EP1425764A2 - Actionneur magnetique bistable - Google Patents

Actionneur magnetique bistable

Info

Publication number
EP1425764A2
EP1425764A2 EP02735523A EP02735523A EP1425764A2 EP 1425764 A2 EP1425764 A2 EP 1425764A2 EP 02735523 A EP02735523 A EP 02735523A EP 02735523 A EP02735523 A EP 02735523A EP 1425764 A2 EP1425764 A2 EP 1425764A2
Authority
EP
European Patent Office
Prior art keywords
magnetic
actuator
actuator according
magnetic circuit
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02735523A
Other languages
German (de)
English (en)
Other versions
EP1425764B1 (fr
Inventor
Jérôme Delamare
Claire Divoux
Pierre Gaud
Frédéric LEPOITEVIN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP1425764A2 publication Critical patent/EP1425764A2/fr
Application granted granted Critical
Publication of EP1425764B1 publication Critical patent/EP1425764B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1872Bistable or bidirectional current devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0036Switches making use of microelectromechanical systems [MEMS]
    • H01H2001/0042Bistable switches, i.e. having two stable positions requiring only actuating energy for switching between them, e.g. with snap membrane or by permanent magnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/005Details of electromagnetic relays using micromechanics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H51/00Electromagnetic relays
    • H01H51/22Polarised relays

Definitions

  • the present invention relates to a bistable magnetic actuator and in particular a microactuator.
  • microrelays electrical or optical
  • microvalves microvalves
  • micropumps etc.
  • FIG. 1 Document WO 97/39468 describes a magnetic actuator which can take the form illustrated in FIG. 1 attached. As shown, this actuator comprises a magnetic circuit consisting of a central pole piece 12 surrounded by a conductive coil 14 and two symmetrical pole pieces 16. A movable magnetic piece 18 is arranged opposite the central pole piece 12.
  • Such an actuator is unidirectional in the sense that the force F exerted on the moving part can only be directed in one direction.
  • This actuator is therefore not bistable, but monostable, the only stable working position being that in which the moving part 18 is pressed against the contact 19.
  • Bistable magnetic actuators are known, however.
  • the article by M. Se. H. Ren et al. entitled “A Bistable Microfabricated Magnetic Cantilever Microactuator with Permanent Magnet” published in the Proceedings of the 5th International Conference Microsystem Technologies 96, Potsdam, September 17-19, 1996, pages 799 to 801 describes an actuator shown in Figure 2 attached.
  • This actuator comprises a permanent magnet 20 extended by two magnetic branches 22, 24 each surrounded by a conductive winding, respectively 23, 25.
  • the magnetic flux present in each of these air gaps results from the sum of the fluxes due to the permanent magnet 20 and to the currents possibly circulating in one or the other of the windings 23 and 25.
  • the magnetic forces FI and F2 applied to the end of the beam 26 are exerted either in one direction or in the other depending on whether one or the other of the conductive windings 23, 25 is traversed by a current.
  • Such an actuator is therefore bidirectional or, if you like, bistable.
  • This bistable actuator has a drawback. Indeed, as the moving part 26 is an integral part of the magnetic circuit, its movement is limited. Furthermore, its mobility is reduced because it results from a bending of a magnetic part. The object of the present invention is precisely to remedy this drawback.
  • the invention provides a bistable actuator in which the displacement of the moving part is increased and its mobility improved. This object is achieved by the fact that the moving part is fixed to flexible means which are no longer part of the magnetic circuit.
  • the invention relates to a bistable magnetic actuator comprising:
  • a first fixed magnetic structure comprising a first conductive winding surrounding a first open magnetic circuit having a first end and a second end,
  • a second fixed magnetic structure comprising a second conductive winding surrounding a second open magnetic circuit having a first end and a second end, the first ends of the first and second magnetic circuits being arranged opposite one another,
  • a moving magnetic part which can occupy a first or a second stable working position depending on whether the first or the second conductive winding is excited, - for each magnetic circuit, the first end and the second end have faces located in planes perpendicular to each other, and the second ends of the first and second magnetic circuits have faces arranged in the same plane or are combined, characterized in that :
  • the mobile magnetic part is located in the vicinity of the first end of the first magnetic circuit and of the first end of the second magnetic circuit,
  • the moving magnetic part is fixed to non-magnetic means allowing the moving part to move in the direction of the first end of the first magnetic circuit or in the direction of the first end of the second magnetic circuit.
  • the conductive windings and the magnetic circuits can be produced according to techniques borrowed from microelectronics.
  • the actuator is then a micoactuator.
  • the windings can be made up of plies of conductive tapes deposited in engraved boxes.
  • the magnetic circuit can be produced using layers of "soft” or “hard” magnetic materials or hysteresis materials.
  • Soft materials magnetize linearly depending on the magnetic field applied to them (iron, nickel, iron-nickel, iron-cobalt, iron-silicon, ).
  • Hard materials have a fixed magnetization which does not depend on the applied field (ferrite, samarium-cobalt, neodymium-iron-boron, platinum-cobalt).
  • Hysteresis materials have properties between those of soft materials and those of hard materials. They can magnetize and keep a magnetization after the excitation field has disappeared.
  • the two magnetic structures can take various forms, and for example be symmetrical with respect to a plane or with respect to a point.
  • the movement of the moving part can be a translation (or a quasi-translation) or a rotation.
  • a translation or a quasi-translation
  • a rotation or a rotation.
  • FIG. 3 illustrates a particular embodiment of a bistable microactuator according to the invention
  • FIG. 4A to 41 show different steps of a method of producing a microactuator according to one invention
  • FIG. 5 illustrates an application to the production of a microrelay
  • FIG. 8 illustrates a microactuator with an axis of rotation.
  • the embodiment illustrated in Figure 3 corresponds to a device having a plane of symmetry.
  • the first magnetic structure comprises a first conductive winding 32 ⁇ surrounding a first open magnetic circuit comprising a circular part 34 x and a straight part 30 located in the plane of symmetry.
  • the second structure comprises, in the same way, a second conductive coil 32 2 surrounding a second open magnetic circuit comprising a circular part 34 2 and the straight part 30 already mentioned, which therefore happens to be common to the two structures.
  • the first magnetic structure has a first end 35 ⁇ with a face perpendicular to the plane of the figure
  • the second magnetic structure has a first end 35 2 with a face perpendicular to the plane of the figure.
  • These two structures have second ends which, in the example illustrated, coincide with the end 35 ′ of the straight part 30. The face of this second end is perpendicular to the plane of the faces of the first ends.
  • the device is completed by a movable magnetic part 36 placed between the first ends 35 ⁇ and 35 2 of the first and second magnetic circuits and the second ends 35 'combined of these circuits.
  • This part 36 is fixed to two flexible non-magnetic beams 38 and 39, embedded in a base 40. Naturally, one could use only one beam or use more than two.
  • the operation of this device is as follows. As shown in Figure 3, the microactuator is at rest. When the left winding 32 ⁇ is traversed by a current, the left magnetic circuit 34 ⁇ is excited and the movable part 36 is drawn to the left. It then closes the left air gap which it defined with the first magnetic circuit. When it is the right winding 32 2 which is traversed by a current, it is the right magnetic circuit 34 2 which is excited and the movable part is drawn to the right. It then closes the right air gap which it defined with the second magnetic circuit.
  • the microactuator described therefore has two stable working positions. Depending on the composition of the materials of the magnetic windings, the mobile part can keep one or the other of these positions. Even if the power supply to the windings is interrupted (case of hysteresis materials). However, the mobile part can also return to its rest position (in the case of soft materials). In the case of hysteresis materials, it will be necessary to demagnetize the magnetic circuit by supplying the appropriate winding with a current of correct direction so that the mobile part returns to its initial position.
  • FIGS. 4A to 41 illustrate a method for producing a microactuator according to the present invention.
  • a substrate 50 for example made of silicon (FIG. 4A); boxes are engraved therein which are filled with conductive material to obtain a sheet of conductors 52 located on a first level; we planarize the whole; an insulating layer 54 is deposited on which an insulating layer 56 (for example made of SiO 2 ) is formed, a so-called sacrificial layer.
  • a layer of resin 58 is then deposited (FIG. 4B).
  • a layer of magnetic material is deposited (FIG. 4C) to form the magnetic circuit 60 and the future mobile part 62; then we isolate the patterns ( Figure 4D).
  • a new layer of resin 66 is then deposited (FIG. 4E) and the assembly is planarized (FIG. 4F).
  • an insulating layer 70 (FIG. 4G) and a resin layer are deposited; new boxes are etched therein which are filled with conductive material to obtain a second layer of conductors 74 on a second level. Unrepresented connections allow the two layers to be united conductors to obtain a winding surrounding the magnetic part.
  • FIG. 5 illustrates an application of the invention to the production of an electric microrelay.
  • This device comprises the means already shown in Figure 4 and which bear the same references. It further comprises electrical contacts 80 and 82 arranged on the faces of the first ends 35 ⁇ and 35 2 of the magnetic circuits, three contact pads 91, 92, 93 and three tracks 94, 95, 96 connecting the pads to the contacts 80 and 82 and at the base 40.
  • the second ends of the two magnetic circuits are, as in the previous example, merged with the end 35 'of the common part 30.
  • the mobile part 36 When the left winding 32 is supplied, the mobile part 36 is drawn to the left and closes the electrical circuit 91, 93.
  • the mobile part When the right winding 32 2 is supplied, the mobile part is drawn to the right and comes to close the electrical circuit 92, 93.
  • the electrical contacts are only shown diagrammatically in FIG. 5. In reality, the tracks make it possible to transfer the contact pads towards the periphery of the microrelays where contacts can also be used to control the actuator.
  • FIG. 6 illustrates another embodiment of a microactuator according to the invention in which the central branches of the magnetic circuits are not merged into a single branch 30, as in FIG. 3, but consist of two independent branches 30 ⁇ , 30 2 with second ends 35 ′ x and 35 ′ 2 whose faces are in planes parallel to each other and perpendicular to the planes of the faces of the first ends 35 ⁇ and 35 2 . Magnetic leaks are thus reduced.
  • FIG. 7 illustrates an embodiment with central symmetry. In other words, the two structures
  • the movable part 36 can then be connected in a symmetrical manner also to two bases 40 1; 40 2 , by two sets of two flexible beams (38 ⁇ , 39 ⁇ ) (38 2 , 39 2 ).
  • Figure 8 shows an embodiment where the movable magnetic part 36 is movable in rotation about an axis 98. It can come to be pressed either under the end 35 ⁇ or under the end 35 2 of the two magnetic circuits 34 ⁇ and 34 2 depending on whether the current flows in winding 32 ⁇ or in winding 32 2 .

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Micromachines (AREA)
  • Electromagnets (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

Selon l'invention, l'actionneur comprend deux structures magnétiques fixes (321, 341) (322, 342) et une partie magnétique mobile (36) apte à se déplacer vers l'une ou l'autre des deux extrémités des structures magnétiques. L'actionneur est de préférence réalisé sous forme de microactionneur. Application à la réalisation de microrelais, microvannes, micropompes, etc.

Description

ACTIONNEUR MAGNETIQUE BISTABLE
DESCRIPTION
Domaine technique
La présente invention a pour objet un actionneur magnétique bistable et notamment un microactionneur .
Elle trouve une application dans la réalisation de microrelais (électriques ou optiques) , de microvannes, de micropompes, etc..
Etat de la technique antérieure
Le document WO 97/39468 décrit un actionneur magnétique pouvant prendre la forme illustrée sur la figure 1 annexée. Tel que représenté, cet actionneur comprend un circuit magnétique constitué d'une pièce polaire centrale 12 entourée d'un bobinage conducteur 14 et de deux pièces polaires symétriques 16. Une pièce magnétique mobile 18 est disposée en regard de la pièce polaire centrale 12.
Lorsqu'un courant circule dans le bobinage 14, une force magnétique F agit sur la pièce magnétique mobile 18 et vient plaquer celle-ci sur une pièce conductrice fixe 19. Ce contact ferme un circuit électrique (non représenté) .
Un tel actionneur est unidirectionnel en ce sens que la force F exercée sur la pièce mobile ne peut être dirigée que dans un seul sens. Cet actionneur n'est donc pas bistable, mais monostable, la seule position de travail stable étant celle où la pièce mobile 18 est plaquée contre le contact 19. On connaît cependant des actionneurs magnétiques bistables. L'article de M. Se. H. Ren et al. intitulé "A Bistable Microfabricated Magnetic Cantilever Microactuator with Permanent Magnet" publié dans les Compte-rendus de la 5ème Conférence Internationale Microsystem Technologies 96, Potsdam, 17-19 Septembre, 1996, pages 799 à 801 décrit un actionneur représenté sur la figure 2 annexée. Cet actionneur comprend un aimant permanent 20 prolongé par deux branches magnétiques 22, 24 entourées chacune d'un bobinage conducteur, respectivement 23, 25. Une poutre flexible 26, en matériau magnétique, complète le circuit magnétique. Celui-ci présente donc deux entrefers définis par l'extrémité de la poutre 26 et chacune des extrémités des branches 22 et 24. Le flux magnétique présent dans chacun de ces entrefers résulte de la somme des flux dus à l'aimant permanent 20 et aux courants circulant éventuellement dans l'un ou l'autre des bobinages 23 et 25. Les forces magnétiques FI et F2 appliquées à l'extrémité de la poutre 26 s'exercent soit dans un sens soit dans l'autre selon que l'un ou l'autre des bobinages conducteurs 23, 25 est parcouru par un courant. Un tel actionneur est donc bidirectionnel ou, si l'on veut, bistable.
Cet actionneur bistable présente un inconvénient. En effet, comme la pièce mobile 26 fait intégralement partie du circuit magnétique, son déplacement est limité. Par ailleurs, sa mobilité est réduite car elle résulte d'une flexion d'une pièce magnétique. La présente invention a justement pour but de remédier à cet inconvénient .
Exposé de 1 ' invention
L'invention propose un actionneur bistable dans lequel le déplacement de la pièce mobile est augmenté et sa mobilité améliorée. Ce but est atteint par le fait que la pièce mobile est fixée à des moyens flexibles qui ne font plus partie du circuit magnétique .
De façon plus précise, l'invention a pour objet un actionneur magnétique bistable comprenant :
- une première structure magnétique fixe comprenant un premier bobinage conducteur entourant un premier circuit magnétique ouvert présentant une première extrémité et une seconde extrémité,
- une seconde structure magnétique fixe comprenant un second bobinage conducteur entourant un second circuit magnétique ouvert présentant une première extrémité et une seconde extrémité, les premières extrémités des premier et second circuits magnétiques étant disposées en regard l'une de l'autre,
- une pièce magnétique mobile pouvant occuper une première ou une seconde position de travail stable selon que le premier ou le second bobinage conducteur est excité, - pour chaque circuit magnétique, la première extrémité et la seconde extrémité ont des faces situées dans des plans perpendiculaires entre eux, et les secondes extrémités des premier et second circuits magnétiques ont des faces disposées dans un même plan ou sont confondues, caractérisé en ce que :
- la pièce magnétique mobile est localisée au voisinage de la première extrémité du premier circuit magnétique et de la première extrémité du second circuit magnétique,
- la pièce magnétique mobile est fixée à des moyens non magnétiques permettant le déplacement de la pièce mobile en direction de la première extrémité du premier circuit magnétique ou en direction de la première extrémité du second circuit magnétique. Les bobinages conducteurs et les circuits magnétiques peuvent être réalisés selon des techniques empruntées à la microélectronique. L'actionneur est alors un micoactionneur .
Les bobinages peuvent être constitués de nappes de rubans conducteurs déposés dans des caissons gravés. Le circuit magnétique peut être réalisé à l'aide de couches de matériaux magnétiques "doux" ou "durs" ou de matériaux à hystérésis. Les matériaux doux s'aimantent de façon linéaire en fonction du champ magnétique qui leur est appliqué (fer, nickel, fer-nickel, fer-cobalt, fer-silicium, ...) . Les matériaux durs ont une aimantation fixe qui ne dépend pas du champ appliqué (ferrite, samarium-cobalt , néodyme-fer-bore, platine-cobalt) . Les matériaux à hystérésis ont des propriétés se situant entre celles des matériaux doux et celles des matériaux durs. Ils peuvent s'aimanter et garder une aimantation après que le champ d'excitation a disparu.
Les deux structures magnétiques peuvent prendre diverses formes, et être par exemple symétriques par rapport à un plan ou par rapport à un point.
Quant au déplacement de la pièce mobile, il peut s'agir d'une translation (ou d'une quasi-translation) ou d'une rotation. Brève description des dessins - la figure 1, déjà décrite, illustre un actionneur monostable selon l'état de la technique ;
- la figure 2, déjà décrite, illustre un actionneur bistable selon l'état de la technique ;
- la figure 3 illustre un mode particulier de réalisation d'un microactionneur bistable selon 1 ' invention ;
- les figures 4A à 41 montrent différentes étapes d'un procédé de réalisation d'un microactionneur selon 1 ' invention ;
- la figure 5 illustre une application à la réalisation d'un microrelais ;
- la figure 6 illustre un autre mode de réalisation ; - la figure 7 illustre encore un autre mode de réalisation à centre de symétrie ;
- la figure 8 illustre un microactionneur à axe de rotation.
Description de modes particuliers de réalisation
La description qui va suivre se rapporte à un microactionneur mais on ne sortirait pas du cadre de 1 ' invention en modifiant les exemples décrits pour obtenir un actionneur.
Le mode de réalisation illustré sur la figure 3 correspond à un dispositif présentant un plan de symétrie. La première structure magnétique comprend un premier bobinage conducteur 32χ entourant un premier circuit magnétique ouvert comprenant une partie circulaire 34x et une partie droite 30 située dans le plan de symétrie. La seconde structure comprend, de la même manière, un second bobinage conducteur 322 entourant un second circuit magnétique ouvert comprenant une partie circulaire 342 et la partie droite 30 déjà citée, qui se trouve donc être commune aux deux structures.
La première structure magnétique possède une première extrémité 35ι avec une face perpendiculaire au plan de la figure, et la seconde structure magnétique possède une première extrémité 352 avec une face perpendiculaire au plan de la figure. Ces deux structures possèdent des secondes extrémités qui, dans l'exemple illustré, sont confondues avec l'extrémité 35' de la partie droite 30. La face de cette seconde extrémité est perpendiculaire au plan des faces des premières extrémités.
Il va de soi que les formes circulaires des parties 34χ et 342 ne sont que des exemples et que l'on ne sortirait pas du cadre de l'invention en réalisant des circuits rectangulaires ou autres.
Le dispositif se complète par une pièce magnétique mobile 36 placée entre les premières extrémités 35χ et 352 des premier et second circuits magnétiques et les secondes extrémités 35' confondues de ces circuits. Cette pièce 36 est fixée à deux poutres flexibles 38 et 39 non magnétiques, encastrées dans une embase 40. Naturellement, on pourrait n'utiliser qu'une seule poutre ou en utiliser plus de deux. Le fonctionnement de ce dispositif est le suivant. Tel que représenté sur la figure 3, le microactionneur est au repos. Lorsque le bobinage de gauche 32ι est parcouru par un courant, le circuit magnétique de gauche 34χ est excité et la partie mobile 36 est attirée vers la gauche. Elle vient alors fermer l'entrefer de gauche qu'elle définissait avec le premier circuit magnétique. Lorsque c'est le bobinage de droite 322 qui est parcouru par un courant, c'est le circuit magnétique de droite 342 qui est excité et la partie mobile est attirée vers la droite. Elle vient alors fermer l'entrefer de droite qu'elle définissait avec le second circuit magnétique.
Le microactionneur décrit possède donc bien deux positions de travail stables. Suivant la composition des matériaux des enroulements magnétiques, la partie mobile peut garder l'une ou l'autre de ces positions même si l'alimentation des bobinages est interrompue (cas des matériaux à hystérésis) . Mais la partie mobile peut aussi reprendre sa position de repos (cas des matériaux doux) . Dans le cas des matériaux à hystérésis, il faudra désaimanter le circuit magnétique en alimentant le bobinage approprié avec un courant de sens correct pour que la partie mobile reprenne sa position initiale.
Les figures 4A à 41 illustrent un procédé de réalisation d'un microactionneur selon la présente invention. On part d'un substrat 50, par exemple en silicium (figure 4A) ; on y grave des caissons qu'on remplit de matériau conducteur pour obtenir une nappe de conducteurs 52 situés sur un premier niveau ; on planarise l'ensemble ; on dépose une couche isolante 54 sur laquelle on forme une couche 56 isolante (par exemple en Si02) , couche dite sacrificielle.
On dépose ensuite (figure 4B) une couche de résine 58. Dans cette couche de résine, on dépose une couche de matériau magnétique (figure 4C) pour former le circuit magnétique 60 et la future partie mobile 62 ; puis on isole les motifs (figure 4D) .
On dépose ensuite une nouvelle couche de résine 66 (figure 4E) et on planarise l'ensemble (figure 4F) .
On dépose ensuite une couche isolante 70 (figure 4G) et une couche de résine ; on grave dans celle-ci de nouveaux caissons que l'on remplit de matériau conducteur pour obtenir une seconde nappe de conducteurs 74 sur un deuxième niveau. Des connexions non représentées permettent de réunir les deux nappes de conducteurs pour obtenir un bobinage entourant la pièce magnétique.
On planarise l'ensemble (figure 4H) et l'on isole les différents motifs. On grave ensuite la couche sacrificielle 56 (figure 41) pour dégager un espace libre 78 et libérer la partie mobile 62.
La figure 5 illustre une application de l'invention à la réalisation d'un microrelais électrique. Ce dispositif comprend les moyens déjà représentés sur la figure 4 et qui portent les mêmes références. Il comprend, en outre, des contacts électriques 80 et 82 disposés sur les faces des premières extrémités 35χ et 352 des circuits magnétiques, trois plots de contact 91, 92, 93 et trois pistes 94, 95, 96 reliant les plots aux contacts 80 et 82 et à la base 40. Les secondes extrémités des deux circuits magnétiques, sont, comme dans l'exemple précédent, confondues avec l'extrémité 35' de la partie commune 30.
Lorsque le bobinage de gauche 32 est alimenté, la partie mobile 36 est attirée vers la gauche et vient refermer le circuit électrique 91, 93. Lorsque le bobinage de droite 322 est alimenté, la partie mobile est attirée vers la droite et vient refermer le circuit électrique 92, 93.
Les contacts électriques ne sont que schématisés sur la figure 5. Dans la réalité, les pistes permettent de reporter les plots de contact vers la périphérie du microrelais où peuvent figurer également les contacts permettant de commander l'actionneur.
La figure 6 illustre un autre mode de réalisation d'un microactionneur selon l'invention dans lequel les branches centrales des circuits magnétiques ne sont pas confondues en une seule branche 30, comme sur la figure 3 , mais sont constitués de deux branches indépendantes 30χ, 302 avec des secondes extrémités 35 'x et 35 ' 2 dont les faces sont dans des plans parallèles entre eux et perpendiculaires aux plans des faces des premières extrémités 35χ et 352. Les fuites magnétiques sont ainsi réduites .
La figure 7 illustre un mode de réalisation à symétrie centrale. Autrement dit, les deux structures
(30l7 32χ, 34χ) (302, 322, 342) sont symétriques par rapport à un point qui est le centre du dispositif. La partie mobile 36 peut alors être reliée de manière elle aussi symétrique à deux embases 401; 402, par deux jeux de deux poutres flexibles (38χ, 39χ) (382, 392) .
La figure 8, enfin, montre un mode de réalisation où la pièce magnétique mobile 36 est mobile en rotation autour d'un axe 98. Elle peut venir se plaquer soit sous l'extrémité 35χ soit sous l'extrémité 352 des deux circuits magnétiques 34χ et 342 selon que le courant passe dans l'enroulement 32χ ou dans l'enroulement 322.

Claims

REVENDICATIONS
1. Actionneur magnétique bistable comprenant :
- une première structure magnétique fixe comprenant un premier bobinage conducteur
(32χ) entourant un premier circuit magnétique ouvert (34χ) présentant une première extrémité (35χ) et une seconde extrémité (35'χ, 35'2, 35'), - une seconde structure magnétique fixe comprenant un second bobinage conducteur (322) entourant un second circuit magnétique ouvert (3 2) présentant une première extrémité (352) et une seconde extrémité (35'2)/ les premières extrémités (35 , 352) des premier et second circuits magnétiques étant disposées en regard l'une de l'autre,
- une pièce magnétique mobile (36) pouvant occuper une première ou une seconde position de travail stable selon que le premier ou le second bobinage conducteur (32χ, 322) est excité,
- pour chaque circuit magnétique, la première extrémité et la seconde extrémité des faces situés ont des faces situées dans des plans perpendiculaires entre eux, les secondes extrémités des premier et second circuits magnétiques ont des faces disposées dans un même plan ou sont confondues, caractérisé en ce que : - la pièce magnétique mobile (36) est localisée au voisinage de la première extrémité (35χ) du premier circuit magnétique et de la première extrémité (352) du second circuit magnétique,
- la pièce magnétique mobile (36) est fixée à des moyens non magnétiques (38, 39) permettant le déplacement de la pièce mobile (36) en direction de la première extrémité (35x) du premier circuit magnétique ou en direction de la première extrémité (352) du second circuit magnétique .
2. Actionneur selon la revendication 1, dans lequel les première (321; 34χ) et seconde (322, 342) structures magnétiques sont disposées symétriquement l'une de l'autre par rapport à un plan.
3. Actionneur selon la revendication 2, dans lequel les moyens auxquels la pièce magnétique mobile est fixée comprennent au moins une poutre flexible (38, 39) non magnétique .
4. Actionneur selon la revendication 2, dans lequel le premier et le second circuits magnétiques ont en commun une branche magnétique (30) située dans le plan de symétrie.
5. Actionneur selon la revendication 1, dans lequel les première et seconde structures magnétiques sont disposées symétriquement par rapport à un point .
6. Actionneur selon la revendication 5, dans lequel les moyens auxquels la pièce magnétique mobile (36) est fixée comprennent au moins deux poutres flexibles (38χ, 39χ) (382, 392) symétriques.
7. Actionneur selon la revendication 1, dans lequel la pièce magnétique mobile (36) est mobile en rotation autour d'un axe (98) .
8. Actionneur selon l'une quelconque des revendications 1 à 7, dans lequel les bobinages conducteurs (32χ, 322) et les circuits magnétiques
(34χ, 342, 30, 30χ, 302) sont réalisés en matériaux déposés en couches, l'actionneur étant alors un microactionneur .
EP02735523A 2001-05-03 2002-04-29 Actionneur magnetique bistable Expired - Lifetime EP1425764B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0105909 2001-05-03
FR0105909A FR2824417B1 (fr) 2001-05-03 2001-05-03 Actionneur magnetique bistable
PCT/FR2002/001487 WO2002091402A2 (fr) 2001-05-03 2002-04-29 Actionneur magnetique bistable

Publications (2)

Publication Number Publication Date
EP1425764A2 true EP1425764A2 (fr) 2004-06-09
EP1425764B1 EP1425764B1 (fr) 2007-11-14

Family

ID=8862933

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02735523A Expired - Lifetime EP1425764B1 (fr) 2001-05-03 2002-04-29 Actionneur magnetique bistable

Country Status (6)

Country Link
US (1) US7049915B2 (fr)
EP (1) EP1425764B1 (fr)
JP (1) JP4034657B2 (fr)
DE (1) DE60223566T2 (fr)
FR (1) FR2824417B1 (fr)
WO (1) WO2002091402A2 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6621135B1 (en) * 2002-09-24 2003-09-16 Maxim Integrated Products, Inc. Microrelays and microrelay fabrication and operating methods
US7463125B2 (en) * 2002-09-24 2008-12-09 Maxim Integrated Products, Inc. Microrelays and microrelay fabrication and operating methods
FR3050339B1 (fr) 2016-04-15 2020-08-28 Enerbee Generateur d'electricite comprenant un convertisseur magneto-electrique et son procede de fabrication
US10969186B2 (en) 2017-03-08 2021-04-06 Strum, Ruger & Company, Inc. Fast action shock invariant magnetic actuator for firearms
US10458736B2 (en) 2017-03-08 2019-10-29 Sturm, Ruger & Company, Inc. Dynamic variable force trigger mechanism for firearms
US11300378B2 (en) 2017-03-08 2022-04-12 Sturm, Ruger & Company, Inc. Electromagnetic firing system for firearm with interruptable trigger control
US10240881B1 (en) 2017-03-08 2019-03-26 Louis M. Galie Fast action shock invariant magnetic actuator for firearms
US10670361B2 (en) 2017-03-08 2020-06-02 Sturm, Ruger & Company, Inc. Single loop user-adjustable electromagnetic trigger mechanism for firearms
US10900732B2 (en) 2017-03-08 2021-01-26 Sturm, Ruger & Company, Inc. Electromagnetic firing system for firearm with firing event tracking
US10228208B2 (en) 2017-03-08 2019-03-12 Sturm, Ruger & Company, Inc. Dynamic variable force trigger mechanism for firearms

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3858135A (en) * 1973-08-14 1974-12-31 S Gray Push-pull linear motor
US5724015A (en) * 1995-06-01 1998-03-03 California Institute Of Technology Bulk micromachined inductive transducers on silicon
US5847631A (en) 1995-10-10 1998-12-08 Georgia Tech Research Corporation Magnetic relay system and method capable of microfabrication production
US5793272A (en) * 1996-08-23 1998-08-11 International Business Machines Corporation Integrated circuit toroidal inductor
DE19714413A1 (de) * 1997-04-08 1998-10-15 Braunewell Markus Elektromagnetischer Antrieb
EP0970296A1 (fr) * 1997-03-24 2000-01-12 LSP Innovative Automotive Systems GmbH Dispositif de commande electromagnetique
US5818131A (en) * 1997-05-13 1998-10-06 Zhang; Wei-Min Linear motor compressor and its application in cooling system
JP3684118B2 (ja) * 1999-09-03 2005-08-17 キヤノン株式会社 電磁アクチュエータ、光スキャナ
JP3492288B2 (ja) * 2000-06-16 2004-02-03 キヤノン株式会社 電磁アクチュエータ、該電磁アクチュエータの作製方法、該電磁アクチュエータを用いた光偏向器
US6803843B2 (en) * 2001-02-22 2004-10-12 Canon Kabushiki Kaisha Movable-body apparatus, optical deflector, and method of fabricating the same
FR2826504B1 (fr) * 2001-06-25 2003-09-12 Commissariat Energie Atomique Actionneur magnetique a temps de reponse reduit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02091402A3 *

Also Published As

Publication number Publication date
FR2824417A1 (fr) 2002-11-08
US20040113732A1 (en) 2004-06-17
JP4034657B2 (ja) 2008-01-16
DE60223566D1 (de) 2007-12-27
EP1425764B1 (fr) 2007-11-14
JP2004534494A (ja) 2004-11-11
FR2824417B1 (fr) 2004-05-14
WO2002091402A2 (fr) 2002-11-14
US7049915B2 (en) 2006-05-23
WO2002091402A3 (fr) 2004-03-25
DE60223566T2 (de) 2008-10-23

Similar Documents

Publication Publication Date Title
US5398011A (en) Microrelay and a method for producing the same
KR100474536B1 (ko) 전자적으로 스위칭하는 래칭 마이크로-마그네틱 릴레이 및그 동작방법
EP1556873B1 (fr) Dispositif de commutation electrique, relais et appareil electrique comportant un tel dispositif
JP3750574B2 (ja) 薄膜電磁石およびこれを用いたスイッチング素子
EP0974185B1 (fr) Actionneur lineaire ameliore
EP1425764B1 (fr) Actionneur magnetique bistable
JPH09198983A (ja) 小型デバイス
EP0869519A1 (fr) Moteur planaire magnétique et micro-actionneur magnétique comportant un tel moteur
US20100182111A1 (en) Micro relay
WO2004055754A1 (fr) Dispositif d’affichage tactile multi-couches a base d’actionneurs electromagnetiques
EP1525595B1 (fr) Actionneur magnetique a levitation
WO2003012805A2 (fr) Actionneur magnetique a aimant mobile
KR100661176B1 (ko) Mems 스위치 및 그 제조 방법
FR2661041A1 (fr) Commutateur magnetique pour lignes coaxiales de transmission.
CN100565740C (zh) 层压机电系统
US7300815B2 (en) Method for fabricating a gold contact on a microswitch
EP1647034A1 (fr) Actionneur magnetique a levitation
FR2880730A1 (fr) Microsysteme utilisant un microactionneur magnetique a aimant permanent.
JPH0864052A (ja) 小型リレー
EP1836713B1 (fr) Microsysteme integrant un circuit magnetique reluctant
JP2007250434A (ja) マイクロマシンスイッチ及びその製造方法
JPH10228853A (ja) リードスイッチ及びその集合体
FR2853449A1 (fr) Actionneur a qualite de contact electrique amelioree.
WO2003072486A3 (fr) Dispositifs microelectromecaniques (mems) et procedes de fabrication
JP2004335216A (ja) 磁気駆動型機構デバイス及びその製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031021

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60223566

Country of ref document: DE

Date of ref document: 20071227

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080128

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080815

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120416

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120511

Year of fee payment: 11

Ref country code: GB

Payment date: 20120423

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120420

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131101

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130429

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20131231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60223566

Country of ref document: DE

Effective date: 20131101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130429