EP2227570B1 - Method for producing a shaped component comprising at least two joining areas having different ductility - Google Patents

Method for producing a shaped component comprising at least two joining areas having different ductility Download PDF

Info

Publication number
EP2227570B1
EP2227570B1 EP08854114.9A EP08854114A EP2227570B1 EP 2227570 B1 EP2227570 B1 EP 2227570B1 EP 08854114 A EP08854114 A EP 08854114A EP 2227570 B1 EP2227570 B1 EP 2227570B1
Authority
EP
European Patent Office
Prior art keywords
temperature
blank
furnace
zone
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08854114.9A
Other languages
German (de)
French (fr)
Other versions
EP2227570A1 (en
Inventor
Otto Buschsieweke
Stefan Adelbert
Johannes Böke
Markus Pellmann
Jürgen Krogmeier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Benteler Automobiltechnik GmbH
Original Assignee
Benteler Automobiltechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39777859&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2227570(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Benteler Automobiltechnik GmbH filed Critical Benteler Automobiltechnik GmbH
Publication of EP2227570A1 publication Critical patent/EP2227570A1/en
Application granted granted Critical
Publication of EP2227570B1 publication Critical patent/EP2227570B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/02Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity of multiple-track type; of multiple-chamber type; Combinations of furnaces
    • F27B9/028Multi-chamber type furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Definitions

  • the invention relates to a method for producing a molded component having at least two structural regions of different ductility from a metallic circuit board separated from strip material, in which the board is heated differently in regions and then subjected to a thermoforming process for the purpose of forming into the molded component (preamble of claims 1, 2 and 3) ).
  • the DE 102 56 621 B3 describes a method for producing a molded component having at least two structural regions of different ductility and a continuous furnace for this process.
  • a semifinished product made of a hardenable steel passes through a continuous furnace with at least two zones arranged side by side in the direction of passage and with different temperature levels.
  • the semi-finished product is different heated so that set in a subsequent thermoforming process two microstructures of different ductility.
  • a method for producing a molded component with at least two structural areas of different ductility known.
  • a semi-finished product made of a hardenable steel passes through a heating device with a homogeneous temperature distribution and is heated in this completely austenitizing.
  • a portion of the first type of semifinished product is cooled during its further transport so that a transformation of the base material of austenite into ferrite and / or pearlite can take place. Consequently, no or only small amounts of martensite are formed during a subsequent thermoforming process. Consequently, the portion of the first type has a high ductility.
  • the temperature is kept just high enough that in the subsequent thermoforming process sufficient martensite components are formed. Consequently, the partial area of the second type has lower ductility properties compared to the partial area of the first type, but higher strength.
  • WO 2005/009642 A1 shows a method in which a semifinished product from a high-strength boron steel with an Al / Si precoating in a cold forming process, in particular a drawing process, first formed into a component blank, then cut this component blank edge, then the trimmed component blank heated and then press-hardened in a hot-forming tool.
  • This press-hardened component blank is ultimately to be coated in a further coating step with a corrosion-protecting second layer.
  • the pre-coating ie an Al / Si (aluminum-containing) coating, prevents decarburization of the material during curing.
  • the pre-coating should avoid scaling during the hardening process, so that the Requirements for an inert atmosphere during curing can be reduced. In the case of Al / Si coatings, however, as a rule no inert atmosphere is necessary.
  • the invention is - based on the prior art - based on the object to provide a method for producing a molded component having at least two structural areas of different ductility, wherein on a scaling-based problems are avoided.
  • a first solution of the problem underlying the invention consists in the features of claim 1.
  • a material separated board first completely homogeneous heated to such a temperature and held for a certain time at this temperature level that forms a diffusion layer as corrosion relationship scale protection layer, wherein material from the coating diffuses into the base material.
  • the heating temperature is about 830 ° C to 950 ° C, preferably about 920 ° C.
  • This homogeneous heating is advantageously carried out in a first zone of a continuous furnace having a plurality of temperature zones.
  • a first type of board in a second zone of the furnace is cooled down to a temperature at which austenite decomposes. This is done at about 550 ° C to 700 ° C, preferably about 625 ° C. This lowered temperature level is maintained for a certain time, so that the decomposition of austenite also proceeds properly.
  • the temperature is kept just high enough in at least one area of the second type that sufficient martensite portions can still be formed in the subsequent hot forming in a corresponding press.
  • This temperature is 830 ° C to 950 ° C, preferably about 900 ° C.
  • the regions of the first and second types of the molded component have different ductility properties, with the region of the second type having a lower ductility compared to the first type, but higher strength properties.
  • the molded components produced in this way can be specifically adapted to specific requirements with regard to specific sections, to which they must comply in their capacity as structural component, for example as part of a vehicle body.
  • a second solution of the problem underlying the invention consists in the features of claim 2.
  • strip material from a high-strength boron steel provided with an Al / Si coating in a pre-furnace is continuously alloyed through in a first working step and then cooled.
  • the temperature is 830 ° C to 950 ° C, preferably about 920 ° C.
  • each severed board is transferred to a two-zone furnace.
  • a region of the second type of the board is austenitized at a temperature of about 830 ° C to 950 ° C, preferably about 930 ° C.
  • the area of the first kind is heated to a maximum temperature below the austenitizing temperature. This is about 550 ° C to 700 ° C, preferably about 680 ° C.
  • This type of heat treatment means that the regions of the second type of the molded components, which are ultimately produced from the boards in a thermoforming process, have low ductility properties compared to the regions of the first type, but higher strength properties.
  • a third solution of the problem underlying the invention consists in the features of claim 3.
  • each board in a second step in a Vorofen to a temperature of about 830 ° C to 950 ° C, preferably about 920 ° C, homogeneously heated, held for a certain time at this temperature level and then cooled again.
  • the formation of a diffusion layer takes place as a corrosion or scale protection layer from the Al / Si coating of the strip material.
  • each board is then transferred to a two-zone furnace and returned to a temperature of about 550 ° C to 700 ° C, preferably about 680 ° C, in a first zone of the furnace in a first zone of the furnace. heated.
  • a second type zone in a second zone of the furnace is heated to a temperature of 830 ° C to 950 ° C, preferably about 920 ° C.
  • the board is formed in a thermoforming process in a molding component.
  • the mold member then has lower ductility properties, but higher strength properties, with respect to the second type region compared to the first type region.
  • the local cooling of the area of the first type of board after heating can take place in that the area of the first type is briefly brought into contact with cooling jaws ,
  • this can be done according to claim 6, characterized in that nitrogen is used as the gas.
  • FIGS. 1 to 3 1 denotes a shaped component with two structural regions 2, 3 of different ductility.
  • the molded component 1 is the B-pillar of a vehicle body not otherwise shown.
  • the production of the molded component 1 takes place from a high-strength boron steel provided with an Al / Si coating.
  • a strip material 4 made of such a steel is according to FIG. 1 wrapped into a coil 5.
  • the strip material 4 is then withdrawn continuously from this coil 5 and passed through a punch 6.
  • In the punch 6 boards 7 are separated from the strip material 4 and these then fed to a three temperature zones 8, 9, 10 having continuous furnace 11.
  • each board 7 is heated to a temperature of about 830 ° C to 950 ° C, preferably 920 ° C, completely homogeneous and kept at this temperature level over a certain time t ( FIG. 2 ).
  • an area 12 of the first type of the board 7 in a second zone 9 of the continuous furnace 11 is cooled down to a temperature of about 550 ° C to 700 ° C, preferably about 625 ° C, and over a certain time t 1 at this lowered temperature level held.
  • an area 13 of the second type of the board 7 in a third zone 10 of the continuous furnace 11 is maintained at a temperature level of about 830 ° C. to 950 ° C., preferably about 900 ° C.
  • the heat-treated board 7 is then thermoformed in a press not shown in detail to the mold component 1.
  • the temperature profile over time in the passage of the board 7 through the continuous furnace 11 with respect to the first type area 12 and the second area 13 of the board 7 is shown, the lower curve 14, the heat treatment of the area 12 of the first kind , ie the temperature profile of the "soft" section of a board 7, and the upper curve 15 the heat treatment of the area 13 of the second kind, Consequently, the temperature profile of the "cured" section of a board 7, show.
  • FIG. 2 is a method for producing a molded component 1 with two structural areas 2, 3 illustrated different ductility, in which first strip material 4 is drawn from a provided with an Al / Si coating boron steel from a coil 5 and passed through a pre-furnace 16.
  • the strip material 4 is heated homogeneously to a temperature of about 830 ° C to 950 ° C, preferably about 920 ° C, and maintained at this temperature level for a certain time.
  • the thus heat-treated strip material 4 is wound into a coil 17. From this coil 17, the heat-treated strip material 4 is fed to a punch 18, where 4 blanks 7 are separated from the strip material.
  • the strip material 4 can also be cooled immediately after leaving the pre-furnace 16 and then fed to the punch 18.
  • These boards 7 from the pretreated strip material 4 are then transferred to a two-zone furnace 19 and herein in a first zone 20 of the furnace 19 at a temperature of about 550 ° C to 700 ° C, preferably in a first type zone 12 about 680 ° C, as well as with respect to a region 13 of the second kind at the same time in a second zone 21 of the furnace 19 to a temperature of about 830 ° C brought to 950 ° C.
  • the heat-treated blanks 7 in this manner are finally formed in a hot-forming process (not shown in detail) into shaped components 1 having two different structural regions 2, 3.
  • the lower curve 22 in the temperature-time diagram 23 of FIG. 2 shows in this connection the temperature profile in the area 12 of the first type of the board 7 and the upper curve 24 the temperature profile in the area 13 of the second type of each board 7.
  • FIG. 4 illustrates how strip material 4 made of boron steel provided with an Al / Si coating is drawn off a coil 5 and fed directly to a punch 18.
  • the punch 18 are from the strip material 4th Cut boards 7 and then fed to a pre-furnace 16, where the boards 7 are heated to a temperature of about 830 ° C to 950 ° C, preferably about 920 ° C, homogeneously and kept at a certain time t 2 at this temperature level.
  • the thus heat-treated blanks 7 are then transferred to the above-mentioned two-zone furnace 19 and here in the 1st zone 20 with respect to a region 12 of the first kind, as described, to a temperature of about 550 ° C to 700 ° C, preferably about 680 ° C, as well as with respect to a region 13 of the second kind at the same time brought in the second zone 21 of the furnace 19 to a temperature of about 830 ° C to 950 ° C.
  • the temperature-time graph 23 corresponds to that of FIG. 2 .
  • the thus heat-treated blanks 7 are finally formed in a thermoforming process to form components 1 with two different structural areas 2, 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines Formbauteils mit mindestens zwei Gefügebereichen unterschiedlicher Duktilität aus einer von Bandmaterial abgetrennten metallischen Platine, bei welchem die Platine bereichsweise unterschiedlich erwärmt und dann einem Warmformprozess zwecks Umformen in den Formbauteil unterworfen wird (Oberbegriff der Ansprüche 1, 2 und 3).The invention relates to a method for producing a molded component having at least two structural regions of different ductility from a metallic circuit board separated from strip material, in which the board is heated differently in regions and then subjected to a thermoforming process for the purpose of forming into the molded component (preamble of claims 1, 2 and 3) ).

Die DE 102 56 621 B3 beschreibt ein Verfahren zur Herstellung eines Formbauteils mit mindestens zwei Gefügebereichen unterschiedlicher Duktilität und einen Durchlaufofen für dieses Verfahren. Gemäß diesem Vorschlag durchläuft ein Halbzeug aus einem härtbaren Stahl einen Durchlaufofen mit mindestens zwei nebeneinander in Durchlaufrichtung angeordneten Zonen mit unterschiedlichen Temperaturniveaus. Das Halbzeug wird dabei unterschiedlich hoch erwärmt, so dass sich bei einem anschließenden Warmformprozess zwei Gefügebereiche unterschiedlicher Duktilität einstellen.The DE 102 56 621 B3 describes a method for producing a molded component having at least two structural regions of different ductility and a continuous furnace for this process. According to this proposal, a semifinished product made of a hardenable steel passes through a continuous furnace with at least two zones arranged side by side in the direction of passage and with different temperature levels. The semi-finished product is different heated so that set in a subsequent thermoforming process two microstructures of different ductility.

Auch aus der DE 102 08 216 C1 ist ein Verfahren zur Herstellung eines Formbauteils mit mindestens zwei Gefügebereichen unterschiedlicher Duktilität bekannt. Hierbei durchläuft ein Halbzeug aus einem härtbaren Stahl eine Erwärmungseinrichtung mit homogener Temperaturverteilung und wird in dieser komplett auf Austenitisierungstemperatur erwärmt. Anschließend wird ein Teilbereich erster Art des Halbzeugs während seines Weitertransports derart abgekühlt, dass eine Umwandlung des Grundwerkstoffs von Austenit in Ferrit und/oder Perlit erfolgen kann. Mithin entstehen bei einem anschließenden Warmformprozess keine oder nur geringe Martensitanteile. Folglich weist der Teilbereich erster Art eine hohe Duktilität auf. Gleichzeitig wird während des Transports in dem anderen Teilbereich zweiter Art des Halbzeugs die Temperatur gerade so hoch gehalten, dass bei dem anschließenden Warmformprozess noch ausreichend Martensitanteile entstehen. Demzufolge weist der Teilbereich zweiter Art im Vergleich zu dem Teilbereich erster Art geringere Duktilitätseigenschafte, aber dafür eine höhere Festigkeit auf.Also from the DE 102 08 216 C1 is a method for producing a molded component with at least two structural areas of different ductility known. Here, a semi-finished product made of a hardenable steel passes through a heating device with a homogeneous temperature distribution and is heated in this completely austenitizing. Subsequently, a portion of the first type of semifinished product is cooled during its further transport so that a transformation of the base material of austenite into ferrite and / or pearlite can take place. Consequently, no or only small amounts of martensite are formed during a subsequent thermoforming process. Consequently, the portion of the first type has a high ductility. At the same time during transport in the other part of the second type of semi-finished product, the temperature is kept just high enough that in the subsequent thermoforming process sufficient martensite components are formed. Consequently, the partial area of the second type has lower ductility properties compared to the partial area of the first type, but higher strength.

Obwohl gemäß beiden vorstehend beschriebenen Verfahren die Erwärmung in einem Ofen unter Stickstoffatmosphäre durchgeführt wird, kann nicht verhindert werden, dass das jeweilige Halbzeug während seiner Verlagerung vom Ofen zu einer Umformpresse und auch während des Umformprozesses verzundert.Although the heating in a furnace under a nitrogen atmosphere is carried out according to both of the methods described above, it is not possible to prevent the respective semifinished product from scaling during its displacement from the furnace to a forming press and also during the forming process.

Aus der WO 2005/009642 A1 geht ein Verfahren hervor, bei welchem ein Halbzeug aus einem hochfesten Borstahl mit einer Al/Si-Vorbeschichtung in einem Kaltumformverfahren, insbesondere einem Ziehverfahren, zunächst in einen Bauteil-Rohling umgeformt, anschließend dieser Bauteil-Rohling randseitig beschnitten, dann der beschnittene Bauteil-Rohling erwärmt und anschließend in einem Warmumform-Werkzeug pressgehärtet wird. Dieser pressgehärtete Bauteil-Rohling soll letztlich in einem weiteren Beschichtungsschritt mit einer vor Korrosion schützenden zweiten Schicht überzogen werden. Auch heißt es in dieser Druckschrift, dass die Vorbeschichtung, also eine AI/Si- (aluminiumhaltige) Beschichtung, eine Entkohlung des Werkstoffs beim Härten verhindert. Ferner soll die Vorbeschichtung ein Verzundern beim Härteprozess vermeiden, so dass die Anforderungen an eine inerte Atmosphäre beim Härten verringert werden können. Bei Al/Si-Beschichtungen ist aber in der Regel keine inerte Atmosphäre notwendig.From the WO 2005/009642 A1 shows a method in which a semifinished product from a high-strength boron steel with an Al / Si precoating in a cold forming process, in particular a drawing process, first formed into a component blank, then cut this component blank edge, then the trimmed component blank heated and then press-hardened in a hot-forming tool. This press-hardened component blank is ultimately to be coated in a further coating step with a corrosion-protecting second layer. It also states in this document that the pre-coating, ie an Al / Si (aluminum-containing) coating, prevents decarburization of the material during curing. Furthermore, the pre-coating should avoid scaling during the hardening process, so that the Requirements for an inert atmosphere during curing can be reduced. In the case of Al / Si coatings, however, as a rule no inert atmosphere is necessary.

Diese Aussagen geben jedoch keine Hinweise an den zuständigen Fachmann, eine Platine in einem Ofen mit mehreren Temperaturzonen hinsichtlich bestimmter Bereiche der Platine gezielt wärmezubehandeln.However, these statements do not give any indication to the competent person skilled in the art to heat-treat a board in a furnace with a plurality of temperature zones with regard to specific areas of the board.

Der Erfindung liegt - ausgehend vom Stand der Technik - die Aufgabe zu Grunde, ein Verfahren zur Herstellung eines Formbauteils mit mindestens zwei Gefügebereichen unterschiedlicher Duktilität zu schaffen, bei welchem auf einer Verzunderung basierende Probleme vermieden werden.The invention is - based on the prior art - based on the object to provide a method for producing a molded component having at least two structural areas of different ductility, wherein on a scaling-based problems are avoided.

Eine erste Lösung der der Erfindung zu Grunde liegenden Aufgabe besteht in den Merkmalen des Anspruchs 1.A first solution of the problem underlying the invention consists in the features of claim 1.

Danach wird in der Anwendung auf einen Formbauteil aus einem mit einer AI/Si-Beschichtung versehenen hochfesten Borstahl eine von Bandmaterial aus einem derartigen Werkstoff abgetrennte Platine zunächst komplett homogen auf eine solche Temperatur erwärmt und über eine bestimmte Zeit auf diesem Temperaturniveau gehalten, dass sich eine Diffusionsschicht als Korrosionsbeziehungsweise Zunderschutzschicht bildet, wobei Material aus der Beschichtung in den Grundwerkstoff eindiffundiert. Die Erwärmungstemperatur beträgt etwa 830 °C bis 950 °C, vorzugsweise etwa 920 °C. Diese homogene Erwärmung wird vorteilhaft in einer 1. Zone eines mehrere Temperaturzonen aufweisenden Durchlaufofens durchgeführt. Im Anschluss an diesen Verfahrensschritt wird ein Bereich erster Art der Platine in einer 2. Zone des Ofens auf eine Temperatur heruntergekühlt, bei der Austenit zerfällt. Dies erfolgt bei etwa 550 °C bis 700 °C, vorzugsweise etwa 625 °C. Dieses abgesenkte Temperaturniveau wird für eine bestimmte Zeit gehalten, so dass der Zerfall von Austenit auch einwandfrei abläuft.Thereafter, in the application to a molded component made of a high-strength boron steel provided with an Al / Si coating, one of strip material Such a material separated board first completely homogeneous heated to such a temperature and held for a certain time at this temperature level that forms a diffusion layer as corrosion relationship scale protection layer, wherein material from the coating diffuses into the base material. The heating temperature is about 830 ° C to 950 ° C, preferably about 920 ° C. This homogeneous heating is advantageously carried out in a first zone of a continuous furnace having a plurality of temperature zones. Following this process step, a first type of board in a second zone of the furnace is cooled down to a temperature at which austenite decomposes. This is done at about 550 ° C to 700 ° C, preferably about 625 ° C. This lowered temperature level is maintained for a certain time, so that the decomposition of austenite also proceeds properly.

Gleichzeitig mit dem lokalen Abkühlen des Bereichs erster Art der Platine wird in einer 3. Zone des Ofens in wenigstens einem Bereich zweiter Art die Temperatur gerade so hoch gehalten, dass bei dem sich anschließenden Warmumformen in einer entsprechenden Presse noch ausreichend Martensitanteile entstehen können. Diese Temperatur liegt bei 830 °C bis 950 °C, vorzugsweise etwa 900 °C.Simultaneously with the local cooling of the area of the first type of board, in a third zone of the furnace, the temperature is kept just high enough in at least one area of the second type that sufficient martensite portions can still be formed in the subsequent hot forming in a corresponding press. This temperature is 830 ° C to 950 ° C, preferably about 900 ° C.

Auf diese Weise besitzen die Bereiche erster und zweiter Art des Formbauteils unterschiedliche Duktilitätseigenschaften, wobei der Bereich zweiter Art im Vergleich zu dem Bereich erster Art zwar eine geringere Duktilität, jedoch dafür höhere Festigkeitseigenschaften aufweist.In this way, the regions of the first and second types of the molded component have different ductility properties, with the region of the second type having a lower ductility compared to the first type, but higher strength properties.

Die derartig gefertigten Formbauteile können demzufolge bezüglich konkreter Abschnitte gezielt den Anforderungen angepasst werden, denen sie in ihrer Eigenschaft als Strukturbauteil, beispielsweise als Bestandteil einer Fahrzeugkarosserie, gerecht werden müssen.Consequently, the molded components produced in this way can be specifically adapted to specific requirements with regard to specific sections, to which they must comply in their capacity as structural component, for example as part of a vehicle body.

Eine zweite Lösung der der Erfindung zu Grunde liegenden Aufgabe besteht in den Merkmalen des Anspruchs 2.A second solution of the problem underlying the invention consists in the features of claim 2.

Zur Bildung einer Diffusionsschicht als Korrosions- beziehungsweise Zunderschutzschicht wird hierbei in einem ersten Arbeitsschritt Bandmaterial aus einem mit einer Al/Si-Beschichtung versehenen hochfesten Borstahl in einem Vorofen im Durchlauf durchlegiert und dann abgekühlt. Die Temperatur beträgt 830 °C bis 950 °C, vorzugsweise etwa 920 °C.In order to form a diffusion layer as a corrosion or scale protection layer, strip material from a high-strength boron steel provided with an Al / Si coating in a pre-furnace is continuously alloyed through in a first working step and then cooled. The temperature is 830 ° C to 950 ° C, preferably about 920 ° C.

Dann werden in einem weiteren Arbeitsschritt Platinen von diesem durchlegierten Bandmaterial abgetrennt. Anschließend wird jede abgetrennte Platine in einen Zwei-Zonen-Ofen überführt. Hierbei wird ein Bereich zweiter Art der Platine bei einer Temperatur von etwa 830 °C bis 950 °C, vorzugsweise etwa 930 °C, austenitisiert. Der Bereich erster Art wird maximal auf eine Temperatur unter der Austenitisierungstemperatur erwärmt. Diese beträgt etwa 550 °C bis 700 °C, vorzugsweise etwa 680 °C.Then boards are separated from this durchlegierten strip material in a further step. Subsequently, each severed board is transferred to a two-zone furnace. In this case, a region of the second type of the board is austenitized at a temperature of about 830 ° C to 950 ° C, preferably about 930 ° C. The area of the first kind is heated to a maximum temperature below the austenitizing temperature. This is about 550 ° C to 700 ° C, preferably about 680 ° C.

Diese Art der Wärmebehandlung führt dazu, dass die Bereiche zweiter Art der letztlich in einem Warmformprozess aus den Platinen gefertigten Formbauteile im Vergleich zu den Bereichen erster Art geringe Duktilitätseigenschaften, dafür aber höhere Festigkeitseigenschaften aufweisen.This type of heat treatment means that the regions of the second type of the molded components, which are ultimately produced from the boards in a thermoforming process, have low ductility properties compared to the regions of the first type, but higher strength properties.

Eine dritte Lösung der der Erfindung zu Grunde liegenden Aufgabe besteht in den Merkmalen des Anspruchs 3.A third solution of the problem underlying the invention consists in the features of claim 3.

Hierbei werden in der Anwendung auf einen Formbauteil aus einem mit einer Al/Si-Beschichtung versehenen hochfesten Borstahl in einem ersten Arbeitsschritt Platinen von Bandmaterial aus einem derartigen Werkstoff abgetrennt. Anschließend wird jede Platine in einem zweiten Arbeitsschritt in einem Vorofen auf eine Temperatur von etwa 830 °C bis 950 °C, vorzugsweise etwa 920 °C, homogen erwärmt, über eine bestimmte Zeit auf diesem Temperaturniveau gehalten und dann wieder abgekühlt. Hierbei erfolgt die Bildung einer Diffusionsschicht als Korrosions- beziehungsweise Zunderschutzschicht aus der Al/Si-Beschichtung des Bandmaterials. In einem dritten Arbeitsschritt wird dann jede Platine in einen Zwei-Zonen-Ofen überführt und hinsichtlich eines Bereichs erster Art in einer 1.Zone des Ofens wieder auf eine Temperatur von etwa 550 °C bis 700 °C, vorzugsweise etwa 680 °C, erwärmt. Gleichzeitig wird ein Bereich zweiter Art in einer 2. Zone des Ofens auf eine Temperatur von 830 °C bis 950 °C, vorzugsweise etwa 920 °C, erwärmt. Letztlich wird die Platine in einem Warmformprozess in ein Formbauteil umgeformt. Das Formbauteil weist dann hinsichtlich des Bereichs zweiter Art im Vergleich zu dem Bereich erster Art geringere Duktilitätseigenschaften, jedoch höhere Festigkeitseigenschaften auf.Here, in the application to a molded component made of a high-strength boron steel provided with an Al / Si coating, in a first step blanks of strip material are separated from such a material. Subsequently, each board in a second step in a Vorofen to a temperature of about 830 ° C to 950 ° C, preferably about 920 ° C, homogeneously heated, held for a certain time at this temperature level and then cooled again. Here, the formation of a diffusion layer takes place as a corrosion or scale protection layer from the Al / Si coating of the strip material. In a third step, each board is then transferred to a two-zone furnace and returned to a temperature of about 550 ° C to 700 ° C, preferably about 680 ° C, in a first zone of the furnace in a first zone of the furnace. heated. At the same time, a second type zone in a second zone of the furnace is heated to a temperature of 830 ° C to 950 ° C, preferably about 920 ° C. Ultimately, the board is formed in a thermoforming process in a molding component. The mold member then has lower ductility properties, but higher strength properties, with respect to the second type region compared to the first type region.

Zur beschleunigten Abkühlung auf die Umwandlungstemperatur, bei der Austenit in Ferrit und Perlit zerfällt, kann nach den Merkmalen des Anspruchs 4 die lokale Abkühlung des Bereichs erster Art der Platine nach der Erwärmung dadurch erfolgen, dass der Bereich erster Art kurzzeitig mit Kühlbacken in Kontakt gebracht wird.For accelerated cooling to the transition temperature at which austenite decomposes into ferrite and pearlite, according to the features of claim 4, the local cooling of the area of the first type of board after heating can take place in that the area of the first type is briefly brought into contact with cooling jaws ,

Gemäß den Merkmalen des Anspruchs 5 ist es aber auch möglich, dass nach der Erwärmung der Bereich erster Art der Platine mit gekühltem Gas angeblasen wird.According to the features of claim 5, it is also possible that after heating the area of the first type of board is cooled with cooled gas.

Vorzugsweise kann dies nach Anspruch 6 dadurch erfolgen, dass als Gas Stickstoff verwendet wird.Preferably, this can be done according to claim 6, characterized in that nitrogen is used as the gas.

Die Erfindung ist nachfolgend anhand von in den Zeichnungen dargestellten Ausführungsbeispielen näher erläutert. Es zeigen:

Figur 1
im Schema die Herstellung eines Formbauteils mit zwei Gefügebereichen unterschiedlicher Duktilität;
Figur 2
im Schema ein weiteres Verfahren zur Herstellung eines Formbauteils mit zwei Gefügebereichen unterschiedlicher Duktilität und
Figur 3
im Schema ein drittes Verfahren zur Herstellung eines Formbauteils mit zwei Gefügebereichen unterschiedlicher Duktilität.
The invention is explained in more detail with reference to exemplary embodiments illustrated in the drawings. Show it:
FIG. 1
in the diagram, the production of a molded component with two structural areas of different ductility;
FIG. 2
in Scheme another method for producing a molded component with two structural areas of different ductility and
FIG. 3
in the diagram, a third method for producing a molded component with two structural areas of different ductility.

In den Figuren 1 bis 3 ist mit 1 ein Formbauteil mit zwei Gefügebereichen 2, 3 unterschiedlicher Duktilität bezeichnet. Bei dem Formbauteil 1 handelt es sich um die B-Säule einer ansonsten nicht näher dargestellten Fahrzeugkarosserie.In the FIGS. 1 to 3 1 denotes a shaped component with two structural regions 2, 3 of different ductility. The molded component 1 is the B-pillar of a vehicle body not otherwise shown.

Die Fertigung des Formbauteils 1 erfolgt aus einem mit einer AI/Si-Beschichtung versehenen hochfesten Borstahl.The production of the molded component 1 takes place from a high-strength boron steel provided with an Al / Si coating.

Ein Bandmaterial 4 aus einem derartigen Stahl ist entsprechend der Figur 1 zu einem Coil 5 gewickelt. Das Bandmaterial 4 wird dann von diesem Coil 5 kontinuierlich abgezogen und durch eine Stanze 6 geführt. In der Stanze 6 werden Platinen 7 von dem Bandmaterial 4 abgetrennt und diese danach einem drei Temperaturzonen 8, 9, 10 aufweisenden Durchlaufofen 11 zugeführt.A strip material 4 made of such a steel is according to FIG. 1 wrapped into a coil 5. The strip material 4 is then withdrawn continuously from this coil 5 and passed through a punch 6. In the punch 6 boards 7 are separated from the strip material 4 and these then fed to a three temperature zones 8, 9, 10 having continuous furnace 11.

In einer 1. Zone 8 des Durchlaufofens 11 wird jede Platine 7 auf eine Temperatur von etwa 830 °C bis 950 °C, vorzugsweise 920 °C, komplett homogen erwärmt und über eine bestimmte Zeit t auf diesem Temperaturniveau gehalten (Figur 2).In a first zone 8 of the continuous furnace 11, each board 7 is heated to a temperature of about 830 ° C to 950 ° C, preferably 920 ° C, completely homogeneous and kept at this temperature level over a certain time t ( FIG. 2 ).

Anschließend wird ein Bereich 12 erster Art der Platine 7 in einer 2. Zone 9 des Durchlaufofens 11 auf eine Temperatur von etwa 550 °C bis 700 °C, vorzugsweise etwa 625 °C, heruntergekühlt und über eine bestimmte Zeit t1 auf diesem abgesenkten Temperaturniveau gehalten. Gleichzeitig wird ein Bereich 13 zweiter Art der Platine 7 in einer 3. Zone 10 des Durchlaufofens 11 auf einem Temperaturniveau von etwa 830 °C bis 950 °C, vorzugsweise etwa 900 °C, gehalten.Subsequently, an area 12 of the first type of the board 7 in a second zone 9 of the continuous furnace 11 is cooled down to a temperature of about 550 ° C to 700 ° C, preferably about 625 ° C, and over a certain time t 1 at this lowered temperature level held. At the same time, an area 13 of the second type of the board 7 in a third zone 10 of the continuous furnace 11 is maintained at a temperature level of about 830 ° C. to 950 ° C., preferably about 900 ° C.

Nach dem Austritt aus dem Durchlaufofen 11 wird dann die wärmebehandelte Platine 7 in einer nicht näher dargestellten Presse zum Formbauteil 1 warmumgeformt.After leaving the continuous furnace 11, the heat-treated board 7 is then thermoformed in a press not shown in detail to the mold component 1.

Unterhalb und oberhalb des Durchlaufofens 11 ist der Temperaturverlauf über die Zeit beim Durchgang der Platine 7 durch den Durchlaufofen 11 hinsichtlich des Bereichs 12 erster Art und des Bereichs 13 zweiter Art der Platine 7 dargestellt, wobei die untere Kurve 14 die Wärmebehandlung des Bereichs 12 erster Art, also den Temperaturverlauf des "weichen" Abschnitts einer Platine 7, und die obere Kurve 15 die Wärmebehandlung des Bereichs 13 zweiter Art, mithin den Temperaturverlauf des "gehärteten" Abschnitts einer Platine 7, zeigen.Below and above the continuous furnace 11, the temperature profile over time in the passage of the board 7 through the continuous furnace 11 with respect to the first type area 12 and the second area 13 of the board 7 is shown, the lower curve 14, the heat treatment of the area 12 of the first kind , ie the temperature profile of the "soft" section of a board 7, and the upper curve 15 the heat treatment of the area 13 of the second kind, Consequently, the temperature profile of the "cured" section of a board 7, show.

In der Figur 2 ist ein Verfahren zur Herstellung eines Formbauteils 1 mit zwei Gefügebereichen 2, 3 unterschiedlicher Duktilität veranschaulicht, bei welchem zunächst Bandmaterial 4 aus einem mit einer Al/Si-Beschichtung versehenen Borstahl von einem Coil 5 abgezogen und durch einen Vorofen 16 geführt wird. In dem Vorofen 16 wird das Bandmaterial 4 auf eine Temperatur von etwa 830 °C bis 950 °C, vorzugsweise etwa 920 °C, homogen erwärmt und über eine bestimmte Zeit auf diesem Temperaturniveau gehalten. Anschließend wird das derart wärmebehandelte Bandmaterial 4 zu einem Coil 17 gewickelt. Von diesem Coil 17 wird das wärmebehandelte Bandmaterial 4 einer Stanze 18 zugeführt, wo aus dem Bandmaterial 4 Platinen 7 abgetrennt werden. Das Bandmaterial 4 kann aber auch direkt nach dem Austritt aus dem Vorofen 16 abgekühlt und dann der Stanze 18 zugeführt werden. Diese Platinen 7 aus dem vorbehandelten Bandmaterial 4 werden sodann in einen Zwei-Zonen-Ofen 19 überführt und hierin hinsichtlich eines Bereichs 12 erster Art in einer 1. Zone 20 des Ofens 19 auf eine Temperatur von etwa 550 °C bis 700 °C, vorzugsweise etwa 680 °C, sowie hinsichtlich eines Bereichs 13 zweiter Art gleichzeitig in einer 2. Zone 21 des Ofens 19 auf eine Temperatur von etwa 830 °C bis 950 °C gebracht.In the FIG. 2 is a method for producing a molded component 1 with two structural areas 2, 3 illustrated different ductility, in which first strip material 4 is drawn from a provided with an Al / Si coating boron steel from a coil 5 and passed through a pre-furnace 16. In the pre-furnace 16, the strip material 4 is heated homogeneously to a temperature of about 830 ° C to 950 ° C, preferably about 920 ° C, and maintained at this temperature level for a certain time. Subsequently, the thus heat-treated strip material 4 is wound into a coil 17. From this coil 17, the heat-treated strip material 4 is fed to a punch 18, where 4 blanks 7 are separated from the strip material. However, the strip material 4 can also be cooled immediately after leaving the pre-furnace 16 and then fed to the punch 18. These boards 7 from the pretreated strip material 4 are then transferred to a two-zone furnace 19 and herein in a first zone 20 of the furnace 19 at a temperature of about 550 ° C to 700 ° C, preferably in a first type zone 12 about 680 ° C, as well as with respect to a region 13 of the second kind at the same time in a second zone 21 of the furnace 19 to a temperature of about 830 ° C brought to 950 ° C.

Die in dieser Weise wärmebehandelten Platinen 7 werden letztlich in einem nicht näher dargestellten Warmumformprozess zu Formbauteilen 1 mit zwei unterschiedlichen Gefügebereichen 2, 3 umgeformt.The heat-treated blanks 7 in this manner are finally formed in a hot-forming process (not shown in detail) into shaped components 1 having two different structural regions 2, 3.

Die untere Kurve 22 im Temperatur-Zeit-Schaubild 23 der Figur 2 zeigt in diesem Zusammenhang den Temperaturverlauf im Bereich 12 erster Art der Platine 7 und die obere Kurve 24 den Temperaturverlauf im Bereich 13 zweiter Art jeder Platine 7.The lower curve 22 in the temperature-time diagram 23 of FIG. 2 shows in this connection the temperature profile in the area 12 of the first type of the board 7 and the upper curve 24 the temperature profile in the area 13 of the second type of each board 7.

In der Figur 3 ist veranschaulicht, wie Bandmaterial 4 aus einem mit einer AI/Si-Beschichtung versehenen Borstahl von einem Coil 5 abgezogen und direkt einer Stanze 18 zugeführt wird. In der Stanze 18 werden vom Bandmaterial 4 Platinen 7 abgetrennt und dann einem Vorofen 16 zugeleitet, wo die Platinen 7 auf eine Temperatur von etwa 830 °C bis 950 °C, vorzugsweise etwa 920 °C, homogen erwärmt und über eine bestimmte Zeit t2 auf diesem Temperaturniveau gehalten werden.In the FIG. 3 FIG. 4 illustrates how strip material 4 made of boron steel provided with an Al / Si coating is drawn off a coil 5 and fed directly to a punch 18. In the punch 18 are from the strip material 4th Cut boards 7 and then fed to a pre-furnace 16, where the boards 7 are heated to a temperature of about 830 ° C to 950 ° C, preferably about 920 ° C, homogeneously and kept at a certain time t 2 at this temperature level.

Die derart wärmebehandelten Platinen 7 werden sodann in den vorstehend bereits erwähnten Zwei-Zonen-Ofen 19 überführt und hier in der 1. Zone 20 hinsichtlich eines Bereichs 12 erster Art, wie geschildert, auf eine Temperatur von etwa 550 °C bis 700 °C, vorzugsweise etwa 680 °C, sowie hinsichtlich eines Bereichs 13 zweiter Art gleichzeitig in der 2. Zone 21 des Ofens 19 auf eine Temperatur von etwa 830 °C bis 950 °C gebracht.The thus heat-treated blanks 7 are then transferred to the above-mentioned two-zone furnace 19 and here in the 1st zone 20 with respect to a region 12 of the first kind, as described, to a temperature of about 550 ° C to 700 ° C, preferably about 680 ° C, as well as with respect to a region 13 of the second kind at the same time brought in the second zone 21 of the furnace 19 to a temperature of about 830 ° C to 950 ° C.

Das Temperatur-Zeit-Schaubild 23 entspricht demjenigen der Figur 2.The temperature-time graph 23 corresponds to that of FIG. 2 ,

Auch die derart wärmebehandelten Platinen 7 werden schließlich in einem Warmformprozess zu Formbauteilen 1 mit zwei unterschiedlichen Gefügebereichen 2, 3 umgeformt.The thus heat-treated blanks 7 are finally formed in a thermoforming process to form components 1 with two different structural areas 2, 3.

Bezugszeichen:Reference numerals:

1 -1 -
Formbauteilmold component
2 -2 -
Gefügebereich v. 1Microstructure v. 1
3 -3 -
Gefügebereich v. 1Microstructure v. 1
4 -4 -
Bandmaterialband material
5 -5 -
Coilcoil
6 -6 -
Stanzepunch
7 -7 -
Platinecircuit board
8 -8th -
1. Zone v. 111st zone v. 11
9 -9 -
2. Zone v. 112nd zone v. 11
10 -10 -
3. Zone v. 113rd zone v. 11
11 -11 -
DurchlaufofenContinuous furnace
12 -12 -
Bereich erster Art v. 7Area of the first kind v. 7
13 -13 -
Bereich zweiter Art v. 7Area of the second kind v. 7
14 -14 -
untere Kurvelower curve
15 -15 -
obere Kurveupper curve
16 -16 -
Vorofenprefurnace
17 -17 -
Coilcoil
18 -18 -
Stanzepunch
19 -19 -
Zwei-Zonen-OfenTwo-zone furnace
20 -20 -
1. Zone v. 191st zone v. 19
21 -21 -
2. Zone v. 192nd zone v. 19
22 -22 -
untere Kurve in 23lower curve in 23
23 -23 -
Schaubildgraph
24 -24 -
obere Kurve in 23upper curve in 23
t -t -
ZeitTime
t1 -t 1 -
ZeitTime
t2 -t 2 -
ZeitTime

Claims (6)

  1. Method for producing a moulded part (1) having at least two structure regions (2, 3) of different ductility from a metal blank (7) separated from strip material (4), in which the blank (7) is heated differently in different regions and is then subjected to a hot warming process for the purpose of forming the blank into the moulded part (1), characterised in that in the application of the method to a moulded part (1) of a high-strength boron steel provided with an Al/Si coating a blank (7) separated from strip material (4) of such a material is homogeneously heated in a furnace (11) comprising several temperature zones (8, 9, 10), first of all in a first zone (8) to a temperature of about 830°C-950°C and is held at this temperature for a certain time (t), that a first type of region (12) of the blank (7) is cooled in a second zone (9) of the furnace (11) to a temperature of about 550°C-700°C and is held at this lower temperature for a certain time (t1), and that simultaneously a second type of region (13) of the blank (7) is maintained in a third zone (10) of the furnace (11) for a time (t2) at a temperature of about 830°C-950°C, following which the blank (7) is formed in a subsequent heat forming process into the moulded part (1).
  2. Method for producing a moulded part (1) with at least two structure regions, (2, 3) of different ductility from a metal blank (7) separated from strip material (4), in which the blank (7) is heated differently in different regions and is then subjected to a heat forming process for the purposes of forming the blank into the moulded part (1), characterised in that in the application of the method to a moulded part (1) of a high-strength boron steel provided with an Al/Si coating, strip material (4) from such a material is homogeneously heated by passing it through a pre-furnace (16) to a temperature of about 830°C-950°C, is held at this temperature for a certain time and is then cooled, following which blanks (7) are separated from the strip material (4), and that after this each blank (7) separated from the strip material (4) is transferred to a two-zone furnace (19) and with regard to a first type of region (12) is heated in a first zone (20) of the furnace (19) to a temperature of about 550°C-700°C and also as regards a second type of region (13) is simultaneously heated in a second zone (21) of the furnace (19) to a temperature of about 830°C-950°C, and that finally the blank (7) is shaped in a heat forming process into the moulded part (1).
  3. Method for producing a moulded part (1) with at least two structure regions, (2, 3) of different ductility from a metal blank (7) separated from strip material (4), in which the blank (7) is heated differently in different regions and is then subjected to a heat forming process for the purpose of forming it into the moulded part (1), characterised in that in the application of the method to a moulded part (1) of a high-strength boron steel provided with an Al/Si coating, blanks (7) are separated from strip material (4) of such a material, and that each blank (7) is then homogeneously heated in a pre-furnace (16) to a temperature of about 830°C-950°C and is also held at this temperature for a certain time and is then cooled, following which the blank (7) is transferred to a two-zone furnace (19) and as regards a first type of region (12) is heated in a first zone (20) of the furnace (19) to a temperature of about 550°C-700°C and as regards a second type of region (13) is simultaneously heated in a second zone (21) of the furnace (19) to a temperature of about 830°C-950°C and is held at this temperature for a time (t3), and that finally the thus treated blanks (7) are formed in a hot forming process into the moulded part (1).
  4. Method according to one of claims 1 to 3, characterised in that for the cooling to about 550°C-700°C the first type of region (12) of the blank (7) is briefly brought into contact with cooling brackets.
  5. Method according to one of claims 1 to 3, characterised in that for the cooling to about 550°C-700°C the first type of region (12) of the blank (7) is blasted with cold gas.
  6. Method according to claim 5, characterised in that for the cooling to about 550°C-700°C the first type of region (12) of the blank (7) is blasted with nitrogen.
EP08854114.9A 2007-11-29 2008-11-03 Method for producing a shaped component comprising at least two joining areas having different ductility Active EP2227570B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007057855A DE102007057855B3 (en) 2007-11-29 2007-11-29 Production of moldings with structure zones of different ductility comprises heat treatment of aluminum-silicon coated high-tensile steel blank, followed by treating zones at different temperature
PCT/DE2008/001799 WO2009067976A1 (en) 2007-11-29 2008-11-03 Method for producing a shaped component comprising at least two joining areas having different ductility

Publications (2)

Publication Number Publication Date
EP2227570A1 EP2227570A1 (en) 2010-09-15
EP2227570B1 true EP2227570B1 (en) 2017-01-25

Family

ID=39777859

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08854114.9A Active EP2227570B1 (en) 2007-11-29 2008-11-03 Method for producing a shaped component comprising at least two joining areas having different ductility

Country Status (7)

Country Link
US (1) US20100300584A1 (en)
EP (1) EP2227570B1 (en)
CN (1) CN101796202A (en)
DE (1) DE102007057855B3 (en)
ES (1) ES2620804T3 (en)
RU (1) RU2445381C1 (en)
WO (1) WO2009067976A1 (en)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009019496A1 (en) * 2009-05-04 2010-11-18 Braun, Elisabeth Apparatus and method for heating workpieces to be hot formed
DE102009043926A1 (en) * 2009-09-01 2011-03-10 Thyssenkrupp Steel Europe Ag Method and device for producing a metal component
DE102009052210B4 (en) * 2009-11-06 2012-08-16 Voestalpine Automotive Gmbh Method for producing components with regions of different ductility
WO2011057661A1 (en) * 2009-11-11 2011-05-19 Siemens Aktiengesellschaft Component having areas of different ductility and method for producing a component
DE102010010156A1 (en) * 2010-03-04 2011-09-08 Kirchhoff Automotive Deutschland Gmbh Process for producing a molded part with at least two structural areas of different ductility
SE533881C2 (en) 2010-03-16 2011-02-22 Gestamp Hardtech Ab Pressure curing plant and means of pressure curing
DE102010012830B4 (en) * 2010-03-25 2017-06-08 Benteler Automobiltechnik Gmbh Method for producing a motor vehicle component and body component
DE102010027439C5 (en) * 2010-07-17 2016-03-24 Audi Ag Tower furnace for heating hardenable sheet metal blanks
DE102010035195A1 (en) * 2010-08-24 2012-03-01 Volkswagen Ag Profile component and method for producing a profile component
DE102010048209C5 (en) * 2010-10-15 2016-05-25 Benteler Automobiltechnik Gmbh Method for producing a hot-formed press-hardened metal component
DE102011009738A1 (en) 2011-01-28 2012-08-02 Benteler Automobiltechnik Gmbh stabilizer coupling
DE102011009892A1 (en) 2011-01-31 2012-08-02 Benteler Sgl Gmbh & Co. Kg Motor vehicle component and method for producing the motor vehicle component
HUE035766T2 (en) * 2011-03-10 2018-05-28 Schwartz Gmbh Oven system and process for partially heating steel blanks
DE102011007590B4 (en) 2011-04-18 2012-12-20 Technische Universität Dresden Method and device for sliding bending
MX2013014246A (en) * 2011-06-30 2014-01-24 Ebner Ind Ofenbau Method for heating a shaped component for a subsequent press hardening operation and continuous furnace for regionally heating a shaped component preheated to a predetermined temperature to a higher temperature.
EP2548975A1 (en) 2011-07-20 2013-01-23 LOI Thermprocess GmbH Method and device for producing a hardened metallic component with at least two areas of different ductility
DE102011053698C5 (en) 2011-09-16 2017-11-16 Benteler Automobiltechnik Gmbh Process for the manufacture of structural and chassis components by thermoforming and heating station
DE102011056444C5 (en) * 2011-12-14 2015-10-15 Voestalpine Metal Forming Gmbh Method and device for partial hardening of sheet metal components
EP2679692A1 (en) * 2012-06-29 2014-01-01 GEDIA Gebrüder Dingerkus GmbH Method for manufacturing a press hardened formed component made of sheet steel
DE102012110649C5 (en) 2012-11-07 2018-03-01 Benteler Automobiltechnik Gmbh Thermoforming line and method for producing a hot-formed and press-hardened motor vehicle component
DE102012024674B4 (en) * 2012-12-18 2015-03-12 Hennecke Gmbh Method and device for producing molded parts
EP2944393B1 (en) 2013-01-11 2018-02-07 Futaba Industrial Co., Ltd. Heating device for hot stamping
JP5740419B2 (en) * 2013-02-01 2015-06-24 アイシン高丘株式会社 Infrared heating method of steel sheet, thermoforming method, infrared furnace and vehicle parts
EP2818571B1 (en) * 2013-06-25 2017-02-08 Schwartz GmbH Diffusion of aluminium-silicon into a steel sheet web
DE102013107870A1 (en) 2013-07-23 2015-01-29 Benteler Automobiltechnik Gmbh Process for the production of molded components as well as molded component and continuous furnace
DE202014010318U1 (en) 2014-01-23 2015-04-01 Eva Schwartz Heat treatment device
DE102014201259A1 (en) 2014-01-23 2015-07-23 Schwartz Gmbh Heat treatment device
CN106460083A (en) * 2014-03-25 2017-02-22 麦格纳动力系有限公司 Treatments for iron sinter or green mix
DE102014114394B3 (en) * 2014-10-02 2015-11-05 Voestalpine Stahl Gmbh Method for producing a hardened steel sheet
DE102015100100A1 (en) 2015-01-07 2016-07-07 Thyssenkrupp Ag Tool for hot working a workpiece and method for area selective hot working of a workpiece
DE102015101668A1 (en) * 2015-02-05 2016-08-11 Benteler Automobiltechnik Gmbh Double falling heating and forming tool and method for producing thermoformed and press-hardened motor vehicle components
DE102015210459B4 (en) * 2015-06-08 2021-03-04 Volkswagen Aktiengesellschaft Process for hot forming a steel component
DE102015215179A1 (en) 2015-08-07 2017-02-09 Schwartz Gmbh Method of heat treatment and heat treatment device
JP7041626B2 (en) * 2016-01-25 2022-03-24 シュヴァルツ ゲーエムベーハー Methods and equipment for heat treatment of metal parts
EP3211103B1 (en) * 2016-02-25 2020-09-30 Benteler Automobiltechnik GmbH Method for manufacturing a motor vehicle component with at least two different strength areas
US10335845B2 (en) 2016-04-20 2019-07-02 Ford Global Technologies, Llc Hot-stamping furnace and method of hot stamping
US10350664B2 (en) 2016-06-30 2019-07-16 Ford Global Technologies, Llc Furnace assembly and method for hot-stamping vehicle components
CN109563563A (en) * 2016-08-09 2019-04-02 自动工程公司 Blank centers and selectivity heating
DE102016124539B4 (en) 2016-12-15 2022-02-17 Voestalpine Metal Forming Gmbh Process for manufacturing locally hardened sheet steel components
DE102017120128A1 (en) * 2017-09-01 2019-03-07 Schwartz Gmbh Method for heating a metallic component to a target temperature and corresponding roller hearth furnace
DE102017120514A1 (en) * 2017-09-06 2019-03-07 Benteler Automobiltechnik Gmbh Hollow profile and method for producing the hollow profile of a hardened steel alloy
JP6950514B2 (en) * 2017-12-20 2021-10-13 トヨタ自動車株式会社 Steel plate member and its manufacturing method
US11168379B2 (en) 2018-02-12 2021-11-09 Ford Motor Company Pre-conditioned AlSiFe coating of boron steel used in hot stamping
DE112021007984A5 (en) * 2021-07-16 2024-04-25 Benteler Maschinenbau Gmbh Multi-zone heating method, heating device and method for producing a motor vehicle component

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE635788C (en) 1936-09-24 Siemens Schuckertwerke Akt Ges Cooling jaws for hardening steel straps
EP0106113A1 (en) 1982-09-21 1984-04-25 Messer Griesheim Gmbh Process and apparatus for the bright annealing of metallic parts using nitrogen as the protective atmosphere
EP0189759B1 (en) 1985-01-17 1989-12-06 Linde Aktiengesellschaft Method and apparatus for heat treating work pieces
US5972134A (en) 1997-10-02 1999-10-26 Benteler Ag Manufacture of a metallic molded structural part
DE20014631U1 (en) 2000-08-24 2000-11-30 Eichhoff GmbH, 36110 Schlitz Power supply network and device for use in a coupling point of a power supply network
DE10049660A1 (en) 2000-10-07 2002-04-25 Daimler Chrysler Ag Process for the production of locally reinforced sheet metal parts
WO2003018338A1 (en) 2001-08-31 2003-03-06 Accra Teknik Ab A beam
DE10208216C1 (en) 2002-02-26 2003-03-27 Benteler Automobiltechnik Gmbh Production of a hardened metallic component used as vehicle component comprises heating a plate or a pre-molded component to an austenitizing temperature, and feeding via a transport path while quenching parts of plate or component
DE10256621B3 (en) 2002-12-03 2004-04-15 Benteler Automobiltechnik Gmbh Continuous furnace used in the production of vehicle components, e.g. B-columns, comprises two zones lying opposite each other and separated from each other by a thermal insulating separating wall
WO2005009642A1 (en) 2003-07-22 2005-02-03 Daimlerchrysler Ag Press-hardened component and method for the production of a press-hardened component
DE102004007071A1 (en) 2004-02-13 2005-09-08 Audi Ag Method for producing a component by forming a circuit board and apparatus for carrying out the method
DE102004049413A1 (en) * 2004-10-08 2006-04-13 Volkswagen Ag Process for coating metallic surfaces
DE102005003551A1 (en) 2005-01-26 2006-07-27 Volkswagen Ag Steel sheet forming and hardening, comprises austenitic heating above the Ac3 point, followed by forming and cooling
WO2007028475A2 (en) 2005-09-02 2007-03-15 Daimler Ag Method for producing press-hardened component
DE69933751T2 (en) 1998-12-24 2007-10-04 Arcelor France Production method for hot-rolled sheet steel parts

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6231995B1 (en) * 1997-06-07 2001-05-15 Kabushiki Kaisha Kobe Seiko Sho Aluminum extruded door beam material
DE69918821T2 (en) * 1998-03-26 2005-10-13 Jfe Engineering Corp. METHOD FOR CHECKING THE ATMOSPHERE AND TENSILE VOLTAGE IN AN OVEN FOR THE CONTINUOUS HEAT TREATMENT OF METAL STRIP
RU2235136C1 (en) * 2003-09-18 2004-08-27 Закрытое акционерное общество "Инструмент" Method for producing of sheet steel and saws, steel and products obtained therefrom

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE635788C (en) 1936-09-24 Siemens Schuckertwerke Akt Ges Cooling jaws for hardening steel straps
EP0106113A1 (en) 1982-09-21 1984-04-25 Messer Griesheim Gmbh Process and apparatus for the bright annealing of metallic parts using nitrogen as the protective atmosphere
EP0189759B1 (en) 1985-01-17 1989-12-06 Linde Aktiengesellschaft Method and apparatus for heat treating work pieces
US5972134A (en) 1997-10-02 1999-10-26 Benteler Ag Manufacture of a metallic molded structural part
DE69933751T2 (en) 1998-12-24 2007-10-04 Arcelor France Production method for hot-rolled sheet steel parts
DE20014631U1 (en) 2000-08-24 2000-11-30 Eichhoff GmbH, 36110 Schlitz Power supply network and device for use in a coupling point of a power supply network
DE10049660A1 (en) 2000-10-07 2002-04-25 Daimler Chrysler Ag Process for the production of locally reinforced sheet metal parts
WO2003018338A1 (en) 2001-08-31 2003-03-06 Accra Teknik Ab A beam
DE10208216C1 (en) 2002-02-26 2003-03-27 Benteler Automobiltechnik Gmbh Production of a hardened metallic component used as vehicle component comprises heating a plate or a pre-molded component to an austenitizing temperature, and feeding via a transport path while quenching parts of plate or component
DE10256621B3 (en) 2002-12-03 2004-04-15 Benteler Automobiltechnik Gmbh Continuous furnace used in the production of vehicle components, e.g. B-columns, comprises two zones lying opposite each other and separated from each other by a thermal insulating separating wall
WO2005009642A1 (en) 2003-07-22 2005-02-03 Daimlerchrysler Ag Press-hardened component and method for the production of a press-hardened component
DE102004007071A1 (en) 2004-02-13 2005-09-08 Audi Ag Method for producing a component by forming a circuit board and apparatus for carrying out the method
DE102004049413A1 (en) * 2004-10-08 2006-04-13 Volkswagen Ag Process for coating metallic surfaces
DE102005003551A1 (en) 2005-01-26 2006-07-27 Volkswagen Ag Steel sheet forming and hardening, comprises austenitic heating above the Ac3 point, followed by forming and cooling
WO2007028475A2 (en) 2005-09-02 2007-03-15 Daimler Ag Method for producing press-hardened component

Also Published As

Publication number Publication date
RU2010126492A (en) 2012-01-10
ES2620804T3 (en) 2017-06-29
DE102007057855B3 (en) 2008-10-30
EP2227570A1 (en) 2010-09-15
WO2009067976A1 (en) 2009-06-04
US20100300584A1 (en) 2010-12-02
CN101796202A (en) 2010-08-04
RU2445381C1 (en) 2012-03-20

Similar Documents

Publication Publication Date Title
EP2227570B1 (en) Method for producing a shaped component comprising at least two joining areas having different ductility
EP2143808B1 (en) Partial hot forming and hardening with infrared lamp heating
DE10208216C1 (en) Production of a hardened metallic component used as vehicle component comprises heating a plate or a pre-molded component to an austenitizing temperature, and feeding via a transport path while quenching parts of plate or component
DE102010004081C5 (en) Method for thermoforming and curing a circuit board
EP2177641B1 (en) Steel plate having a galvanized corrosion protection layer
DE102011053939B4 (en) Method for producing hardened components
EP2233593A2 (en) Method and device for thermal recasting of pressure-hardened casting components made of sheet metal
DE102009043926A1 (en) Method and device for producing a metal component
WO2009135776A1 (en) Method for producing a formed steel part having a predominantly ferritic-bainitic structure
DE102011053941B4 (en) Method for producing hardened components with regions of different hardness and / or ductility
DE102017110864B3 (en) Method and device for producing hardened sheet steel components with different sheet thicknesses
DE102014112448B4 (en) Production method for Al-Si coated sheet steel parts and Al-Si coated steel sheet strip
EP3365469B1 (en) Method for producing a steel component for a vehicle
DE102008027460B9 (en) Method for producing a sheet steel component with regions of different ductility
DE102008022401B4 (en) Process for producing a steel molding having a predominantly bainitic structure
EP3159419B1 (en) Method of fabrication of roll formed partly hardened profiles
AT509597B1 (en) METHOD AND DEVICE FOR PRODUCING A SHAPE COMPONENT
DE102017201674B3 (en) Method for producing a press-hardened component and press mold
DE102008034596A1 (en) Hardened sheet steel component producing method, involves heating sheet steel, and locally adjusting cooling process of sheet steel by selectively intervening heat transmission from sheet steel to molding tools
DE102017110851B3 (en) Method for producing steel composite materials
DE102023003636A1 (en) Method and device for producing a molded part
DE102020115345A1 (en) Process for the production of a component as well as a component
DE102021110702A1 (en) Process and device for manufacturing hardened steel components with different ductile areas
DE102020200808A1 (en) Method for producing a sheet metal component hardened at least partially from steel and an at least partially hardened sheet metal component made from steel
DE102021214024A1 (en) Process for manufacturing a hot-formed and press-hardened sheet steel component

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100114

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BOEKE, JOHANNES

Inventor name: ADELBERT, STEFAN

Inventor name: BUSCHSIEWEKE, OTTO

Inventor name: KROGMEIER, JUERGEN

Inventor name: PELLMANN, MARKUS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140812

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C21D 9/46 20060101ALI20160607BHEP

Ipc: C21D 1/673 20060101AFI20160607BHEP

INTG Intention to grant announced

Effective date: 20160708

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BENTELER AUTOMOBILTECHNIK GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 864185

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008015005

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170125

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2620804

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170425

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170525

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170525

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170425

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502008015005

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: PUCHBERGER & PARTNER PATENTANWAELTE

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171103

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 864185

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171103

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502008015005

Country of ref document: DE

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20081103

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20190320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231120

Year of fee payment: 16

Ref country code: FR

Payment date: 20231120

Year of fee payment: 16

Ref country code: DE

Payment date: 20231124

Year of fee payment: 16

Ref country code: CZ

Payment date: 20231030

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240126

Year of fee payment: 16