EP1415112A1 - Bruleur a melange prealable et procede permettant de le faire fonctionner - Google Patents

Bruleur a melange prealable et procede permettant de le faire fonctionner

Info

Publication number
EP1415112A1
EP1415112A1 EP02760280A EP02760280A EP1415112A1 EP 1415112 A1 EP1415112 A1 EP 1415112A1 EP 02760280 A EP02760280 A EP 02760280A EP 02760280 A EP02760280 A EP 02760280A EP 1415112 A1 EP1415112 A1 EP 1415112A1
Authority
EP
European Patent Office
Prior art keywords
burner
combustion
premix
pilot
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02760280A
Other languages
German (de)
English (en)
Inventor
Karsten Jordan
Holger Streb
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP02760280A priority Critical patent/EP1415112A1/fr
Publication of EP1415112A1 publication Critical patent/EP1415112A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/343Pilot flames, i.e. fuel nozzles or injectors using only a very small proportion of the total fuel to insure continuous combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2203/00Gaseous fuel burners
    • F23D2203/10Flame diffusing means
    • F23D2203/105Porous plates

Definitions

  • the invention relates to a premix burner, in particular for a gas turbine, with a main burner and a pilot burner stabilizing the main burner. It further relates to a method for operating a premix burner.
  • a burner for a gas turbine is known from US 6202401.
  • This burner designed as a hybrid burner, works either as a diffusion or premix burner. While fuel and combustion air are mixed in the flame during diffusion combustion, the combustion air is first intensively mixed with the fuel in premix combustion and this mixture is then fed to the combustion. This is particularly advantageous with regard to nitrogen oxide emissions, since the homogeneous mixture means that the flame temperature in the premix flame is uniform. The nitrogen oxide formation increases exponentially with the flame temperature.
  • a fuel supply system supplies a main burner and a pilot burner igniting the main burner.
  • the flame of the pilot burner is monitored by means of a piston in which a Porous material is arranged, which serves to absorb a gas to be analyzed.
  • EP 1062461 AI shows a combustion chamber with a lining made of heat shield elements.
  • a heat shield element is designed as a burner heat shield element to which combustion air and fuel are supplied.
  • the heat shield element is designed as a pore burner. The combustion reaction takes place here at least partially in a porous material. This stabilizes the combustion and reduces the tendency to form combustion vibrations.
  • EP 0576697 B1 describes a gas turbine in which catalytic burners are used in addition to classic burner types.
  • the classic burner types are premix burners with which the main combustion is carried out. Combination with catalytic burners results in a simpler regulation in the event of changing gas turbine load conditions.
  • the invention is based on the object of specifying a premix burner in which combustion which is particularly low in nitrogen oxide and at the same time has a low tendency towards combustion instabilities is possible. Furthermore, a corresponding method for operating a premix burner and a gas turbine with low nitrogen oxide emissions and a low tendency to combustion instabilities are to be specified.
  • a main burner for the majority of the combustion air and a pilot burner for stabilizing a are for mixing combustion air with fuel to form a fuel gas mixture and for subsequent combustion of the fuel gas mixture lean combustion is provided in the main burner, the pilot burner being designed as a pore burner with a burner material which has a fine-pored structure.
  • the invention is based on the consideration of designing the pilot burner of a premix burner as a pore burner. This means that the conventional diffusion burner is replaced by a premixed burner because before the fuel and the combustion air enter the
  • Burner material these are mixed. At first it seems unrealistic to design the pilot burner as a premix burner, since the pilot burner is intended to stabilize the unstable premix combustion of the main burner. In fact, tests have shown that the burner material can be sufficiently stabilized by the pilot burner designed as a pore burner. At the same time, there is a reduction in nitrogen oxide emissions due to the homogenization of the mixture in the porous burner material.
  • the pore burner can be used successfully if the mass flow rate of the fuel / air mixture is set correctly.
  • the pressure conditions are set in such a way that the combustion reaction is not driven out of the pore body by an excessive mass throughput.
  • the mass throughput must not be so low that there is a risk of flashback.
  • the nitrogen oxide emissions are reduced by strong heating and thus heat radiation from the burner material, since the flame temperature drops as a result. Furthermore, the reaction density in the entire burner flame is reduced while the power remains the same, since part of the reaction takes place in the porous burner material. In addition, the combustion is stabilized by the particularly low susceptibility of the pore burner to fluctuations in air or gas, which in particular also results in a low susceptibility to combustion oscillations.
  • the fine-pored structure is expediently formed by foaming a base material. Foaming and subsequent hardening of the base material leads in a simple manner to a fine-pored structure.
  • the burner material is preferably ceramic.
  • a ceramic burner material is particularly characterized by its high temperature resistance.
  • the burner material expediently has zirconium oxide or silicon carbide.
  • the burner material is a nickel or cobalt-based superalloy or a high-temperature steel.
  • Such metallic materials can also be made, for example, as metal foams with fine pores and, with high temperature resistance, are easy to process.
  • a metal mesh version is also possible.
  • the main burner encloses the pilot burner with an annular channel for the combustion air.
  • the premix burner is used in a gas turbine, in particular a stationary gas turbine.
  • a stationary gas turbine such as is used for the generation of electrical energy
  • it is important to reduce environmental pollution and to comply with legal emission regulations on a low nitrogen oxide emission.
  • combustion vibrations in such gas turbines are associated with the risk of mechanical damage due to high power releases.
  • the gas turbine preferably has an annular combustion chamber.
  • annular combustion chamber coupling of all burners can result in combustion vibrations of particularly high amplitude. Due to the complex geometry, these vibrations can practically not be calculated in advance.
  • combustion air is mixed with fuel with a main burner to form a fuel gas mixture, and the fuel gas mixture is then burned, the combustion in the main burner by a Pilot burner is stabilized, and wherein combustion takes place in the pilot burner in a fine-pored burner material.
  • FIG. 2 shows in longitudinal section a pilot burner of the premix burner according to FIG. 1,
  • FIGS. 1 and 2 schematically shows a gas turbine with a premix burner according to FIGS. 1 and 2.
  • FIG. 1 shows a premix burner 1 with a main burner 3 and with a pilot burner 5.
  • the main burner 3 has an annular channel 7 which concentrically surrounds the pilot burner 5.
  • Swirl blades 9 are arranged in the annular channel 7.
  • Combustion air 11 is guided through the ring channel 7.
  • the combustion air 11 is admixed with fuel 13 via hollow swirl vanes (not shown in any more detail), which fuel 13 is discharged from the swirl vanes.
  • the fuel 13 mixes intensively with the combustion air 11 before it is burned in a main flame 15.
  • the main burner 3 is operated with an excess of combustion air 11, so that a lean mixture is formed.
  • the premixing ensures that the mixture is largely homogeneous and that there is a uniform flame temperature.
  • this lean premix combustion is difficult to regulate and is easily extinguished. It is accordingly susceptible to combustion instabilities, which can lead to the development of a stable combustion oscillation through acoustic coupling with the environment, for example a combustion chamber wall. Such combustion vibrations lead to high noise pollution or even damage to the combustion system.
  • the pilot burner 5 serves to stabilize the main flame 15. It has a pilot air channel 21 through which combustion air 11 is supplied.
  • the pilot burner 5 also has a pilot fuel channel 23 through which fuel 13 is supplied.
  • the combustion air 11 and the fuel 13 are passed through a fine-pored burner material 41.
  • the pilot burner 5 is thereby designed as a pore burner.
  • the combustion air 11 and the fuel 13 are mixed before they enter the burner material 41.
  • a combustion reaction is already taking place in the burner material 41.
  • the main flame 15 is stabilized by a pilot flame 25 at the outlet of the pilot burner 5.
  • the burner material 41 reduces the nitrogen oxide emissions by homogenization and lowering the flame temperature. Furthermore, in particular the heating of the burner material 41 results in a stable combustion which is very insensitive to air or gas fluctuations and thus also a reduced tendency to form combustion vibrations.
  • the pilot fuel channel 23 is composed of a gas lance 23 and an additional channel 35, which results in a supply of fuel 13 which can be better adapted to the pilot fuel requirement.
  • the burner material 41 is arranged following an opening 39 of the gas lance 23, an opening 39 of the additional duct 37 and the pilot air duct 21. It is foamed from a ceramic material and has a correspondingly fine-pored structure. It would also be conceivable to form the burner material 41 from a material mixture, one or more components of this mixture then being removed in such a way that the fine-pored structure of the burner material 41 remains.
  • the gas turbine 51 shown in FIG. 3 has a compressor 53, an annular combustion chamber 55 and a turbine part 57.
  • the combustion air 11 is highly compressed in the compressor 53 and fed to the ring combustion chamber 55.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)

Abstract

L'invention concerne un brûleur à mélange préalable (1) comportant un brûleur principal (2) et un brûleur pilote (5) pour stabiliser le brûleur principal (3). Le brûleur pilote (5) comporte un matériau de brûleur (41) à pores fins, qui permet une combustion à faible émission d'oxyde d'azote et fiable en termes de variations de combustion.
EP02760280A 2001-08-09 2002-07-26 Bruleur a melange prealable et procede permettant de le faire fonctionner Withdrawn EP1415112A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP02760280A EP1415112A1 (fr) 2001-08-09 2002-07-26 Bruleur a melange prealable et procede permettant de le faire fonctionner

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP01119249 2001-08-09
EP01119249A EP1286112A1 (fr) 2001-08-09 2001-08-09 Brûleur à prémélange et procédé opératoire dudit brûleur
EP02760280A EP1415112A1 (fr) 2001-08-09 2002-07-26 Bruleur a melange prealable et procede permettant de le faire fonctionner
PCT/EP2002/008354 WO2003014621A1 (fr) 2001-08-09 2002-07-26 Bruleur a melange prealable et procede permettant de le faire fonctionner

Publications (1)

Publication Number Publication Date
EP1415112A1 true EP1415112A1 (fr) 2004-05-06

Family

ID=8178283

Family Applications (2)

Application Number Title Priority Date Filing Date
EP01119249A Withdrawn EP1286112A1 (fr) 2001-08-09 2001-08-09 Brûleur à prémélange et procédé opératoire dudit brûleur
EP02760280A Withdrawn EP1415112A1 (fr) 2001-08-09 2002-07-26 Bruleur a melange prealable et procede permettant de le faire fonctionner

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP01119249A Withdrawn EP1286112A1 (fr) 2001-08-09 2001-08-09 Brûleur à prémélange et procédé opératoire dudit brûleur

Country Status (4)

Country Link
US (1) US7029272B2 (fr)
EP (2) EP1286112A1 (fr)
JP (1) JP4354810B2 (fr)
WO (1) WO2003014621A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10341610B8 (de) * 2003-09-10 2007-09-27 Lentjes Gmbh Verfahren zur Verbrennung von festen Abfällen
EP1645805A1 (fr) * 2004-10-11 2006-04-12 Siemens Aktiengesellschaft brûleur pour combustible fluide et procédé pour uriliser un tel brûleur
DE102005061486B4 (de) 2005-12-22 2018-07-12 Ansaldo Energia Switzerland AG Verfahren zum Betreiben einer Brennkammer einer Gasturbine
US8393891B2 (en) * 2006-09-18 2013-03-12 General Electric Company Distributed-jet combustion nozzle
US8413445B2 (en) * 2007-05-11 2013-04-09 General Electric Company Method and system for porous flame holder for hydrogen and syngas combustion
US8529249B2 (en) 2007-09-25 2013-09-10 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Flame holder system
CN102200280A (zh) * 2011-05-25 2011-09-28 朱复定 一种陶瓷窑二次进风预混燃气燃烧器
EP2930430A1 (fr) 2014-04-07 2015-10-14 Siemens Aktiengesellschaft Bec de brûleur et brûleur d'une turbine à gaz

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE790956A (fr) * 1971-11-05 1973-03-01 Penny Robert N Tube de flamme pour chambre de combustion de moteur a turbine agaz
US3954384A (en) * 1974-02-20 1976-05-04 Robertshaw Controls Company Burner system
EP0193838B1 (fr) * 1985-03-04 1989-05-03 Siemens Aktiengesellschaft Disposition de brûleur pour installations de combustion, en particulier pour chambres de combustion d'installations de turbines à gaz ainsi que procédé de sa mise en oeuvre
US5022849A (en) * 1988-07-18 1991-06-11 Hitachi, Ltd. Low NOx burning method and low NOx burner apparatus
US5080577A (en) * 1990-07-18 1992-01-14 Bell Ronald D Combustion method and apparatus for staged combustion within porous matrix elements
JPH07505701A (ja) * 1991-12-30 1995-06-22 ボウウィン テクノロジー ピーティワイ リミテッド 二次空気を使用せずに運転されるバーナを有するガス点火型ヒータ
EP0576697B1 (fr) 1992-06-29 1997-08-27 Abb Research Ltd. Chambre de combustion pour turbine à gaz
DE4439619A1 (de) * 1994-11-05 1996-05-09 Abb Research Ltd Verfahren und Vorrichtung zum Betrieb eines Vormischbrenners
DE19637727A1 (de) * 1996-09-16 1998-03-19 Siemens Ag Verfahren zur katalytischen Verbrennung eines fossilen Brennstoffs in einer Verbrennungsanlage und Anordnung zur Durchführung dieses Verfahrens
US5879154A (en) * 1996-11-18 1999-03-09 Rheem Manufacturing Company Flame spreader-type fuel burner with lowered NOx emissions
DE59907940D1 (de) 1998-03-10 2004-01-15 Siemens Ag Brennkammer und verfahren zum betrieb einer brennkammer
DE19904921C2 (de) * 1999-02-06 2000-12-07 Bosch Gmbh Robert Erhitzer für Flüssigkeiten

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03014621A1 *

Also Published As

Publication number Publication date
WO2003014621A1 (fr) 2003-02-20
JP4354810B2 (ja) 2009-10-28
US20050079464A1 (en) 2005-04-14
JP2004537707A (ja) 2004-12-16
EP1286112A1 (fr) 2003-02-26
US7029272B2 (en) 2006-04-18

Similar Documents

Publication Publication Date Title
EP0710797B1 (fr) Procédé et dispositif de mise en oeuvre d'un brûleur à prémélange
DE60224141T2 (de) Gasturbine und Brennkammer dafür
DE60128513T2 (de) Verfahren und Vorrichtung zur Verminderung der Emissionen in einer Brennkammer mit einer Wirbelmischvorrichtung
DE102009003639B4 (de) Verfahren und Systeme zur Verminderung von Verbrennungsdynamik
EP1730441B1 (fr) Dispositif et procede pour stabiliser une flamme
EP0576697B1 (fr) Chambre de combustion pour turbine à gaz
EP1723369A1 (fr) Bruleur a premelange et procede pour bruler un gaz pauvre
EP2257736B1 (fr) Procédé de production de gaz chaud
DE69926681T2 (de) Verbrennungskammer und deren Arbeitsweise
DE102009059222A1 (de) DLN-Zweibrennstoff-Primärdüse
EP0995066B1 (fr) Agencement de bruleurs pour une installation de chauffe, notamment une chambre de combustion de turbine a gaz
EP1064498A1 (fr) Bruleur et procede pour reduire les vibrations en cours de combustion
DE4446842A1 (de) Verfahren und Vorrichtung zum Zuleiten eines gasförmigen Brennstoffs in einen Vormischbrenner
DE102007043383A1 (de) Treibstoffeinspritzdüse mit verteilten Strahlen
EP1415112A1 (fr) Bruleur a melange prealable et procede permettant de le faire fonctionner
DE60125892T2 (de) Brennkammer
EP1800062B1 (fr) Bruleur destine a la combustion d'un gaz combustible a faible pouvoir calorifique et procede pour faire fonctionner un bruleur
EP1062461B1 (fr) Chambre de combustion et mode de fonctionnement d'une chambre de combustion
EP1112462A1 (fr) Procede d'exploitation d'une turbine a gaz et turbine a gaz correspondante
DE19757617A1 (de) Verbrennungssystem sowie Brenner eines Verbrennungssystems
WO1996041991A1 (fr) Bruleur d'allumage catalytique pour turbine a gaz
DE102005061486A1 (de) Brennkammer mit Brenner und zugehöriges Betriebsverfahren
WO2009127240A1 (fr) Procédé de fonctionnement d'un brûleur à pré-mélange et brûleur à prémélange approprié pour mettre ledit procédé en oeuvre
EP1624252A1 (fr) Brûleur, turbine à gaz et procédé opératoire pour un brûleur
EP2042807A1 (fr) Etage de prémélange pour brûleur de turbine à gaz

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040109

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

17Q First examination report despatched

Effective date: 20080701

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20090904