductility.
  • In addition to the reinforcement by Additional sheets or the joining of parts of different strength is it is already known to heat a component in this way treat that there are local areas of higher strength or higher ductility having.
  • DE 197 43 802 C2 shows a method, a molded component for Manufacture automotive components with areas of different ductility, by only partially heating an output board before or after pressing or with a previous homogeneous heating in the areas with desired higher ductility is specifically reheated. This is preferably done partial heating inductive.
  • B-pillar which also has areas of different strength.
  • the B-pillar is manufactured in Thermoforming process, starting from a blank or a preformed longitudinal profile austenitized in an oven and then in is reshaped / hardened in a cooled tool. Large areas can be used in the oven Areas of the workpiece are insulated from the effects of temperature, whereby in these areas the austenitizing temperature is not reached and accordingly, there is no martensitic structure in the tool during hardening.
  • DE 3441 338 A1 describes a method for heat treatment metallic workpieces using a continuous or push-through furnace and an apparatus for performing this method is disclosed.
  • it can be a Continuous furnace act in which each treatment chamber as a rotary cycle furnace intermittently rotatable oven hearth is formed.
  • the present invention is therefore based on the object of a method for Manufacture of a metallic molded component with at least two structural areas different ductility and a suitable continuous furnace for heating to further develop metallic workpieces so that they can be used for Are suitable for mass production.
  • This object is achieved by the invention in the characterizing part of claim 1 described method. Accordingly, it goes through a manufacturing process a molded component with at least two structural areas of different ductility from a semi-finished product made of hardenable steel with heating in one Continuous furnace and a hardening process, a board or a preformed component at least two at the same time during transport through a continuous furnace zones of the continuous furnace arranged next to one another in the direction of flow different temperature levels.
  • Zone 1 of the continuous furnace is open set a temperature A and another zone 2 to a temperature B which is higher than temperature A. This heats up the semi-finished product in the areas in which it passes through the continuous furnace in zone 1 to temperature A and in Areas where it passes through zone 2 at temperature B.
  • the semi-finished products heated to different degrees in this way using a thermoforming process and / or subjected to the hardening process.
  • a thermoforming process and / or subjected to the hardening process.
  • the hardening process arises in the before area 1 of the component heated to temperature A in relation to that Temperature B heated area 2 of the component more ductile structure and in area 2 a solid or high-strength structure.
  • Which temperature is chosen for the respective zone of the furnace depends on the desired properties of the component. If, for example, the base of a B-pillar for an automobile is to be ductile in relation to the rest of the B-pillar, a preformed component is introduced into the continuous furnace in such a way that it corresponds to area 1, which after the final shaping represents the B-pillar base to lie in zone 1 of the furnace. The rest of the component, which should be as high-strength as possible after the final shaping, extends over zone 2 of the continuous furnace. The temperature A in zone 1 is now set to a temperature below the AC 1 temperature of the material. As a result, there is no structural change in area 1 during transport through the furnace.
  • the unhardened initial structure remains in area 1 of the component and thus in the column base.
  • the temperature B in zone 2 of the furnace is set to a temperature above AC 3 in order to obtain the most complete structural transformation of the remaining component during transport through the continuous furnace.
  • a solid or high-strength structure is established over the rest of the B-pillar.
  • the column base is ductile.
  • the temperature A in zone 1 of the furnace is set to a temperature above AC 1 but below AC 3 and the temperature B in zone 2 of the furnace is set to a temperature above AC 3 in order to achieve different strength requirements.
  • the component undergoes a partial structural change in area 1, with which it passes through zone 1, in area 2, with which it passes through zone 2, the structure changes almost completely. A subsequent hardening process therefore results in a mixed structure in area 1 and a structure that is firmer in area 2.
  • the component has already received its final shape and adapts to the Heating process in the continuous furnace can only be followed by a hardening process heating of zone 1 of the continuous furnace can be dispensed with entirely.
  • the Temperature A is then roughly the same as the ambient temperature of the furnace match.
  • the component is only partially in zone 2 of the furnace in area 2 heated in which it should also be hardened.
  • thermoforming process If the component has not yet reached its final shape and a further thermoforming process may follow the heating process, apart from the requirements of the hardening process, the conditions of the thermoforming process must also be taken into account. Since the material of the material flows during the thermoforming process, it is particularly advantageous to set temperatures A and B as far apart as required for the desired structure to be finally set by the hardening process, but at the same time as narrow as possible within the limits of the ZTU diagram of the material possible to be placed next to each other in order to optimize the flow properties of the material.
  • a B-pillar for example, which is only preformed and which should have an unhardened foot but a firm or high-strength structure over the rest of its area, it is therefore advisable to set the temperature A in zone 1 of the furnace, in which the area of the preformed component, which will later be the column base, to a temperature as close as possible to below AC 1 .
  • Temperature B in zone 2 of the furnace, in which the rest of the component is located, is set to a temperature as close to AC 3 as possible.
  • the component is then thermoformed and hardened.
  • the B-pillar is end-shaped and has a relatively ductile base and a solid or high-strength structure in the rest of the area.
  • thermoforming step is preferably carried out at the same time as the hardening Forming tool instead.
  • the method according to the invention can also be used to process a semi-finished product made of hardened steel to produce a molded component with at least two areas of different ductility with heating in a continuous furnace.
  • the peculiarity here is that the semi-finished product is already hardened over its entire length.
  • the semifinished product can be a board or a preformed component that has already been preformed in one or more steps.
  • the preforming can be cold-forming steps.
  • the semi-finished product then simultaneously passes through at least two zones of the continuous furnace with different temperature levels which are arranged next to one another in the direction of the transit during the transport through a continuous furnace.
  • the semi-finished product is introduced into the furnace in such a way that it comes to rest in zone 1 of the continuous furnace with area 1, which should have a solid or high-strength structure in the finished end component.
  • Zone 1 is set to room temperature or to a temperature below AC 1 .
  • Area 2 of the component which is to have a ductile structure in the finished end component, passes through the furnace in zone 2.
  • Zone 2 is set to a higher temperature than zone 1, preferably to a temperature above AC 1 , so that area 2 is soft-annealed to towards a complete structural transformation. This results in a more ductile structure in area 2 than in area 1.
  • This furnace heating is then only followed by a hot forming and / or cooling process which does not reach the critical cooling rate which would lead to a renewed hardening of area 2.
  • This alternative method is suitable, for example, for dual-phase steels or Steel grades that have already been hardened in the coil.
  • Oven heating in a protective gas atmosphere is part of the prior art to carry out a reaction of the material with oxygen as possible prevention. It is therefore also with the oven heating described here advantageous to carry them out under a protective gas atmosphere. Depending on Temperature control, material properties and component requirements can Heating can also be carried out without protective gas.
  • the number of zones through which the component is guided is arbitrary and depends on the number of areas that are in each other in the finished part should receive a different structure.
  • the inventive method makes itself the medium that has already been tried and tested in mass production Use oven heating.
  • the continuous furnace as such is already on the Mass production adjusted.
  • the main advantage of the invention is that Partially different heating is now easy and reliable in to be able to integrate the existing process chain.
  • the continuous furnace according to the invention for heating metallic workpieces is characterized by the fact that it has at least two in the direction of flow adjacent zones 1 and 2 is provided. Both zones are separated from each other by a thermally insulating partition so that the The workpiece passing through the furnace is located both in zones 1 and 2 is located in areas in Zone 2. There is a separate one in both zones Temperature control possible.
  • the type of continuous furnace is not important here. It can be both a roller hearth continuous furnace act, in which the workpieces on rollers the furnace can be transported, as well as a push-through furnace, in which a Workpiece batch from the impact of the subsequent workpiece batch by the Oven is pushed.
  • the component to be heated can lie directly on the rollers or are on a product carrier such as a frame.
  • the Oven according to the invention can be designed as a rotary hearth or rotary cycle oven, at which the direction of flow is not linear, but curved. The important thing is that the furnace with at least one parallel to the direction of flow Thermally insulating partition is provided, which in at least two in the oven Flow direction divided adjacent zones, which are separated are controllable from each other.
  • the partition does not completely separate the two zones, only to the extent that a component can be passed below the partition in such a way that it comes to rest in both zones 1 and 2 in zones.
  • the partition ends as close as possible to the surface of the component.
  • both a thermally insulating partition on the furnace ceiling and on the furnace floor is attached, between which a workpiece can be transported continuously can. This enables a three-dimensional component with a Elevation at the desired location in two differently heated Separate areas.
  • the partition is transverse to the direction of the furnace is removably attached. This is done by a clever arrangement of the Heating elements and / or variably attachable heating elements allows.
  • the workpieces are on a product carrier, it is particularly advantageous if on the respective goods carrier parallel to the direction of the furnace thermally insulating partition is attached to the oven with the merchandise support passes.
  • the furnace itself can be one or more thermally insulating Partitions included, so that the oven in total again in at least two Zones is divided.
  • the partition wall ensures that Temperature on the partition wall side to the cooler zone roughly the same Level as the temperature in the cooler zone kept to a to avoid temperature-increasing heat radiation from the warmer zone.
  • the transition area from Zone 1 to Zone 2 can be varied by varying the Partition in terms of width and insulation. This allows the Temperature gradient and thus the structure transition in the workpiece from area 1 to Range 2 can be set.
  • FIG. 1 shows an oven 1 which is divided into two zones 1a and 1b by a partition 2.
  • a B-pillar 3 which lies with an area 3a, namely the column base, in zone 1a and with its area 3b, that is the remaining pillar, in zone 1b.
  • the B-pillar 3 is made of a hardenable steel with an AC 1 temperature of 740 ° C and an AC 3 temperature of 850 ° C and is in its area 3a by a temperature setting in zone 1a of about 700 ° C to one Temperature of about 700 ° C and in its area 3b heated to a temperature of about 950 ° C to about 950 ° C by a temperature setting in zone 1b.
  • FIG. 2 shows an oven 4 according to the invention with one on the oven ceiling 4a and one partition 5 and 5a attached to furnace bottom 4b in the direction of passage.
  • the arrow indicates the direction of rotation of the rollers 6.
  • the circuit board 7 is therefore located both in zone 4c and in zone 4d of the furnace 4.
  • Oven 4 has a cooler atmosphere than in Zone 4d.
  • the partitions 5 and 5a are insulated on the side facing zone 4c so that a temperature-increasing heat radiation from zone 4d into zone 4c if possible is avoided.
  • the circuit board 7 heats up in its regions 7a and 7b different levels.
  • FIG. 3 shows a furnace 8 according to the invention in the direction of flow, the one Goods carrier 11 passes through with a component 12 with height extension.
  • the arrow gives the direction of rotation of the rollers 10.
  • the furnace 8 has a partition 9, which is attached to the furnace ceiling 8a and a partition 9b, which is on the furnace floor 8d is attached.
  • the thermal insulation of zones 8b and 8c is due to the Partitions 9, 9a and 9b reached.
  • the partition 9a is on the goods carrier 11 fastened and passed through the oven 8 with the goods carrier 11.
  • the goods carrier 11 must be transported through the oven 8 to the goods carrier 11 so that there are no gaps between the moving partitions 9a arise.
  • a component 12 with a vertical extension can be so precisely insert into zone 8c of the furnace 8 where in the finished component 12 a ratio to the rest of the component 12 more ductile structure is to be achieved.
  • FIG 4 shows a furnace 13 with a partition 14 on the furnace ceiling 13a and three partition walls 14a, 14b, 14c fastened to the furnace bottom 13b, between which Pass through rollers 15 and a board 16 transported on these rollers 15.
  • the Dashed lines 16a and 16b indicate the contour of a not shown Component with height extension.
  • the furnace 13 for each zone is provided with a feed line 18 and 18a provided through which nitrogen is supplied to the furnace atmosphere.
  • the partition 14 can be moved to the indicated positions 19 and 19a.
  • the heating elements 17 on the furnace ceiling 13a to respective displacement positions 19 and 19a interrupted.
  • the heating elements 17a on the furnace floor are separated anyway by the partitions 14a, 14b, 14c executed. Due to the variably attachable partition 14, the furnace 13 is flexible and use it for different components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Heat Treatment Of Articles (AREA)
  • Tunnel Furnaces (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

Continuous furnace for heating metallic workpieces comprises two zones (1a, 1b) lying opposite each other and separated from each other by a thermal insulating separating wall (2). The workpiece (3) is placed in part of one zone and in part of another zone. A separate temperature regulation is carried out in both zones. An Independent claim is also included for a process for the production of a molded component using the above continuous furnace.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines Formbauteils mit mindestens zwei Gefügebereichen unterschiedlicher Duktilität aus einem Halbzeug aus härtbarem Stahl mit einer Erwärmung in einem Durchlaufofen und einem Härteprozess gemäß dem Oberbegriff in Anspruch 1 und ein Verfahren zur Herstellung eines Formbauteils mit mindestens zwei Bereichen unterschiedlicher Duktilität aus einem Halbzeug aus gehärtetem Stahl mit einer Erwärmung in einem Durchlaufofen gemäß dem Oberbegriff in Anspruch 7 sowie einen Durchlaufofen zur Erwärmung von metallischen Werkstücken gemäß dem Oberbegriff in Anspruch 9.The invention relates to a method for producing a molded component at least two structural areas of different ductility from a semi-finished product made of hardenable steel with heating in a continuous furnace and one Hardening process according to the preamble of claim 1 and a method for Production of a molded component with at least two areas different Ductility from a semi-finished product made of hardened steel with heating in one Continuous furnace according to the preamble in claim 7 and a continuous furnace Heating of metallic workpieces according to the preamble of claim 9.

Es ist bekannt, werkzeuggehärtete Formbauteile für Kraftfahrzeugkomponenten, zum Beispiel Fahrwerkskomponenten wie Lenker oder Querträger oder Strukturbauteile wie Türaufprallträger, B-Säulen, Streben oder Stoßfänger, mit über dem Formbauteil verteilt gleich bleibenden Werkstoffeigenschaften herzustellen. Dies geschieht durch eine komplette Erwärmung der Formbauteile mit einem anschließenden Härten, an das sich für eine Vergütung gegebenenfalls ein Anlassvorgang anschließen kann. In verschiedenen Anwendungsfällen der Kraftfahrzeugtechnik sollen Formbauteile über bestimmte Bereiche eine hohe Festigkeit, über andere Bereiche wiederum eine im Verhältnis dazu höhere Duktilität aufweisen. Neben der Verstärkung durch Zusatzbleche oder dem Zusammenfügen von Teilen unterschiedlicher Festigkeit ist es hierbei auch bereits bekannt, über Wärmebehandlungen ein Bauteil so zu behandeln, dass es lokal Bereiche höherer Festigkeit oder höherer Duktilität aufweist.It is known to use tool-hardened molded components for motor vehicle components Example chassis components such as handlebars or cross members or structural components such as door impact beams, B-pillars, struts or bumpers, with over the molded component distribute consistent material properties. This happens through a complete heating of the molded components with a subsequent hardening that can be followed by a starting process for compensation. In Various applications of automotive engineering are said to be over molded components certain areas have a high strength, other areas have a high strength Relative to this, have higher ductility. In addition to the reinforcement by Additional sheets or the joining of parts of different strength is it is already known to heat a component in this way treat that there are local areas of higher strength or higher ductility having.

So zeigt die DE 197 43 802 C2 ein Verfahren auf, ein Formbauteil für Kraftfahrzeugkomponenten mit Bereichen unterschiedlicher Duktilität herzustellen, indem eine Ausgangsplatine vor oder nach dem Pressen nur partiell erwärmt oder bei einer vorausgegangenen homogenen Erwärmung in den Bereichen mit gewünschter höherer Duktilität gezielt nacherwärmt wird. Vorzugsweise geschieht die partielle Erwärmung induktiv.DE 197 43 802 C2 shows a method, a molded component for Manufacture automotive components with areas of different ductility, by only partially heating an output board before or after pressing or with a previous homogeneous heating in the areas with desired higher ductility is specifically reheated. This is preferably done partial heating inductive.

Die DE 200 14 361 U1 beschreibt eine B-Säule, die ebenfalls Bereiche unterschiedlicher Festigkeit besitzt. Die Herstellung der B-Säule erfolgt im Warmformprozess, wobei ausgehend von einer Formplatine oder einem vorgeformten Längsprofil dieses in einem Ofen austenitisiert und anschließend in einem gekühlten Werkzeug umgeformt/ gehärtet wird. Im Ofen können großflächige Bereiche des Werkstücks gegen die Temperatureinwirkung isoliert werden, wobei in diesen Bereichen die Austenitisierungstemperatur nicht erreicht wird und sich demnach im Werkzeug bei der Härtung kein martensitisches Gefüge einstellt.DE 200 14 361 U1 describes a B-pillar, which also has areas of different strength. The B-pillar is manufactured in Thermoforming process, starting from a blank or a preformed longitudinal profile austenitized in an oven and then in is reshaped / hardened in a cooled tool. Large areas can be used in the oven Areas of the workpiece are insulated from the effects of temperature, whereby in these areas the austenitizing temperature is not reached and accordingly, there is no martensitic structure in the tool during hardening.

In der Massenproduktion werden zur Erwärmung häufig Durchlauföfen in der Form von Rollenherd-Durchlauföfen oder Durchstoßöfen mit oder ohne Warenträger eingesetzt. In der DE 3441 338 A1 ist ein Verfahren zur Wärmebehandlung metallischer Werkstücke unter Verwendung eines Durchlauf- oder Durchstoßofens sowie eine Vorrichtung zur Durchführung dieses Verfahrens offenbart. Dabei können Werkstückchargen unterschiedlicher Behandlungsdauer, insbesondere unterschiedlicher Einsatzhärtetiefe beim Aufkohlen in zweistufigen Verfahren gleichzeitig behandelt werden, indem sie einen Durchlauf- oder Durchstoßofen durchlaufen, der mit mindestens zwei von den Werkstücken nacheinander zu durchlaufenden Behandlungskammern zur jeweiligen Wärmebehandlung mehrerer Werkstückchargen versehen ist. Insbesondere kann es sich dabei um einen Durchlaufofen handeln, bei dem jede Behandlungskammer als Rundtaktofen mit taktweise drehbeweglichem Ofenherd ausgebildet ist.In mass production, continuous furnaces are often used in the mold for heating of roller hearth continuous furnaces or push-through furnaces with or without goods carriers used. DE 3441 338 A1 describes a method for heat treatment metallic workpieces using a continuous or push-through furnace and an apparatus for performing this method is disclosed. You can Workpiece batches of different treatment times, in particular Different case hardening depths when carburizing in two-step processes can be treated simultaneously by using a continuous or pusher furnace go through that with at least two of the workpieces one after the other continuous treatment chambers for the respective heat treatment of several Workpiece batches is provided. In particular, it can be a Continuous furnace act in which each treatment chamber as a rotary cycle furnace intermittently rotatable oven hearth is formed.

Diese Verfahren weisen in Ihrer praktischen Umsetzung in der Massenproduktion jedoch einige Probleme auf. Das Isolieren durch Abkapseln im Ofen ist technisch aufwendig, weil in jedem Zyklus jedes einzelne Teil eine eigene Isolierung braucht, die Isolierung als Vorbereitungsprozess den Warmformprozess als ganzen verlängert und sich die Isolierung bei wiederholter Verwendung mit aufheizt. Dies macht eine Massenproduktion kostenintensiv. Die bisher bekannten Öfen können zwar verschiedene Werkstückchargen unterschiedlich stark erwärmen, sie eignen sich jedoch nicht für eine partielle Erwärmung ein und desselben Werkstücks. These methods show in their practical implementation in mass production however some problems arise. Isolation by encapsulation in the oven is technical complex, because every part needs its own insulation in each cycle, the insulation as a preparation process extends the thermoforming process as a whole and the insulation heats up with repeated use. This does one Mass production is expensive. The previously known ovens can heat different batches of workpieces to different extents, they are suitable but not for partial heating of the same workpiece.

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zur Herstellung eines metallischen Formbauteils mit mindestens zwei Gefügebereichen unterschiedlicher Duktilität und einen geeigneten Durchlaufofen zur Erwärmung von metallischen Werkstücken dahingehend weiterzuentwickeln, dass sie für die Massenproduktion tauglich sind.The present invention is therefore based on the object of a method for Manufacture of a metallic molded component with at least two structural areas different ductility and a suitable continuous furnace for heating to further develop metallic workpieces so that they can be used for Are suitable for mass production.

Diese Aufgabe löst die Erfindung mit dem im kennzeichnenden Teil des Anspruchs 1 beschriebenen Verfahren. Demnach durchläuft bei einem Verfahren zur Herstellung eines Formbauteils mit mindestens zwei Gefügebereichen unterschiedlicher Duktilität aus einem Halbzeug aus härtbarem Stahl mit einer Erwärmung in einem Durchlaufofen und einem Härteprozess, eine Platine oder ein vorgeformtes Bauteil während des Transports durch einen Durchlaufofen gleichzeitig mindestens zwei nebeneinander in Durchlaufrichtung angeordnete Zonen des Durchlaufofens mit unterschiedlichen Temperaturniveaus. Eine Zone 1 des Durchlaufofens ist dabei auf eine Temperatur A eingestellt und eine andere Zone 2 auf eine Temperatur B, die höher als Temperatur A liegt. Dadurch erwärmt sich das Halbzeug in den Bereichen, in denen es den Durchlaufofen in Zone 1 durchläuft auf Temperatur A und in den Bereichen, in denen es Zone 2 durchläuft auf Temperatur B. Anschließend wird das auf diese Weise unterschiedlich stark erwärmte Halbzeug einem Warmformprozess und/ oder Härteprozess unterworfen. Durch den Härteprozess stellt sich in dem zuvor auf Temperatur A erwärmten Bereich 1 des Bauteils ein im Verhältnis zu dem auf Temperatur B erwärmten Bereich 2 des Bauteils duktileres Gefüge und im Bereich 2 des Bauteils ein festes oder hochfestes Gefüge ein.This object is achieved by the invention in the characterizing part of claim 1 described method. Accordingly, it goes through a manufacturing process a molded component with at least two structural areas of different ductility from a semi-finished product made of hardenable steel with heating in one Continuous furnace and a hardening process, a board or a preformed component at least two at the same time during transport through a continuous furnace zones of the continuous furnace arranged next to one another in the direction of flow different temperature levels. Zone 1 of the continuous furnace is open set a temperature A and another zone 2 to a temperature B which is higher than temperature A. This heats up the semi-finished product in the areas in which it passes through the continuous furnace in zone 1 to temperature A and in Areas where it passes through zone 2 at temperature B. Then the semi-finished products heated to different degrees in this way using a thermoforming process and / or subjected to the hardening process. Through the hardening process arises in the before area 1 of the component heated to temperature A in relation to that Temperature B heated area 2 of the component more ductile structure and in area 2 a solid or high-strength structure.

Welche Temperatur man für die jeweilige Zone des Ofens wählt, hängt von den gewünschten Eigenschaften des Bauteils ab. Wenn beispielsweise der Fuß einer B-Säule für ein Automobil im Verhältnis zum Rest der B-Säule duktil sein soll, wird ein vorgeformtes Bauteil so in den Durchlaufofen eingebracht, dass es mit dem Bereich 1, der nach der Endformgebung den B-Säulen Fuß darstellt, in Zone 1 des Ofens zu liegen kommt. Der Rest des Bauteils, der nach der Endformgebung möglichst hochfest sein soll, erstreckt sich über Zone 2 des Durchlaufofens. Die Temperatur A in Zone 1 wird nun auf eine Temperatur unterhalb der AC1 Temperatur des Werkstoffs eingestellt. Dadurch findet im Bereich 1 während des Transports durch den Ofen keine Gefügeumwandlung statt. Folglich bleibt bei einem anschließenden Härteprozess das nicht gehärtete Ausgangsgefüge im Bereich 1 des Bauteils und damit im Säulenfuß erhalten. Die Temperatur B in Zone 2 des Ofens wird auf eine Temperatur oberhalb von AC3 eingestellt, um eine möglichst vollständige Gefügeumwandlung des restlichen Bauteils während des Transports durch den Durchlaufofen zu erhalten. Bei einem anschließenden Härteprozess stellt sich dadurch über den Rest der B-Säule ein festes oder hochfestes Gefüge ein. Im Verhältnis dazu ist der Säulenfuß duktil.Which temperature is chosen for the respective zone of the furnace depends on the desired properties of the component. If, for example, the base of a B-pillar for an automobile is to be ductile in relation to the rest of the B-pillar, a preformed component is introduced into the continuous furnace in such a way that it corresponds to area 1, which after the final shaping represents the B-pillar base to lie in zone 1 of the furnace. The rest of the component, which should be as high-strength as possible after the final shaping, extends over zone 2 of the continuous furnace. The temperature A in zone 1 is now set to a temperature below the AC 1 temperature of the material. As a result, there is no structural change in area 1 during transport through the furnace. Consequently, during a subsequent hardening process, the unhardened initial structure remains in area 1 of the component and thus in the column base. The temperature B in zone 2 of the furnace is set to a temperature above AC 3 in order to obtain the most complete structural transformation of the remaining component during transport through the continuous furnace. In a subsequent hardening process, a solid or high-strength structure is established over the rest of the B-pillar. In relation to this, the column base is ductile.

Je nach Anforderungen an das Bauteil kann auch eine andere Gefügeverteilung gewünscht sein. In einem vorteilhaften Ausführungsbeispiel wird zur Erzielung verschieden hoher Festigkeitsanforderungen die Temperatur A in Zone 1 des Ofens auf eine Temperatur über AC1 aber unterhalb AC3 und die Temperatur B in Zone 2 des Ofens auf eine Temperatur über AC3 eingestellt. Das Bauteil erfährt in Bereich 1, mit dem es Zone 1 durchläuft, eine teilweise Gefügeumwandlung, im Bereich 2, mit dem es Zone 2 durchläuft, wandelt sich das Gefüge nahezu vollständig um. Bei einem anschließenden Härteprozess stellt sich daher im Bereich 1 ein Mischgefüge und im Bereich 2 ein im Verhältnis dazu festeres Gefüge ein.Depending on the requirements of the component, a different microstructure distribution can also be desired. In an advantageous exemplary embodiment, the temperature A in zone 1 of the furnace is set to a temperature above AC 1 but below AC 3 and the temperature B in zone 2 of the furnace is set to a temperature above AC 3 in order to achieve different strength requirements. The component undergoes a partial structural change in area 1, with which it passes through zone 1, in area 2, with which it passes through zone 2, the structure changes almost completely. A subsequent hardening process therefore results in a mixed structure in area 1 and a structure that is firmer in area 2.

Insbesondere für Stahlsorten mit einem Kohlenstoffgehalt C > 0,8% ist es vorteilhaft, die Temperatur A in Zone 1 knapp über AC1 einzustellen, damit der Bereich 1 des Bauteils geglüht und das Gefüge entspannt wird.In particular for steel grades with a carbon content C> 0.8%, it is advantageous to set the temperature A in zone 1 just above AC 1 , so that area 1 of the component is annealed and the structure is relaxed.

Wenn das Bauteil bereits seine Endformgebung erhalten hat und sich an den Erwärmungsprozess im Durchlaufofen nur noch ein Härteprozess anschließt, kann auf eine Beheizung der Zone 1 des Durchlaufofens völlig verzichtet werden. Die Temperatur A stimmt dann in etwa mit der Umgebungstemperatur des Ofens überein. Das Bauteil wird in Zone 2 des Ofens nur noch partiell in dem Bereich 2 erwärmt, in dem es auch gehärtet werden soll.If the component has already received its final shape and adapts to the Heating process in the continuous furnace can only be followed by a hardening process heating of zone 1 of the continuous furnace can be dispensed with entirely. The Temperature A is then roughly the same as the ambient temperature of the furnace match. The component is only partially in zone 2 of the furnace in area 2 heated in which it should also be hardened.

Hat das Bauteil noch nicht seine Endform erreicht und schließt sich an den Erwärmungsprozess ein gegebenenfalls weiterer Warmformprozess an, sind abgesehen von den Anforderungen des Härteprozesses auch die Gegebenheiten des Warmformprozesses zu beachten. Da das Material des Werkstoffs beim Warmformprozess fließt, ist es besonders vorteilhaft, Temperatur A und B zwar so weit auseinanderliegend einzustellen wie für das durch den Härteprozess abschließend einzustellende gewünschte Gefüge benötigt, sie aber gleichzeitig in den Grenzen des ZTU-Diagramms des Werkstoffs so eng wie möglich beieinander liegend einzustellen, um die Fließeigenschaften des Materials zu optimieren. Bei einer B-Säule beispielsweise, die nur vorgeformt ist, und die einen ungehärteten Fuß aber ein festes oder hochfestes Gefüge über Ihren restlichen Bereich erhalten soll, empfiehlt es sich daher, die Temperatur A in Zone 1 des Ofens, in dem sich der Bereich des vorgeformten Bauteils befindet, der später den Säulenfuß darstellt, auf eine Temperatur möglichst knapp unter AC1 einzustellen. Temperatur B in Zone 2 des Ofens, in dem sich der restliche Bereich des Bauteils befindet, wird auf eine Temperatur möglichst knapp über AC3 eingestellt. Nach der Ofenerwärmung wird das Bauteil dann warmgeformt und gehärtet. Die B-Säule ist endgeformt und verfügt über einen relativ duktilen Fuß und ein festes oder hochfestes Gefüge im restlichen Bereich.If the component has not yet reached its final shape and a further thermoforming process may follow the heating process, apart from the requirements of the hardening process, the conditions of the thermoforming process must also be taken into account. Since the material of the material flows during the thermoforming process, it is particularly advantageous to set temperatures A and B as far apart as required for the desired structure to be finally set by the hardening process, but at the same time as narrow as possible within the limits of the ZTU diagram of the material possible to be placed next to each other in order to optimize the flow properties of the material. With a B-pillar, for example, which is only preformed and which should have an unhardened foot but a firm or high-strength structure over the rest of its area, it is therefore advisable to set the temperature A in zone 1 of the furnace, in which the area of the preformed component, which will later be the column base, to a temperature as close as possible to below AC 1 . Temperature B in zone 2 of the furnace, in which the rest of the component is located, is set to a temperature as close to AC 3 as possible. After the furnace has been heated, the component is then thermoformed and hardened. The B-pillar is end-shaped and has a relatively ductile base and a solid or high-strength structure in the rest of the area.

Bevorzugt findet hierbei der letzte Warmformschritt zeitgleich mit dem Härten im Umformwerkzeug statt.The last thermoforming step is preferably carried out at the same time as the hardening Forming tool instead.

Abgesehen von einem Halbzeug aus härtbarem Stahl kann mit dem erfindungsgemäßen Verfahren auch ein Halbzeug aus bereits gehärtetem Stahl zur Herstellung eines Formbauteils mit mindestens zwei Bereichen unterschiedlicher Duktilität mit einer Erwärmung in einem Durchlaufofen verarbeitet werden. Hier besteht die Besonderheit, dass das Halbzeug bereits über seine gesamte Länge gehärtet ist. Es kann sich bei dem Halbzeug um eine Platine handeln oder um ein vorgeformtes Bauteil, das bereits in einem oder mehreren Schritten vorgeformt wurde. Insbesondere kann es sich bei der Vorformung um Kaltformschritte handeln. Sodann durchläuft das Halbzeug während des Transports durch einen Durchlaufofen gleichzeitig mindestens zwei nebeneinander in Durchlaufrichtung angeordnete Zonen des Durchlaufofens mit unterschiedlichen Temperaturniveaus. Dabei wird das Halbzeug so in den Ofen eingebracht, dass es mit dem Bereich 1, der im fertigen Endbauteil ein festes oder hochfestes Gefüge aufweisen soll, in Zone 1 des Durchlaufofens zu liegen kommt. Zone 1 wird auf Raumtemperatur oder auf eine Temperatur unter AC1 eingestellt. Dadurch bleiben die bereits vorhandenen Härtewerte des Halbzeugs im Bereich 1 weitgehend erhalten. Der Bereich 2 des Bauteils, der im fertigen Endbauteil ein duktiles Gefüge aufweisen soll, durchläuft den Ofen in Zone 2. Zone 2 ist auf eine höhere Temperatur als Zone 1, vorzugsweise auf eine Temperatur oberhalb AC1 eingestellt, so dass Bereich 2 weichgeglüht wird bis hin zu einer vollständigen Gefügeumwandlung. Dadurch stellt sich im Bereich 2 ein im Verhältnis zu Bereich 1 duktileres Gefüge ein. An diese Ofenerwärmung schließt sich dann nur noch ein Warmform und/ oder Abkühlprozess an, der die kritische Abkühlgeschwindigkeit, die zu einer erneuten Härtung des Bereich 2 führen würde, nicht erreicht.In addition to a semi-finished product made of hardenable steel, the method according to the invention can also be used to process a semi-finished product made of hardened steel to produce a molded component with at least two areas of different ductility with heating in a continuous furnace. The peculiarity here is that the semi-finished product is already hardened over its entire length. The semifinished product can be a board or a preformed component that has already been preformed in one or more steps. In particular, the preforming can be cold-forming steps. The semi-finished product then simultaneously passes through at least two zones of the continuous furnace with different temperature levels which are arranged next to one another in the direction of the transit during the transport through a continuous furnace. The semi-finished product is introduced into the furnace in such a way that it comes to rest in zone 1 of the continuous furnace with area 1, which should have a solid or high-strength structure in the finished end component. Zone 1 is set to room temperature or to a temperature below AC 1 . As a result, the existing hardness values of the semi-finished product in area 1 are largely retained. Area 2 of the component, which is to have a ductile structure in the finished end component, passes through the furnace in zone 2. Zone 2 is set to a higher temperature than zone 1, preferably to a temperature above AC 1 , so that area 2 is soft-annealed to towards a complete structural transformation. This results in a more ductile structure in area 2 than in area 1. This furnace heating is then only followed by a hot forming and / or cooling process which does not reach the critical cooling rate which would lead to a renewed hardening of area 2.

Dieses Verfahrensalternative eignet sich beispielsweise für Dual-Phasen-Stähle oder Stahlsorten, die bereits im Coil gehärtet wurden.This alternative method is suitable, for example, for dual-phase steels or Steel grades that have already been hardened in the coil.

Es gehört zum Stand der Technik eine Ofenerwärmung unter Schutzgasatmosphäre durchzuführen, um eine Reaktion des Werkstoffs mit Sauerstoff möglichst zu unterbinden. Es ist daher auch bei der hier beschriebenen Ofenerwärmung vorteilhaft, sie unter einer Schutzgasatmosphäre durchzuführen. Je nach Temperaturführung, Werkstoffeigenschaften und Bauteilanforderungen kann die Erwärmung aber auch ohne Schutzgas vorgenommen werden.Oven heating in a protective gas atmosphere is part of the prior art to carry out a reaction of the material with oxygen as possible prevention. It is therefore also with the oven heating described here advantageous to carry them out under a protective gas atmosphere. Depending on Temperature control, material properties and component requirements can Heating can also be carried out without protective gas.

Die Anzahl der Zonen, durch die das Bauteil gleichzeitig geführt wird, ist beliebig und hängt von der Anzahl der Bereiche ab, die im fertigen Bauteil ein voneinander abweichendes Gefüge erhalten sollen. Das erfindungsgemäße Verfahren macht sich hierbei das in der Massenfertigung bereits erprobte und bewährte Mittel der Ofenerwärmung zunutze. Der Durchlaufofen als solcher ist bereits auf die Massenfertigung angepasst. Der erfindungsgemäße Vorteil liegt vor allem darin, nunmehr auch eine partiell unterschiedliche Erwärmung einfach und prozesssicher in die bestehende Prozesskette einbauen zu können.The number of zones through which the component is guided is arbitrary and depends on the number of areas that are in each other in the finished part should receive a different structure. The inventive method makes itself the medium that has already been tried and tested in mass production Use oven heating. The continuous furnace as such is already on the Mass production adjusted. The main advantage of the invention is that Partially different heating is now easy and reliable in to be able to integrate the existing process chain.

Der erfindungsgemäße Durchlaufofen zur Erwärmung von metallischen Werkstücken zeichnet sich dadurch aus, dass er mit mindestens zwei in Durchlaufrichtung nebeneinander liegenden Zonen 1 und 2 versehen ist. Beide Zonen sind voneinander so durch eine thermisch isolierende Trennwand getrennt, dass ein den Ofen durchlaufendes Werkstück sich sowohl bereichsweise in Zone 1 als auch bereichsweise in Zone 2 befindet. In beiden Zonen ist eine getrennte Temperaturregelung möglich.The continuous furnace according to the invention for heating metallic workpieces is characterized by the fact that it has at least two in the direction of flow adjacent zones 1 and 2 is provided. Both zones are separated from each other by a thermally insulating partition so that the The workpiece passing through the furnace is located both in zones 1 and 2 is located in areas in Zone 2. There is a separate one in both zones Temperature control possible.

Auf die Art des Durchlaufofens kommt es hierbei nicht an. Es kann sich sowohl um einen Rollenherd-Durchlaufofen handeln, bei dem die Werkstücke auf Rollen durch den Ofen transportiert werden, als auch um einen Durchstoßofen, bei dem eine Werkstückcharge von dem Anstoß der nachfolgenden Werkstückcharge durch den Ofen geschoben wird. Das zu erwärmende Bauteil kann direkt auf den Rollen liegen oder sich auf einem Warenträger wie beispielsweise einem Gestell befinden. Der erfindungsgemäße Ofen kann als Dreherd- oder Rundtaktofen ausgestaltet sein, bei dem die Durchlaufrichtung nicht linear, sondern gebogen verläuft. Wichtig ist nur, dass der Ofen mit mindestens einer parallel zu Durchlaufrichtung verlaufenden thermisch isolierenden Trennwand versehen ist, die den Ofen in mindestens zwei in Durchlaufrichtung nebeneinander liegenden Zonen unterteilt, die getrennt voneinander regelbar sind.The type of continuous furnace is not important here. It can be both a roller hearth continuous furnace act, in which the workpieces on rollers the furnace can be transported, as well as a push-through furnace, in which a Workpiece batch from the impact of the subsequent workpiece batch by the Oven is pushed. The component to be heated can lie directly on the rollers or are on a product carrier such as a frame. The Oven according to the invention can be designed as a rotary hearth or rotary cycle oven, at which the direction of flow is not linear, but curved. The important thing is that the furnace with at least one parallel to the direction of flow Thermally insulating partition is provided, which in at least two in the oven Flow direction divided adjacent zones, which are separated are controllable from each other.

Die Trennwand trennt die beiden Zonen nicht vollständig, sondern nur insoweit, dass unterhalb der Trennwand ein Bauteil in der Art hindurchgeführt werden kann, dass es sowohl bereichsweise in Zone 1 als auch bereichsweise in Zone 2 zu liegen kommt. Um die Wärmeabstrahlung der wärmeren Zone in die kühlere Zone zu minimieren endet die Trennwand möglichst dicht über der Bauteiloberfläche. Bei dreidimensionalen vorgeformten Bauteilen ist es besonders vorteilhaft, wenn sowohl an der Ofendecke als auch am Ofenboden eine thermisch isolierende Trennwand angebracht ist, zwischen denen ein Werkstück durchlaufend transportiert werden kann. Dadurch ist es möglich, auch ein dreidimensionales Bauteil mit einer Höhenerstreckung an der gewünschten Stelle in zwei unterschiedlich erwärmte Bereiche zu trennen. Um den Ofen an verschiedene Bauteile anpassen zu können, ist es vorteilhaft wenn die Trennwand quer zur Durchlaufrichtung des Ofens versetzbar angebracht ist. Dies wird durch eine geschickte Anordnung der Heizelemente und/ oder variabel anbringbare Heizelemente ermöglicht.The partition does not completely separate the two zones, only to the extent that a component can be passed below the partition in such a way that it comes to rest in both zones 1 and 2 in zones. To minimize heat radiation from the warmer zone to the cooler zone the partition ends as close as possible to the surface of the component. at three-dimensional preformed components, it is particularly advantageous if both a thermally insulating partition on the furnace ceiling and on the furnace floor is attached, between which a workpiece can be transported continuously can. This enables a three-dimensional component with a Elevation at the desired location in two differently heated Separate areas. In order to adapt the furnace to different components, it is advantageous if the partition is transverse to the direction of the furnace is removably attached. This is done by a clever arrangement of the Heating elements and / or variably attachable heating elements allows.

Befinden sich die Werkstücke auf einem Warenträger, ist es besonders vorteilhaft, wenn an dem jeweiligen Warenträger parallel zur Durchlaufrichtung des Ofens eine thermisch isolierende Trennwand befestigt ist, die den Ofen mit dem Warenträger durchläuft. Zusätzlich kann der Ofen selbst ein oder mehrere thermisch isolierende Trennwände enthalten, so dass der Ofen insgesamt wieder in mindestens zwei Zonen eingeteilt ist.If the workpieces are on a product carrier, it is particularly advantageous if on the respective goods carrier parallel to the direction of the furnace thermally insulating partition is attached to the oven with the merchandise support passes. In addition, the furnace itself can be one or more thermally insulating Partitions included, so that the oven in total again in at least two Zones is divided.

Durch eine geeignete Regelung, Kühlung oder Isolierung in der Trennwand wird die Temperatur an der Trennwandseite zur kühleren Zone in etwa auf dem gleichen Niveau wie die Temperatur in der kühleren Zone gehalten, um eine temperaturerhöhende Wärmeabstrahlung der wärmeren Zone zu vermeiden. Zudem kann der Übergangsbereich von Zone 1 zu Zone 2 durch ein Variieren der Trennwand hinsichtlich Breite und Isolierung gestaltet sein. Dadurch kann der Temperaturgradient und damit der Gefügeübergang im Werkstück von Bereich 1 zu Bereich 2 eingestellt werden.Appropriate regulation, cooling or insulation in the partition wall ensures that Temperature on the partition wall side to the cooler zone roughly the same Level as the temperature in the cooler zone kept to a to avoid temperature-increasing heat radiation from the warmer zone. moreover the transition area from Zone 1 to Zone 2 can be varied by varying the Partition in terms of width and insulation. This allows the Temperature gradient and thus the structure transition in the workpiece from area 1 to Range 2 can be set.

Nachfolgend ist der erfindungsgemäße Ofen anhand der Figuren näher erläutert.

  • Figur 1 zeigt in Draufsicht einen Ofen 1 mit Trennwand 2, den eine B-Säule 3 durchläuft.
  • Figur 2 zeigt schematisch in Durchlaufrichtung einen Ofen 4 mit zwei Trennwänden 5, 5a, den eine Platine 7 durchläuft.
  • Figur 3 zeigt schematisch in Durchlaufrichtung einen Ofen 8 mit Trennwand 9, den ein Warenträger 11 mit einem geformten Bauteil mit Höhenerstreckung 12 und einer mitlaufenden Trennwand 9a durchläuft.
  • Figur 4 zeigt in Durchlaufrichtung einen Ofen 13, in dem eine Trennwand 14, 14a quer zur Durchlaufrichtung versetzbar angeordnet ist.
  • The furnace according to the invention is explained in more detail below with reference to the figures.
  • Figure 1 shows a top view of an oven 1 with a partition 2, through which a B-pillar 3 passes.
  • Figure 2 shows schematically in the direction of passage a furnace 4 with two partitions 5, 5a, through which a circuit board 7 passes.
  • FIG. 3 shows schematically in the direction of flow a furnace 8 with a partition 9, through which a goods carrier 11 with a shaped component with a height extension 12 and a moving partition 9a passes.
  • FIG. 4 shows a furnace 13 in the direction of passage, in which a partition 14, 14a is arranged such that it can be displaced transversely to the direction of passage.
  • In Figur 1 ist ein Ofen 1 dargestellt, der durch eine Trennwand 2 in zwei Zonen 1a und 1b aufgeteilt wird. In dem Ofen befindet sich eine B-Säule 3, die mit einem Bereich 3a, und zwar dem Säulenfuß, in Zone 1a und mit ihrem Bereich 3b, das ist die übrige Säule, in Zone 1b liegt. Die B-Säule 3 ist aus einem härtbaren Stahl mit einer AC1-Temperatur von 740° C und einer AC3-Temperatur von 850° C gefertigt und wird in ihrem Bereich 3a durch eine Temperatureinstellung in Zone 1a von etwa 700 ° C auf eine Temperatur von etwa 700° C und in ihrem Bereich 3b durch eine Temperatureinstellung in Zone 1b auf eine Temperatur von etwa 950° C auf etwa 950° C erwärmt. Bei einem nicht dargestellten sich anschließenden letzten Umformschritt verbunden mit einer Härtung im Umformwerkzeug stellt sich im Bereich 3a ein im Verhältnis zu Bereich 3b duktileres Gefüge und im Bereich 3b der B-Säule 3 ein hochfestes Gefüge ein. Folglich erhält man eine B-Säule 3 mit einem weichen Gefüge am Säulenfuß 3a.FIG. 1 shows an oven 1 which is divided into two zones 1a and 1b by a partition 2. In the furnace there is a B-pillar 3, which lies with an area 3a, namely the column base, in zone 1a and with its area 3b, that is the remaining pillar, in zone 1b. The B-pillar 3 is made of a hardenable steel with an AC 1 temperature of 740 ° C and an AC 3 temperature of 850 ° C and is in its area 3a by a temperature setting in zone 1a of about 700 ° C to one Temperature of about 700 ° C and in its area 3b heated to a temperature of about 950 ° C to about 950 ° C by a temperature setting in zone 1b. In a subsequent final shaping step (not shown) combined with hardening in the shaping tool, a structure which is more ductile in relation to area 3b and a high-strength structure is established in area 3b of the B-pillar 3. As a result, a B-pillar 3 with a soft structure at the pillar base 3a is obtained.

    In Figur 2 ist ein erfindungsgemäßer Ofen 4 mit einer an der Ofendecke 4a und einer am Ofenboden 4b befestigten Trennwand 5 und 5a in Durchlaufrichtung dargestellt. Zwischen den Trennwänden 5 und 5a besteht ein Spalt, den eine Platine 7 auf Rollen 6 durchläuft. Der Pfeil gibt dabei die Drehrichtung der Rollen 6 an. Die Platine 7 befindet sich daher sowohl in Zone 4c als auch in Zone 4d des Ofens 4. In Zone 4c des Ofens 4 herrscht eine kühlere Atmosphäre als in Zone 4d. Die Trennwände 5 und 5a sind auf der zur Zone 4c hinzeigenden Seite so isoliert, dass eine temperaturerhöhende Wärmeabstrahlung der Zone 4d in die Zone 4c möglichst vermieden wird. Die Platine 7 erwärmt sich in ihren Bereichen 7a und 7b jeweils unterschiedlich stark.FIG. 2 shows an oven 4 according to the invention with one on the oven ceiling 4a and one partition 5 and 5a attached to furnace bottom 4b in the direction of passage. There is a gap between the partitions 5 and 5a, which is a board 7 Rolls 6 passes. The arrow indicates the direction of rotation of the rollers 6. The circuit board 7 is therefore located both in zone 4c and in zone 4d of the furnace 4. In zone 4c Oven 4 has a cooler atmosphere than in Zone 4d. The partitions 5 and 5a are insulated on the side facing zone 4c so that a temperature-increasing heat radiation from zone 4d into zone 4c if possible is avoided. The circuit board 7 heats up in its regions 7a and 7b different levels.

    Figur 3 zeigt einen erfindungsgemäßen Ofen 8 in Durchlaufrichtung, den ein Warenträger 11 mit einem Bauteil 12 mit Höhenerstreckung durchläuft. Der Pfeil gibt hierbei die Drehrichtung der Rollen 10 an. Der Ofen 8 verfügt über eine Trennwand 9, die an der Ofendecke 8a befestigt ist und eine Trennwand 9b, die am Ofenboden 8d befestigt ist. Die thermische Isolation der Zonen 8b und 8c wird durch die Trennwände 9, 9a und 9b erreicht. Trennwand 9a ist dabei am Warenträger 11 befestigt und durchläuft den Ofen 8 mit dem Warenträger 11. Um eine Wärmeabstrahlung der wärmeren Zone 8b in die kühlere Zone 8c zu vermeiden, muss hierbei Warenträger 11 an Warenträger 11 durch den Ofen 8 transportiert werden, so dass zwischen den mitlaufenden Trennwänden 9a keine Lücken entstehen. Insbesondere ein Bauteil 12 mit Höhenerstreckung lässt sich so genau dort in die Zone 8c des Ofens 8 einführen, wo im fertigen Bauteil 12 ein im Verhältnis zum Rest des Bauteils 12 duktileres Gefüge erzielt werden soll.Figure 3 shows a furnace 8 according to the invention in the direction of flow, the one Goods carrier 11 passes through with a component 12 with height extension. The arrow gives the direction of rotation of the rollers 10. The furnace 8 has a partition 9, which is attached to the furnace ceiling 8a and a partition 9b, which is on the furnace floor 8d is attached. The thermal insulation of zones 8b and 8c is due to the Partitions 9, 9a and 9b reached. The partition 9a is on the goods carrier 11 fastened and passed through the oven 8 with the goods carrier 11. To one To avoid heat radiation from the warmer zone 8b into the cooler zone 8c, In this case, the goods carrier 11 must be transported through the oven 8 to the goods carrier 11 so that there are no gaps between the moving partitions 9a arise. In particular, a component 12 with a vertical extension can be so precisely insert into zone 8c of the furnace 8 where in the finished component 12 a ratio to the rest of the component 12 more ductile structure is to be achieved.

    Figur 4 zeigt einen Ofen 13 mit einer Trennwand 14 an der Ofendecke 13a und drei an dem Ofenboden 13b befestigten Trennwänden 14a, 14b, 14c, zwischen denen Rollen 15 und eine auf diesen Rollen 15 transportierte Platine 16 durchlaufen. Die gestrichelten Linien 16a und 16b deuten die Kontur eines nicht näher dargestellten Bauteils mit Höhenerstreckung an. Um in dem Ofen 13 eine Schutzgasatmosphäre einzustellen, ist der Ofen 13 für jede Zone mit einer Zuführleitung 18 und 18a versehen, durch die der Ofenatmosphäre Stickstoff zugeführt wird. Die Trennwand 14 ist an die angedeuteten Positionen 19 und 19a versetzbar. Um die Versetzung ausführen zu können, sind die Heizelemente 17 an der Ofendecke 13a an den jeweiligen Versetzungspositionen 19 und 19a unterbrochen. Die Heizelemente 17a am Ofenboden sind ohnehin durch die Trennwände 14a, 14b, 14c getrennt ausgeführt. Durch die variabel anzubringende Trennwand 14 ist der Ofen 13 flexibel und für verschiedene Bauteile einzusetzen.Figure 4 shows a furnace 13 with a partition 14 on the furnace ceiling 13a and three partition walls 14a, 14b, 14c fastened to the furnace bottom 13b, between which Pass through rollers 15 and a board 16 transported on these rollers 15. The Dashed lines 16a and 16b indicate the contour of a not shown Component with height extension. To create a protective gas atmosphere in the furnace 13 is to be set, the furnace 13 for each zone is provided with a feed line 18 and 18a provided through which nitrogen is supplied to the furnace atmosphere. The partition 14 can be moved to the indicated positions 19 and 19a. About the transfer to be able to execute, the heating elements 17 on the furnace ceiling 13a to respective displacement positions 19 and 19a interrupted. The heating elements 17a on the furnace floor are separated anyway by the partitions 14a, 14b, 14c executed. Due to the variably attachable partition 14, the furnace 13 is flexible and use it for different components.

    Claims (12)

    Verfahren zur Herstellung eines Formbauteils (3) mit mindestens zwei Gefügebereichen unterschiedlicher Duktilität (3a, 3b) aus einem Halbzeug aus härtbarem Stahl mit einer Erwärmung in einem Durchlaufofen (1, 4) und einem Härteprozess,
    dadurch gekennzeichnet, dass als zu erwärmendes Halbzeug eine Platine (7) oder ein vorgeformtes Bauteil (3) während des Transports durch einen Durchlaufofen (1, 4) gleichzeitig mindestens zwei nebeneinander in Durchlaufrichtung angeordnete Zonen (1a, 1b, 4c, 4d) des Durchlaufofens (1, 4) mit unterschiedlichen Temperaturniveaus durchläuft, wobei eine Zone 1 (1a, 4c) auf eine Temperatur A eingestellt ist und eine andere Zone 2 (1b, 4d) auf eine Temperatur B oberhalb von Temperatur A eingestellt ist, so dass das Halbzeug (3, 7) in den Bereichen (3a, 7b), in denen es den Durchlaufofen (1, 4) in Zone 1 (1a, 4c) durchläuft, auf Temperatur A erwärmt und in den Bereichen (3b, 7a), in denen es Zone 2 (1b, 4d) durchläuft, auf Temperatur B erwärmt, und anschließend das so erwärmte Halbzeug (3, 7) einem Warmformprozess und/ oder Härteprozess unterworfen wird, wodurch sich in dem zuvor auf Temperatur A erwärmten Bereich 1 (3a, 7b) des Bauteils (3, 7) ein im Verhältnis zu dem auf Temperatur B erwärmten Bereich 2 (3b, 7a) des Bauteils (3, 7) duktileres Gefüge und im Bereich 2 (3b, 7a) des Bauteils (3, 7) ein festes oder hochfestes Gefüge einstellt.
    Method for producing a molded component (3) with at least two structural areas of different ductility (3a, 3b) from a semi-finished product made of hardenable steel with heating in a continuous furnace (1, 4) and a hardening process,
    characterized in that as a semi-finished product to be heated a plate (7) or a preformed component (3) during transport through a continuous furnace (1, 4) at the same time at least two zones (1a, 1b, 4c, 4d) of the continuous furnace arranged next to one another in the direction of flow (1, 4) passes through with different temperature levels, one zone 1 (1a, 4c) being set to a temperature A and another zone 2 (1b, 4d) being set to a temperature B above temperature A, so that the semi-finished product (3, 7) in the areas (3a, 7b) in which it passes through the continuous furnace (1, 4) in zone 1 (1a, 4c), heated to temperature A and in the areas (3b, 7a) in which it passes through zone 2 (1b, 4d), heated to temperature B, and then the semi-finished product (3, 7) thus heated is subjected to a thermoforming process and / or hardening process, as a result of which area 1 (3a, 7b ) of the component (3, 7) in relation to that on tempera B heated area 2 (3b, 7a) of the component (3, 7) more ductile structure and in the area 2 (3b, 7a) of the component (3, 7) a solid or high-strength structure.
    Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass die Temperatur A in Zone 1 (1a, 4c) des Durchlaufofens (1, 4) unter AC1 und die Temperatur B in Zone 2 (1b, 4d) des Durchlaufofens (1, 4) über AC1 eingestellt wird.
    Method according to claim 1,
    characterized in that the temperature A in zone 1 (1a, 4c) of the continuous furnace (1, 4) is set under AC 1 and the temperature B in zone 2 (1b, 4d) of the continuous furnace (1, 4) is set via AC 1 .
    Verfahren nach Anspruch 2,
    dadurch gekennzeichnet, dass die Zone 1 (1a, 4c) des Durchlaufofens (1, 4) nicht beheizt wird, wenn sich an die Ofenerwärmung kein weiterer Warmformprozess, sondern nur noch ein Härteprozess anschließt.
    Method according to claim 2,
    characterized in that zone 1 (1a, 4c) of the continuous furnace (1, 4) is not heated if no further thermoforming process follows the furnace heating, but only a hardening process.
    Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass die Temperatur A in Zone 1 (1a, 4c) des Durchlaufofens (1, 4) über AC1 aber unter AC3 und die Temperatur B in Zone 2 (1 b, 4d) des Durchlaufofens (1, 4) über AC3 eingestellt wird.
    Method according to claim 1,
    characterized in that the temperature A in zone 1 (1a, 4c) of the continuous furnace (1, 4) above AC 1 but below AC 3 and the temperature B in zone 2 (1 b, 4d) of the continuous furnace (1, 4) above AC 3 is set.
    Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass die Temperatur A in Zone 1 (1a, 4c) des Durchlaufofens (1, 4) möglichst knapp unter AC1 und die Temperatur B in Zone 2 (1b, 4d) des Durchlaufofens (1, 4) möglichst knapp über AC3 eingestellt wird.
    Method according to claim 1,
    characterized in that the temperature A in zone 1 (1a, 4c) of the continuous furnace (1, 4) as close as possible to AC 1 and the temperature B in zone 2 (1b, 4d) of the continuous furnace (1, 4) as close as possible to AC 3 is set.
    Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass der sich an die Erwärmung im Durchlaufofen (1, 4) anschließende Härteprozess zeitgleich mit einem letzten Warmformschritt im Umformwerkzeug stattfindet.
    Method according to one of the preceding claims,
    characterized in that the hardening process following the heating in the continuous furnace (1, 4) takes place simultaneously with a last hot-forming step in the forming tool.
    Verfahren zur Herstellung eines Formbauteils (3) mit mindestens zwei Bereichen unterschiedlicher Duktilität (3a, 3b) aus einem Halbzeug aus gehärtetem Stahl mit einer Erwärmung in einem Durchlaufofen (1, 4) und einem Form- und/ oder Abkühlprozess, der die kritische Abkühlgeschwindigkeit nicht erreicht,
    dadurch gekennzeichnet, dass als zu erwärmendes Halbzeug eine Platine (7) oder ein vorgeformtes Bauteil (3) während des Transports durch einen Durchlaufofen (1, 4) gleichzeitig mindestens zwei nebeneinander in Durchlaufrichtung angeordnete Zonen (1a, 1b, 4c, 4d) des Durchlaufofens (1, 4) mit unterschiedlichen Temperaturniveaus durchläuft, wobei eine Zone 1 (1b ,4d) unbeheizt oder auf eine Temperatur A eingestellt ist und eine andere Zone 2 (1a, 4c) auf eine Temperatur B oberhalb von Temperatur A eingestellt ist, so dass sich das Halbzeug in dem Bereich 1 (3b 7a), mit dem es den Durchlaufofen (1, 4) in Zone 1 (1b, 4d) durchläuft, nicht oder auf Temperatur A erwärmt und in dem Bereich 2 (3a, 7b), mit dem es Zone 2 (1a, 4c) durchläuft, auf eine Temperatur B erwärmt, wodurch in dem Bereich 1 (3b, 7a) des Halbzeugs (3, 7) ein festes oder hochfestes Gefüge erhalten bleibt und sich in dem auf Temperatur B erwärmten Bereich 2 (3a, 7b) des Halbzeugs (3, 7) ein im Verhältnis zu Bereich 1 duktileres Gefüge einstellt.
    Method for producing a molded component (3) with at least two areas of different ductility (3a, 3b) from a semi-finished product made of hardened steel with heating in a continuous furnace (1, 4) and a molding and / or cooling process that does not reach the critical cooling rate reached,
    characterized in that as a semi-finished product to be heated a plate (7) or a preformed component (3) during transport through a continuous furnace (1, 4) at the same time at least two zones (1a, 1b, 4c, 4d) of the continuous furnace arranged next to one another in the direction of flow (1, 4) passes through with different temperature levels, one zone 1 (1b, 4d) being unheated or set to a temperature A and another zone 2 (1a, 4c) being set to a temperature B above temperature A, so that the semi-finished product in area 1 (3b 7a) with which it passes through the continuous furnace (1, 4) in zone 1 (1b, 4d) does not heat up or heats up to temperature A and in area 2 (3a, 7b) which it passes through zone 2 (1a, 4c), is heated to a temperature B, as a result of which a solid or high-strength structure is retained in area 1 (3b, 7a) of the semi-finished product (3, 7) and in the area heated to temperature B. 2 (3a, 7b) of the semi-finished product (3, 7) in relation to the area 1 sets more ductile structure.
    Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass die Erwärmung unter einer Schutzgasatmosphäre stattfindet.
    Method according to one of the preceding claims,
    characterized in that the heating takes place under a protective gas atmosphere.
    Durchlaufofen (1, 4) zur Erwärmung von metallischen Werkstücken ,
    dadurch gekennzeichnet, dass der Durchlaufofen (1, 4) mit mindestens zwei in Durchlaufrichtung nebeneinander liegenden Zonen 1 (1a, 4c) und 2 (1b, 4d) versehen ist, die so voneinander durch eine thermisch isolierende Trennwand (2, 5, 5a) getrennt sind, dass ein den Ofen (1, 4) durchlaufendes Werkstück (3, 7) sich sowohl bereichsweise in Zone 1 (1a, 4c) als auch bereichsweise in Zone 2 (1b, 4d) befindet und in beiden Zonen (1a, 1b, 4c, 4d) eine getrennte Temperaturregelung möglich ist.
    Continuous furnace (1, 4) for heating metal workpieces,
    characterized in that the continuous furnace (1, 4) is provided with at least two zones 1 (1a, 4c) and 2 (1b, 4d) lying next to one another in the direction of the passage, which are thus separated from one another by a thermally insulating partition (2, 5, 5a) are separated that a workpiece (3, 7) passing through the furnace (1, 4) is located both in areas in zone 1 (1a, 4c) and in areas in zone 2 (1b, 4d) and in both zones (1a, 1b , 4c, 4d) separate temperature control is possible.
    Durchlaufofen (4) nach Anspruch 9,
    dadurch gekennzeichnet, dass sowohl an der Ofendecke (4a) als auch am Ofenboden (4b) eine thermisch isolierende Trennwand (5, 5a) angeordnet ist, zwischen denen ein Werkstück (7) durchlaufend transportiert werden kann.
    Continuous furnace (4) according to claim 9,
    characterized in that a thermally insulating partition (5, 5a) is arranged both on the furnace ceiling (4a) and on the furnace floor (4b), between which a workpiece (7) can be transported continuously.
    Durchlaufofen (13) nach Anspruch 9 oder 10,
    dadurch gekennzeichnet, dass die Trennwand (14) quer zur Durchlaufrichtung des Ofens (13) versetzbar (19, 19a) angebracht ist.
    Continuous furnace (13) according to claim 9 or 10,
    characterized in that the partition (14) is mounted transversely to the direction of passage of the furnace (13) so as to be displaceable (19, 19a).
    Durchlaufofen (8) nach einem der Ansprüche 9 bis 11,
    dadurch gekennzeichnet, dass bei einem Transport der Werkstücke (12) durch den Durchlaufofen (8) auf einem Warenträger (11) an dem Warenträger (11) parallel zur Durchlaufrichtung des Ofens (8) eine thermisch isolierende Trennwand (9a) befestigt ist.
    Continuous furnace (8) according to one of claims 9 to 11,
    characterized in that when the workpieces (12) are transported through the continuous furnace (8) on a goods carrier (11) on the goods carrier (11) parallel to the direction of passage of the furnace (8) a thermally insulating partition (9a) is attached.
    EP03026402A 2002-12-03 2003-11-19 Method for producing a formed component with at least two regions of structure having different ductility and continuous furnace therefor Withdrawn EP1426454A1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE10256621A DE10256621B3 (en) 2002-12-03 2002-12-03 Continuous furnace used in the production of vehicle components, e.g. B-columns, comprises two zones lying opposite each other and separated from each other by a thermal insulating separating wall
    DE10256621 2002-12-03

    Publications (1)

    Publication Number Publication Date
    EP1426454A1 true EP1426454A1 (en) 2004-06-09

    Family

    ID=32010501

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP03026402A Withdrawn EP1426454A1 (en) 2002-12-03 2003-11-19 Method for producing a formed component with at least two regions of structure having different ductility and continuous furnace therefor

    Country Status (3)

    Country Link
    US (2) US7540993B2 (en)
    EP (1) EP1426454A1 (en)
    DE (1) DE10256621B3 (en)

    Cited By (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102005032113B3 (en) * 2005-07-07 2007-02-08 Schwartz, Eva Thermal deformation and partial hardening apparatus, e.g. for automobile components, comprises mold of at least two parts, each formed from segments adjustable to different temperatures
    EP2110448A2 (en) 2008-04-17 2009-10-21 Schwartz, Eva Method and circulation oven for heating workpieces
    EP2336374A1 (en) 2009-12-16 2011-06-22 Schwartz, Eva Method and device for heating and partially cooling workpieces in a continuous furnace
    WO2013000001A1 (en) 2011-06-30 2013-01-03 Ebner Industrieofenbau Gesellschaft M.B.H. Method for heating a shaped component for a subsequent press hardening operation and continuous furnace for regionally heating a shaped component preheated to a predetermined temperature to a higher temperature
    US8980020B2 (en) 2009-09-01 2015-03-17 Thyssenkrupp Steel Europe Ag Method and device for producing a metal component
    CN107552622A (en) * 2016-06-30 2018-01-09 福特全球技术公司 Heating furnace module and method for drop stamping vehicle part
    WO2018109034A1 (en) * 2016-12-15 2018-06-21 Voestalpine Metal Forming Gmbh Method for producing locally hardened steel sheet components

    Families Citing this family (55)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102005001829B4 (en) * 2005-01-14 2009-05-07 Audi Ag Method for forming a circuit board
    SE0502913L (en) * 2005-12-27 2007-06-26 Aga Ab A method of adjusting the hardness of a sheet-like metal product
    US8101120B2 (en) * 2006-04-13 2012-01-24 Airbus Deutschland Gmbh Method for the heat treatment of a profile, device for the heat treatment of a profile and profile
    DE102007012180B3 (en) * 2007-03-14 2008-06-05 Andreas Breloer Heat treating method for semi-finished steel products is carried out in continuous furnace, semi-finished product being passed into first zone and then moved so that section of it is in second zone at a different temperature from first
    DE102007057855B3 (en) * 2007-11-29 2008-10-30 Benteler Automobiltechnik Gmbh Production of moldings with structure zones of different ductility comprises heat treatment of aluminum-silicon coated high-tensile steel blank, followed by treating zones at different temperature
    DE102008021492B3 (en) * 2008-04-29 2009-07-23 Benteler Automobiltechnik Gmbh Producing hardened components made of hardening steel, comprises heating components on racks in continuous furnace, molding and hardening components in thermal molding- and press hardening process and removing components from molding press
    DE102008027460B9 (en) 2008-06-09 2012-12-06 Voestalpine Stahl Gmbh Method for producing a sheet steel component with regions of different ductility
    DE102008030279A1 (en) * 2008-06-30 2010-01-07 Benteler Automobiltechnik Gmbh Partial thermoforming and curing by means of infrared lamp heating
    DE102008062270A1 (en) * 2008-12-15 2010-06-17 GM Global Technology Operations, Inc., Detroit Apparatus and method for hardening metallic workpieces
    JP4772929B2 (en) 2009-08-06 2011-09-14 新日本製鐵株式会社 Processed metal product having different strength parts by hot stamping and manufacturing method thereof
    DE102009050533A1 (en) * 2009-10-23 2011-04-28 Thyssenkrupp Sofedit S.A.S Method and hot forming plant for producing a hardened, hot formed workpiece
    WO2011057661A1 (en) * 2009-11-11 2011-05-19 Siemens Aktiengesellschaft Component having areas of different ductility and method for producing a component
    KR101171450B1 (en) * 2009-12-29 2012-08-06 주식회사 포스코 Method for hot press forming of coated steel and hot press formed prodicts using the same
    DE102010004081C5 (en) 2010-01-06 2016-11-03 Benteler Automobiltechnik Gmbh Method for thermoforming and curing a circuit board
    WO2011091983A2 (en) * 2010-01-29 2011-08-04 Tata Steel Nederland Technology Bv Process for the heat treatment of metal strip material, and strip material produced in that way
    DE102010010156A1 (en) * 2010-03-04 2011-09-08 Kirchhoff Automotive Deutschland Gmbh Process for producing a molded part with at least two structural areas of different ductility
    DE102010016945C5 (en) * 2010-05-14 2013-10-17 Kirchhoff Automotive Deutschland Gmbh Process for producing a molded part
    DE102010027179B3 (en) * 2010-07-14 2011-11-10 Benteler Automobiltechnik Gmbh Production of automotive components e.g. structural/body parts of a car, comprises heating metal part in fluidized bed and subjecting metal part to forming, hardening or aging process, and forming metal part in warm state
    DE102010027439C5 (en) * 2010-07-17 2016-03-24 Audi Ag Tower furnace for heating hardenable sheet metal blanks
    CN102373325A (en) * 2010-08-17 2012-03-14 刘丽辉 Method and device for carrying out uniform heating or differential heating on sheet steel in rapid non-deformation non-oxidation mode
    DE102010035195A1 (en) * 2010-08-24 2012-03-01 Volkswagen Ag Profile component and method for producing a profile component
    DE102010053979B4 (en) * 2010-12-09 2016-02-18 Benteler Automobiltechnik Gmbh Method for heating a circuit board with a multi-level oven
    KR101253838B1 (en) * 2010-12-27 2013-04-12 주식회사 포스코 Method for Manufacturing a Multi Physical Property Part
    CN103459616B (en) 2011-03-30 2016-03-16 塔塔钢铁荷兰科技有限责任公司 The method of thermal treatment coated metal band and heat treated coated metal band
    DE102011102167A1 (en) 2011-05-21 2012-11-22 Volkswagen Aktiengesellschaft Producing molded component with two structural regions of different ductility which are made of flat or preformed circuit board of hardenable steel, comprises heating circuit board in first region, shaping circuit board and partially curing
    DE102011051458B3 (en) 2011-06-30 2012-07-05 Benteler Automobiltechnik Gmbh Preparing press-hardened form conservations e.g. body or structure conservations of motor cars, comprises heating a blank in a liquid bath, and press-hardening the blank in a pressing tool for forming a hot-formed mold component
    EP2548975A1 (en) 2011-07-20 2013-01-23 LOI Thermprocess GmbH Method and device for producing a hardened metallic component with at least two areas of different ductility
    DE102011053340A1 (en) * 2011-09-07 2013-03-07 Roth & Rau Ag Continuous furnace of substrate processing system, has heating unit and gas supply unit that are formed inside the interior spaces
    DE102011114764B4 (en) 2011-10-01 2016-04-21 Volkswagen Aktiengesellschaft Process for the production of form-hardened components and continuous furnace for heating a board provided for molding
    KR101326411B1 (en) 2011-10-17 2013-11-20 현대하이스코 주식회사 Partial heating device and hot stamping method using the same
    DE102011056444C5 (en) * 2011-12-14 2015-10-15 Voestalpine Metal Forming Gmbh Method and device for partial hardening of sheet metal components
    DE102011057007B4 (en) * 2011-12-23 2013-09-26 Benteler Automobiltechnik Gmbh Method for producing a motor vehicle component and motor vehicle component
    DE102012102194A1 (en) * 2012-03-15 2013-09-19 Benteler Automobiltechnik Gmbh Furnace useful for thermal treatment of metallic components, comprises heat source, preferably radiant heat source provided in first temperature zone such that first portion of component is heated and/or maintained at specific temperature
    EP2639536B8 (en) * 2012-03-15 2019-06-26 Benteler Automobiltechnik GmbH Kiln assembly and method for operating the kiln assembly
    DE102012104537A1 (en) * 2012-05-25 2013-11-28 Benteler Automobiltechnik Gmbh Furnace plant and method for operating the furnace
    DE202012007777U1 (en) * 2012-06-22 2012-09-18 Steinhoff & Braun's Gmbh Device for producing a metal component
    DE102012012518A1 (en) 2012-06-22 2013-12-24 GEDIA Gebrüder Dingerkus GmbH Hot forming tool for the production of molded parts
    US20150352621A1 (en) * 2013-01-11 2015-12-10 Futaba Industrial Co., Ltd. Heating device for hot stamping
    JP5937524B2 (en) * 2013-02-01 2016-06-22 アイシン高丘株式会社 Infrared furnace, infrared heating method, and steel plate manufactured using the same
    DE102013005397B4 (en) 2013-03-28 2014-11-06 Manuela Braun Hot forming plant for steel workpieces, in particular sheet metal blanks
    DE102013107870A1 (en) 2013-07-23 2015-01-29 Benteler Automobiltechnik Gmbh Process for the production of molded components as well as molded component and continuous furnace
    MX2016006485A (en) * 2013-11-25 2016-08-05 Magna Int Inc Structural component including a tempered transition zone.
    DE102014211241A1 (en) 2014-06-12 2015-12-17 Sms Elotherm Gmbh Method and heating system for the standard heating of sheet metal blanks with formation of different temperature zones
    KR101616186B1 (en) * 2014-06-17 2016-04-28 현대제철 주식회사 Gradaion heating and hot cutting type forming apparatus and forming method
    DE102014119545A1 (en) 2014-12-23 2016-06-23 Benteler Automobiltechnik Gmbh Spring-mounted segmented hot-forming tool and method for producing a hot-formed and press-hardened steel component with a sharply bordered transition region
    DE102015221844A1 (en) 2015-11-06 2017-05-11 Volkswagen Aktiengesellschaft Apparatus and method for local heat treatment of sheet metal parts
    US10335845B2 (en) 2016-04-20 2019-07-02 Ford Global Technologies, Llc Hot-stamping furnace and method of hot stamping
    CA3056594A1 (en) 2016-11-04 2018-05-11 Nucor Corporation Multiphase, cold-rolled ultra-high strength steel
    US11021776B2 (en) 2016-11-04 2021-06-01 Nucor Corporation Method of manufacture of multiphase, hot-rolled ultra-high strength steel
    DE102018112934A1 (en) * 2018-05-30 2019-12-05 Benteler Automobiltechnik Gmbh Method for producing a motor vehicle component from a high-strength steel alloy with ductile properties and motor vehicle component
    DE102018219930A1 (en) 2018-11-21 2020-05-28 Ford Global Technologies, Llc Hot-forming and press-hardening tool and method for producing a molded component with at least two structural areas of different ductility
    DE102020103276A1 (en) 2020-02-10 2021-08-12 Benteler Automobiltechnik Gmbh Furnace for partial heating of metal components
    DE102020116593A1 (en) 2020-06-24 2021-12-30 AICHELIN Holding GmbH Heat treatment plant and process for the production of molded components
    CN114908237B (en) * 2022-05-10 2023-11-10 宣城冠晟汽车科技有限公司 Local softening device of automobile thermoforming part
    CN117568569A (en) 2022-08-08 2024-02-20 通用汽车环球科技运作有限责任公司 Method for producing high-performance press-hardened steel component

    Citations (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US5238510A (en) * 1990-08-10 1993-08-24 Bethlehem Steel Corporation Metal sheet and method for producing the same
    DE10208216C1 (en) * 2002-02-26 2003-03-27 Benteler Automobiltechnik Gmbh Production of a hardened metallic component used as vehicle component comprises heating a plate or a pre-molded component to an austenitizing temperature, and feeding via a transport path while quenching parts of plate or component
    EP1327692A2 (en) * 2002-01-11 2003-07-16 Salzgitter Flachstahl GmbH Process for manufacturing of a steel product and product obtained

    Family Cites Families (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US1949716A (en) * 1932-03-10 1934-03-06 Leeds & Northrup Co Method of and apparatus for heattreating
    US3716222A (en) * 1971-02-23 1973-02-13 Rust Furnace Co Heating furnace
    DE3441338A1 (en) * 1984-11-13 1986-05-15 Ipsen Industries International Gmbh, 4190 Kleve Process for heat-treating metallic workpieces, using a straight-flow or continuous pusher-type furnace, and equipment for carrying out this process
    GB2162208B (en) * 1984-07-20 1988-07-06 Ipsen Ind Int Gmbh Heat treatment of metal workpieces
    DE19743802C2 (en) * 1996-10-07 2000-09-14 Benteler Werke Ag Method for producing a metallic molded component
    US5972134A (en) * 1997-10-02 1999-10-26 Benteler Ag Manufacture of a metallic molded structural part
    DE20014361U1 (en) * 2000-08-19 2000-10-12 Benteler Werke Ag B-pillar for a motor vehicle

    Patent Citations (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US5238510A (en) * 1990-08-10 1993-08-24 Bethlehem Steel Corporation Metal sheet and method for producing the same
    EP1327692A2 (en) * 2002-01-11 2003-07-16 Salzgitter Flachstahl GmbH Process for manufacturing of a steel product and product obtained
    DE10208216C1 (en) * 2002-02-26 2003-03-27 Benteler Automobiltechnik Gmbh Production of a hardened metallic component used as vehicle component comprises heating a plate or a pre-molded component to an austenitizing temperature, and feeding via a transport path while quenching parts of plate or component

    Cited By (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102005032113B3 (en) * 2005-07-07 2007-02-08 Schwartz, Eva Thermal deformation and partial hardening apparatus, e.g. for automobile components, comprises mold of at least two parts, each formed from segments adjustable to different temperatures
    EP2110448A2 (en) 2008-04-17 2009-10-21 Schwartz, Eva Method and circulation oven for heating workpieces
    DE102008055980A1 (en) 2008-04-17 2009-10-29 Schwartz, Eva Process and continuous furnace for heating workpieces
    US8980020B2 (en) 2009-09-01 2015-03-17 Thyssenkrupp Steel Europe Ag Method and device for producing a metal component
    EP2336374A1 (en) 2009-12-16 2011-06-22 Schwartz, Eva Method and device for heating and partially cooling workpieces in a continuous furnace
    WO2011082934A1 (en) 2009-12-16 2011-07-14 Schwartz, Eva Method and device for heating and partially cooling work pieces in a continuous furnace
    WO2013000001A1 (en) 2011-06-30 2013-01-03 Ebner Industrieofenbau Gesellschaft M.B.H. Method for heating a shaped component for a subsequent press hardening operation and continuous furnace for regionally heating a shaped component preheated to a predetermined temperature to a higher temperature
    CN107552622A (en) * 2016-06-30 2018-01-09 福特全球技术公司 Heating furnace module and method for drop stamping vehicle part
    WO2018109034A1 (en) * 2016-12-15 2018-06-21 Voestalpine Metal Forming Gmbh Method for producing locally hardened steel sheet components

    Also Published As

    Publication number Publication date
    US7578894B2 (en) 2009-08-25
    DE10256621B3 (en) 2004-04-15
    US20080041505A1 (en) 2008-02-21
    US20040112485A1 (en) 2004-06-17
    US7540993B2 (en) 2009-06-02

    Similar Documents

    Publication Publication Date Title
    DE10256621B3 (en) Continuous furnace used in the production of vehicle components, e.g. B-columns, comprises two zones lying opposite each other and separated from each other by a thermal insulating separating wall
    DE102010004081B3 (en) Hot-forming and hardening a plain or preformed steel plate with two microstructure areas of different ductility, by section-wisely heating the microstructure areas and forming and/or areawisely hardening in a hot-forming- or hardening tool
    EP2365100B1 (en) Method and apparatus for producing a molded part having at least two structure zones with different ductilities
    DE102005032113B3 (en) Thermal deformation and partial hardening apparatus, e.g. for automobile components, comprises mold of at least two parts, each formed from segments adjustable to different temperatures
    EP2497840B2 (en) Oven system for partially heating steel blanks
    EP2227570B1 (en) Method for producing a shaped component comprising at least two joining areas having different ductility
    EP2791372B1 (en) Method and device for partially hardening sheet metal components
    EP2182082B2 (en) Method and device for tempering a steel sheet body
    DE102007012180B3 (en) Heat treating method for semi-finished steel products is carried out in continuous furnace, semi-finished product being passed into first zone and then moved so that section of it is in second zone at a different temperature from first
    EP2143808A1 (en) Partial hot forming and hardening with infrared lamp heating
    EP2864506B1 (en) Method and device for producing a press-hardened metal component
    EP2896466A1 (en) Method and device for producing a metal component
    EP2993241A1 (en) Method and press for manufacturing cured sheet metal components, in sections at least
    EP2548975A1 (en) Method and device for producing a hardened metallic component with at least two areas of different ductility
    WO2015110456A1 (en) Heat treatment device
    EP3420111B1 (en) Process for targeted heat treatment of individual component zones
    DE102011102167A1 (en) Producing molded component with two structural regions of different ductility which are made of flat or preformed circuit board of hardenable steel, comprises heating circuit board in first region, shaping circuit board and partially curing
    DE102009051822B3 (en) Method for the production of sheet metal plates with partial different stability characteristics, comprises heating a plate at a temperature, where the heated plate is brought to a shaping tool and then shaped and quenched
    WO2018109034A1 (en) Method for producing locally hardened steel sheet components
    DE102010027179B3 (en) Production of automotive components e.g. structural/body parts of a car, comprises heating metal part in fluidized bed and subjecting metal part to forming, hardening or aging process, and forming metal part in warm state
    WO2011082934A1 (en) Method and device for heating and partially cooling work pieces in a continuous furnace
    WO2023284905A1 (en) Multi-zone heating process, heating apparatus and process for producing a motor vehicle component
    WO2019120858A1 (en) Method for producing a profiled component, and profiled component

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

    18W Application withdrawn

    Effective date: 20040917