EP1414268B1 - Procédé d'ajustage et d'utilisation d'une prothèse auditive et une prothèse auditive - Google Patents

Procédé d'ajustage et d'utilisation d'une prothèse auditive et une prothèse auditive Download PDF

Info

Publication number
EP1414268B1
EP1414268B1 EP03022928A EP03022928A EP1414268B1 EP 1414268 B1 EP1414268 B1 EP 1414268B1 EP 03022928 A EP03022928 A EP 03022928A EP 03022928 A EP03022928 A EP 03022928A EP 1414268 B1 EP1414268 B1 EP 1414268B1
Authority
EP
European Patent Office
Prior art keywords
signal
hearing aid
microphone
subject
aid device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03022928A
Other languages
German (de)
English (en)
Other versions
EP1414268A3 (fr
EP1414268A2 (fr
Inventor
Volkmar Hamacher
Torsten Dr. Niederdränk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sivantos GmbH
Original Assignee
Siemens Audioligische Technik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Audioligische Technik GmbH filed Critical Siemens Audioligische Technik GmbH
Publication of EP1414268A2 publication Critical patent/EP1414268A2/fr
Publication of EP1414268A3 publication Critical patent/EP1414268A3/fr
Application granted granted Critical
Publication of EP1414268B1 publication Critical patent/EP1414268B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/70Adaptation of deaf aid to hearing loss, e.g. initial electronic fitting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/55Communication between hearing aids and external devices via a network for data exchange
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/40Arrangements for obtaining a desired directivity characteristic
    • H04R25/407Circuits for combining signals of a plurality of transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2420/00Techniques used stereophonic systems covered by H04S but not provided for in its groups
    • H04S2420/01Enhancing the perception of the sound image or of the spatial distribution using head related transfer functions [HRTF's] or equivalents thereof, e.g. interaural time difference [ITD] or interaural level difference [ILD]

Definitions

  • the invention relates to methods for setting and operating a portable hearing aid on the body of a subject with a microphone system when the hearing aid is worn outside the auditory canals of the subject.
  • the invention relates to a hearing aid device which can be worn on the body of a subject and has a signal processing unit and a microphone system arranged outside the ear canals of the test person when the hearing aid is worn.
  • the microphones When supplying a person with hearing aids, the microphones are mounted outside the ear canals, such as behind the ear portable (BTE) hearing aids, the spectral coloring by the outer ears does not take place, so that important directional and elevation information is lost.
  • BTE ear portable
  • the result is the known localization problems (eg front / rear confusion) of the hard of hearing, the BTE hearing aids wear.
  • the associated disturbance of the spatial acoustic orientation and thus the overall sound quality often contribute to the rejection of the hearing aid devices.
  • IdO hearing aids can be used in the ear. With these, however, at most small and medium hearing losses can be compensated. In addition, they are usually more expensive than BTE hearing aids and more prone to annoying feedback.
  • HRIR Head Related Impulse Response
  • HRTF Head Related Transfer Function
  • the HRTF is a function of four variables: the three spatial coordinates (relative to the head) and the frequency.
  • measurements on an artificial head e.g. KEMAR (Knowles Electronics Mannequin for Acoustical Research).
  • HRTFs Head-Related Transfer Functions
  • the object of the present invention is to improve the ability to localize a signal source of a person supplied with at least one hearing aid device.
  • the object is achieved by a method for operating a hearing aid device that can be worn on the body of a test person with the method steps according to patent claim 8.
  • the object is achieved by a hearing aid device which can be worn on the body of a subject and having the features according to claim 19.
  • the microphone system of the hearing aid according to the invention is designed as a directional microphone system consisting of several electrically interconnected omnidirectional Microphones is constructed.
  • the sound recording would be done by the microphone system in the ear canal directly in front of the eardrum of the hearing impaired ear, since then the signal shaping of an acoustic signal through the head and the outer ear would be taken into account.
  • this is possible in practice at best due to the provision of a hearing aid device that can be worn in the ear, whereby the deviation from an ideal microphone input signal is minimal, in particular in the case of hearing aid devices carried completely in the ear canal. The further the sound recording is from the auditory canal, the greater the deviation from the ideal input signal.
  • the error in recording an acoustic signal emanating from a signal source which arises due to the non-ideal arrangement of the microphone system outside the auditory canals of a subject, can be detected according to the invention by measurements and subsequently at least partially compensated.
  • the transfer function between the external signal source and the body on the body of the microphone system of the hearing aid, and on the other hand in the same external conditions (output signal, position of the signal source to the subject) between the external signal source and the auditory canal of the subject who is to be supplied with the hearing aid determined.
  • This transfer function describes the signal shaping of an acoustic signal through the outer ear, which is not taken into account in a conventional BTE hearing aid.
  • the outer ear transfer function can be determined on a dummy head, for example the KEMAR.
  • microphones are arranged behind the ears of the artificial head as well as in the auditory canals of the artificial head and the artificial head is sonicated with an acoustic signal emanating from an external signal source. From the signals received by the microphones for different frequencies and different positions of the signal source relative to the artificial head on the artificial head, the transfer function of the outer ear can be determined from the differences between the signals measured behind an ear and in the associated auditory canal, depending on the signal frequency and the position of the Signal source can be determined.
  • the transfer function can be determined to a good approximation by considering only the relative orientation of the signal source relative to the artificial head and thus from the view of the artificial head, the direction of incidence of the acoustic signal. is the transmission function of the outer ear as a function of the frequency and the direction of incidence, it can be derived from a correction function, which is applied to the microphone signal of the outside of the ear canal arranged microphone to produce the same microphone signal, which generates in the ear canal of the respective ear would.
  • measurements on one or a number of subjects can be carried out in the same way. By choosing the subjects, a better match can be achieved with a hearing aid to be cared for hearing impaired, as would be possible by measurements on a dummy head. The best results are, however, obtained when the measurements are performed directly on the subject to be supplied with a hearing aid.
  • a further improvement of the signal transmission behavior of a hearing aid device is achieved in that the measurements are performed directly with the hearing aid device, or at least one identical hearing aid device, with which the subject is to be supplied. Then, in the error correction of the microphone signal generated by the microphone system, the internal signal transmission characteristics of the microphone system, even the signal transmission behavior of the hearing aid as a whole, eg the frequency responses of individual microphones of the microphone system or the handset, are taken into account and at least partially corrected.
  • the filter means present in the microphone signal paths of the microphone system can be optimized in such a way that in that for each direction of incidence and frequency of an input signal, the microphone signal generated by the microphone system agrees at least approximately well with a microphone signal generated by a test microphone in the same environmental situation in an auditory canal of the subject.
  • an optimization involving a plurality of different orientations of the signal source relative to the subject's head as well as a multiplicity of different output signals also takes place here.
  • the desired transfer function for a specific measurement characterized by the position of the signal source relative to the head of the subject and the signal frequency of the sound signal, can be determined exactly.
  • the necessary for error correction transfer function of the filter means depending on the position and the frequency can be optimized by known optimization methods.
  • the microphone system of the hearing aid device comprises a plurality of microphones.
  • the microphone system of the hearing aid device comprises a plurality of microphones.
  • settings for filter means arranged in the microphone signal paths can then be indicated, which errors due to the non-optimal placement of the microphones outside of the Balance ear canals.
  • a microphone signal which would have been generated in the same starting situation by a microphone arranged in the auditory canal, thus arises from the totality of the individual microphones of the microphone system generated and filtered microphone signals.
  • filter functions are obtained for different starting situations.
  • filter functions can be calculated in which the dependence on the position of the signal source relative to the subject is eliminated and in which the error resulting therefrom, e.g. averaged over all detected starting situations, is minimized. The result of this optimization becomes all the better, the more measurements are available and the more microphones the microphone system comprises.
  • Another embodiment of the invention provides, during operation of the hearing aid, information about the orientation of the head relative to a signal source, from which emits an acoustic output signal to win.
  • a hearing aid includes, for example, a directional microphone system with several different preferred directions of reception, this information can be obtained by a simple level comparison of the microphone signals generated by the different directional microphones directly by means of the microphone system.
  • the direction of incidence of the acoustic signal with respect to the subject's head is known, then only the previously determined for this direction of incidence correction function is applied to the obtained microphone signal so that the microphone signal at least approximately coincides with a microphone signal in the same situation by a in the ear canal the subject arranged microphone would have arisen.
  • this orientation of the signal source relative to the subject's head must also be detected and corrected by a suitable filter function, which is also dependent on this variable.
  • the advantage of this embodiment lies in the fact that the filter means for correcting the signal error caused by the non-ideal position of the microphone system outside the auditory canal can be carried out very precisely by the localization of the signal source.
  • the disadvantage is the need to locate the signal source as accurately as possible and the associated high computational effort.
  • the microphone system comprises a plurality of directional microphones, wherein the filters for error correction are located in the signal paths of the directional microphones.
  • each filter is optimized with respect to the preferred direction of reception of the directional microphone in whose signal path it is arranged.
  • the filter function of a single filter results from the knowledge of the signal transmission function of the signal emitted by the signal source between the position at which the directional microphone is located, and a position in the auditory canal of the subject at an orientation of the respective directional microphone, in which this exactly on the external signal source is aligned.
  • This embodiment can also be designed both for error correction only in a horizontal plane or in three-dimensional space.
  • At least two directional microphones are required for the horizontal plane and at least three directional microphones for the three-dimensional space.
  • the error correction The better the more directional microphones are used and the more their directional dipoles are formed. In particular, when using many directional microphones this static correction filter can be followed. These are set once for the relevant preferred direction of reception of the associated directional microphone and then not changed during operation of the hearing aid.
  • a correction microphone connected downstream of a directional microphone can be adjusted to the same extent as a function of the orientation of the direction dipole. This has the particular advantage that then even with a microphone system with a few directional microphones or only a directional microphone can be made an optimal adjustment to the acoustic signal source.
  • the correction filter connected downstream of the directional microphone is then advantageously set such that in the hearing aid device the transfer function of the outer ear is reproduced for a sound signal which comes from the direction in which the directional microphone is aligned.
  • the procedure described hitherto for an acoustic signal source can analogously also be applied to a large number of acoustic signal sources.
  • an alignment of a directional microphone or the detection of the direction of incidence of an acoustic signal for the strongest signal received by the microphone system can take place.
  • the error correction is then optimized in particular for the associated signal source.
  • the invention can be applied to all known types of hearing aid devices in which the signal is not recorded directly in the ear canal, for example in behind the ear portable hearing aids, in the Concha portable hearing aids, pocket hearing aids, implantable hearing aids or cochlear implants.
  • the hearing aid according to the invention may also be part of a plurality of devices for supplying a hearing aid comprising comprehensive hearing aid system, e.g. Part of a hearing aid system with two worn on the head hearing aids for binaural care or part of a hearing aid system, consisting of a portable on the head device and a wearable processor unit.
  • FIG. 1 shows a test arrangement for determining the HRTF and the outer ear transfer function of a human ear, wherein the outer ear transfer function is understood only the transfer function between a point on the outer edge of the outer ear and the ear canal.
  • a subject 1 there are a subject 1 and a signal source S in a test environment.
  • a microphone MIC1 is arranged at a position of the ear 2, at which the microphone system for sound recording of an acoustic input signal at a hearing aid worn behind the ear sits.
  • a second microphone MIC2 in the ear canal of the right ear 2 of the subject 1.
  • Both the microphones MIC1 and MIC2 and the signal source S are connected to a computer system 3. From the difference of the acoustic input signals picked up by the microphones MIC1 and MIC2, which are caused by an acoustic output signal of the signal source S, the transfer function of the outer ear can be determined. Since the transfer function depends on the frequency of the acoustic output signal and the position of the signal source S relative to the head of the subject 1, a large number of measurements with different frequencies and different positions is required in order to be able to determine the transfer function as accurately as possible. For describing the position of the signal source S relative to the head of the subject 1, a Cartesian coordinate system is advantageously used.
  • the origin of the coordinate system in the exemplary embodiment is at the position of the microphone MIC2 in the respective auditory canal of the subject 1.
  • the straight-ahead viewing direction of the subject 1 is parallel to the y-axis of the coordinate system.
  • the x-axis is arranged at right angles thereto and clamps together with the y-axis a horizontal plane up.
  • the z-axis points vertically upwards.
  • FIGS. 1 and 2 merely describe by way of example the determination of the transfer function of the outer ear for the arrangement shown.
  • transfer functions can also be determined for other positions of the microphone MIC1, for example on spectacles or in the concha.
  • the transfer function can also be determined in the case of a microphone MIC1 not arranged on the subject's head but, for example, a microphone arranged in the region of the shoulder or chest.
  • the invention provides to compensate at least partially for the error which arises due to the non-ideal positioning of the microphone system of a hearing aid outside the auditory canals.
  • a correction function is to be applied to the microphone signal received by the microphone system.
  • this correction function corresponds to the position shown in FIG. 1 for a certain position determined outer ear transfer function.
  • the error correction can be optimized the better the more microphones the microphone system comprises.
  • FIG. 3 schematically shows the signal transmission of an outgoing from a point-shaped signal source S in the acoustic output signal in the ear canal 5 of an ear 4. It applies to the direct path, that is without the supply by a hearing aid, the transfer function H. This depends on the frequency of Output signal and the position of the signal source S relative to the ear 4 and includes the signal shaping by the head and the outer ear. Also shown is the signal transmission using a hearing aid with three microphones M1, M2 and M3 in the arrangement shown.
  • the signal transmission function between the signal source S and the auditory canal 5 is composed of a first signal path with a signal transmission function HM1 between the signal source S and the microphone M1 and the signal transmission function H1 between the microphone M1 and the auditory canal 5, a second signal path with a Signal transmission function HM2 between the signal source S and the microphone M2 and the signal transmission function H2 between the microphone M2 and the ear canal 5 and a third signal path with a signal transmission function HM3 between the signal source S and the microphone M3 and the signal transmission function H3 between the microphone M3 and the ear canal 5
  • the transfer function H are also the transfer functions HM1, HM2, HM3, and H1, H2 and H3 of the frequency of the output signal and of the position of the signal source S relative to the ear 4 dependent.
  • the distance of the signal source S from the ear 4 should be large enough without limiting the generality, so that the distances of the signal source in the xy and z direction to a reference point (eg the auditory canal entrance) need not be known, but only the Direction of incidence of the acoustic signal or the direction in which the signal source S is relative to the reference point. With a greater distance of the signal source S to the ear 4 (eg greater than 1 meter), the resulting error can be neglected.
  • the dependence of the transfer functions on the position of the signal source S can then be expressed by a solid angle ⁇ .
  • the desired transfer function H (f, ⁇ ) can thus be determined according to equation (2) on the basis of measurements of an acoustic signal in the ear canal 5 in response to an output signal from the signal source S.
  • FIG. 4 graphically.
  • the emulated outer ear transfer function can be used, for example, with a measuring arrangement according to FIG. 1 or in an arrangement according to FIG. 3 be determined by evaluating the recorded as a result of an output signal from the microphones M1, M2 and M3 microphone signals and recorded in the ear canal microphone signal according to equation (5).
  • many transfer functions H1 (f, ⁇ ), H2 (f, ⁇ ) and H3 (f, ⁇ ) can be specified for each frequency and each angle ⁇ , which fulfill the stated condition according to equation (5).
  • the optimization takes place over all ⁇ with 0 ⁇ ⁇ ⁇ 360 ° and over all f in the transmission range of the hearing aid, e.g. 30Hz ⁇ f ⁇ 10kHz.
  • a partial area e.g. a frequency range important for localization.
  • FIG. 5 shows a hearing aid device 9 with three microphones M1 ', M2' and M3 'in the block diagram.
  • the microphones M1 ', M2' and M3 ' are followed by the filters F1, F2 and F3 for error correction according to the invention.
  • Voices the microphones when worn Hearing aid 9 in position with the microphones M1, M2 and M3 of the arrangement according to FIG. 3 For correcting the error in the microphone signal generated by the microphone system M1 ', M2', M3 ', the filter means F1, F2 and F3 in the signal paths of the microphones can be determined and set as described above.
  • the transfer function H1 is advantageously implemented by the filter F1, the transfer function H2 by the filter F2 and the transfer function H3 by the filter F3 according to the above optimization.
  • the said signal error is thereby largely compensated and at the output of an adder 6 there is thus a corrected microphone signal which is further processed and amplified in a known manner in a signal processing unit 7 and in the embodiment is converted back into an acoustic output signal by a receiver 8 and output.
  • the embodiment reflects only the basic operation of a hearing aid according to the invention. It does not really have to be directly downstream of the individual microphones filter. Likewise, the determined transfer functions can be realized in the preferably digital signal processing unit 7. Conversely, the filters downstream of the microphones could, in addition to the error correction, already realize further signal processing functions of the hearing aid device and thus not exactly execute the determined correction functions. Thus, it may be that the error-corrected microphone signal, which is present at the output of the adder 6, does not actually appear (measurable) in a real hearing aid device, but nevertheless an error correction in the sense of the invention is carried out.
  • a filter for error correction and the microphone signals of several microphones can be supplied.
  • the embodiment can be extended to more than three microphones for signal recording.
  • General are however at least two microphones required to perform any optimization depending on the direction of incidence can. The optimization succeeds the better, the more microphones and thus degrees of freedom are available.
  • filter means for error correction it is not necessary, as in the exemplary embodiment, to provide a measuring arrangement which is precisely matched to the relevant hearing aid device.
  • the setting of a portable behind the ear hearing aid with 3 microphones and measurements with a measuring device according to FIG. 1 with only one microphone MIC1 at the edge of the outer ear 2 for signal detection are based.
  • the outer ear transfer function is known as a function of the frequency and the angle of incidence for an external acoustic signal
  • filter functions can also be determined purely mathematically, which are to be applied to the microphone signals of a hearing aid with multiple microphones in a good approximation to the desired outer ear transfer function replicate.
  • the invention can also be extended to the effect that in addition to the correction of said error in an analogous manner, further transmission errors of the hearing aid, such as those of the listener or the signal processing unit, are compensated.
  • further transmission errors of the hearing aid such as those of the listener or the signal processing unit.
  • hearing aid-internal filtering means are to be adjusted so that the signal transmission errors of the hearing aid as a whole are compensated.
  • FIG. 6 Another embodiment of the invention shows FIG. 6 ,
  • a hearing aid device 10 shown in a simplified block diagram with a microphone 11 located outside the auditory canals of a subject, the signal error is compensated provided due to the non-optimal microphone arrangement. To compensate for this error are located in the signal path of the microphone 11 filter means 12.
  • the hearing aid 10 includes a signal processing unit 13 for further processing and amplification of the microphone signal and a receiver 14 for reconverting the electrical output signal into an acoustic signal.
  • the hearing aid 10 is further provided with a sensor 15 by which the localization of a signal source or the determination of the direction of the signal source relative to the head of the subject is possible. The signal emanating from the sensor 15 is fed to an evaluation and control unit 16.
  • filter coefficients of the filter 12 are then adjusted by means of an evaluation and control unit 16 such that the outgoing from the microphone microphone 11 at least approximately undergoes the same transfer function, including the acoustic input signal without supply by a hearing aid between the position of the Microphones 11 on the body of the subject and the auditory canal of the subject, in which the output of the handset 14 is delivered learns. Since in this embodiment of the invention, the direction of incidence of an acoustic signal in the hearing aid and thus the orientation of the signal source is determined relative to the head of the subject first, it offers the advantage that the incident angle-dependent outer ear transfer function in the hearing aid are modeled very precisely for this particular input signal can.
  • filters In addition to the adaptation of filter coefficients, it is also possible for filters to be switched on or off in order to adapt to the receive direction, or for switching between different filters.
  • the filters are preferably realized in digital circuit technology.
  • an input to the filter for certain frequency ranges may also experience signal amplification by the filter.
  • the output signal of the microphone 11 is first split into a plurality of frequency bands. Then can for the individual frequency bands different filter functions to compensate for the signal error can be set in the microphone signal.
  • parameters of the signal processing unit 13 can also be changed. For example, it is possible that, depending on the determined direction, the gain is increased in one frequency band and lowered in another frequency band.
  • the microphone 11 is replaced by a directional microphone system with several preferred directions of reception (not shown). This has the advantage that then the sensor 15 can be implemented directly by the microphone system. By comparing the microphone signals in the different preferred directions of reception, the direction of the signal source relative to the microphone system can be determined. An independent sensor 15 can thus be omitted.
  • a hearing aid 20 includes the three directional microphones R1, R2 and R3. These are each by the electrical interconnection of two omnidirectional microphones M11, M12; M21, M22; M31, M32 realized, wherein in each case a microphone path of a directional microphone R1, R2 or R3, a delay element T1, T2 or T3 and an inverter I1, I2 or I3 and the two microphone signal pairs M11, M12; M21, M22; M31, M32 of a directional microphone R1, R2 or R3 are then added in the summation points S1, S2 and S3.
  • the directional microphones R1, R2, R3 have different preferred reception directions.
  • the microphones are followed by filter means F1 ', F2' and F3 ', the signal transfer functions H1', H2 'and H3' realize. Subsequently, the microphone signals of the directional microphones R1, R2, R3 are combined in the summation point 21. This is done in a known manner, the signal processing in a signal processing unit 22 as well as the reconversion of the processed microphone signals into an acoustic output signal in a receiver 23.
  • the transfer function H1 'of the filter F1' at least approximately coincides with the transfer function required to correct the microphone signal generated by the directional microphone R1, so that the corrected microphone signal corresponds to a microphone signal from one in the ear canal of the hearing aid 20 supplied ear would arranged microphone, especially for a listening situation in which the directional microphone is aligned with the signal source.
  • the transmission functions H2 'and H3' of the filters F2 'and F3' are preset for the listening situations for which the signal source is in the respective preferred direction of reception of the respective directional microphone. Since in a sound of the hearing aid 20 from a certain direction, the directional microphone delivers the strongest microphone signal whose preferred direction of reception is most likely to the signal source, the overall arrangement results in a good approach to the ideal microphone signal.
  • FIG. 7 only purely schematically represents an embodiment of the invention with a plurality of directional microphones.
  • two omnidirectional microphones are sufficient whose output signals each processed in parallel (differently delayed and added in several parallel microphone signal paths of a microphone) to produce a plurality of directional microphones with different preferred receiving directions.
  • a development of the embodiment according to FIG. 7 provides that the preferred directions of reception of the directional microphones R1-R3 are changeable.
  • the adjustment of the preferential receiving direction can be effected, for example, during the adaptation of the hearing aid device 20 to a test subject or during the operation of the hearing aid device 20, for example by a program change.
  • the transmission functions H1'-H3 'of the filters F1'-F3' are then adapted accordingly in the event of a change in the preferred direction of reception in at least one of the directional microphones R1-R3.
  • the hearing aid device 20 provides an adaptation and control unit 24 which is connected to the signal processing unit 22 and to the delay elements T1-T3 and the filters F1'-F3 '.
  • the hearing aid 20 with the block diagram according to FIG. 7 operate in a manner that the operation of the hearing aid 10 according to FIG. 6 equivalent.
  • the directional microphones R1-R3 advantageously form the directional sensor with which the orientation of a signal source relative to the head of a subject can be determined.
  • the microphone signals of the directional microphones R1-R3 are fed to the control and adaptation unit 24, which determines the alignment in particular from a level comparison of the individual directional microphone signals and the Filtering means F1'-F3 'sets according to the determined orientation.
  • FIG. 8 shows a preferred setting of the preferred direction of reception of three microphones in the supply of a subject. Shown is a plan view of the head 30 of the subject with a left ear 31 and a right ear 32, behind which a hearing aid 33 is arranged.
  • the preferred reception direction 34 of a first directional microphone agrees with the straight-ahead viewing direction of the subject.
  • the preferred direction of reception of a second directional microphone points in the opposite direction 37 and the preferred direction of reception 36 of a third directional microphone is at right angles to the aforementioned preferred directions of reception.
  • all the aforementioned directions lie in one plane.
  • the preferred reception directions of further directional microphones it is possible for the preferred reception directions of further directional microphones to be outside the previously detected level (not shown).
  • a subject with a hearing aid according to FIG. 7 and the setting of the directional microphones according to FIG. 8 locate a signal source in the plane well. Due to the extended arrangement, in which directional microphones are provided with a vertical orientation (not shown) even the localization possibility in three-dimensional space is given.
  • static filters can be inserted into the microphone signal paths of the hearing aid.
  • the filters are designed with a suitable method so that the sum signal of the filtered microphone signals for sound incidence from any spatial direction with an allowable fault tolerance corresponds to the signal that would be measured in the same sound situation during natural hearing in the open ear canal.
  • the filter essentially reproduce the transmission properties of the outer ear.
  • an ongoing localization of the sound source (s) can be carried out with suitable localization methods, which are preferably based on the sound analysis with multi-microphone arrangements (unilateral, bilateral). Then the HRTFs belonging to the respective current sound incidence direction can always be imitated "online” and adaptively perform the spectral modification of a sound signal picked up by the hearing aid.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Stereophonic Arrangements (AREA)

Claims (28)

  1. Procédé de réglage d'une prothèse (9, 10, 20) auditive pouvant être portée sur le corps d'un sujet (1) et ayant un système de microphone placé, lorsque la prothèse (9, 10, 20) auditive est portée, à l'extérieur du conduit auditif du sujet ( 1 ) et une unité ( 7, 13, 22 ) de traitement du signal,
    - dans lequel on envoie à un objet de test un signal acoustique de sortie provenant d'une source ( S ) extérieure de signal,
    - dans lequel le signal acoustique de sortie transmis à l'objet de test est reçu en un point de l'objet de test qui correspond à un point du sujet ( 1 ) où le système de microphone est placé lorsque la prothèse ( 9, 10, 20 ) auditive est portée,
    - dans lequel le signal acoustique de sortie transmis à l'objet de test est reçu dans un tuyau auditif de l'objet de test,
    - dans lequel on détermine au moyen du signal reçu une fonction de correction qui, appliquée au signal reçu à l'extérieur du tuyau auditif, transforme celui-ci au moins approximativement en un signal qui correspond au signal reçu dans le tuyau auditif,
    - dans lequel on règle des moyens ( F1, F2, F3 ; 12 ; F1' F2', F3' ) de filtrage dans la prothèse ( 9, 10, 20 ) auditive de manière à ce que cette fonction de correction soit réalisée au moins approximativement pour un signal de microphone produit par le système de microphone,
    - dans lequel le système de microphone comprend au moins deux microphones ( M1', M2', M3' ; M11, M12 ; M21, M22 ; M31, M32 ),
    - dans lequel les moyens ( F1, F2, F3 ; F1' F2', F3' ) de filtrage sont répartis sur le trajet du signal des microphones ( M1' M2', M3' ; M11, M12 ; M21, M22 ; M31, M32 ),
    - et dans lequel on détermine les fonctions de filtrage qui peuvent être réalisées par les moyens ( F1, F2, F3 ; F1', F2', F3' ) de filtrage dans les trajets de signal des microphones ( M1', M2', M3' ; M11, M12 ; M21, M22 ; M31, M32 ) et qui réalisent approximativement dans l'ensemble la fonction de correction, indépendamment des orientations de la source ( S ) extérieure de signal par rapport à l'objet de test.
  2. Procédé suivant la revendication 1, dans lequel l'objet de test est au moins une partie d'un corps humain artificiel et notamment une tête artificielle.
  3. Procédé suivant la revendication 1 dans lequel l'objet de test est une personne.
  4. Procédé suivant la revendication 1 dans lequel l'objet de test est le sujet ( 1 ) à doter de la prothèse auditive.
  5. Procédé suivant l'une des revendications 1 à 4, dans lequel on détermine la fonction de filtrage pour une pluralité de directions différentes de la source ( S ) extérieure de signal par rapport à l'objet de test.
  6. Procédé suivant l'une des revendications 1 à 5, dans lequel, par un câblage électrique d'au moins deux microphones omnidirectionnels, on forme des microphones directionnels ayant des directions de réception préférées différentes.
  7. Procédé suivant l'une des revendications 1 à 6, dans lequel le système de microphone comprend au moins deux microphones ( R1, R2, R3 ) ayant des directions de réception préférées différentes, on détermine la fonction de correction respectivement pour l'orientation de la source ( S ) de signal extérieure par rapport à l'objet de test, dans lequel la direction de réception préférée d'un microphone ( R1, R2, R3 ) directionnel est tournée en direction de la source ( S ) du signal et dans lequel la fonction de correction est réalisée par des filtres ( F1', F2', F3' ) de filtrage montés en aval de ce microphone ( R1, R2, R3 ) directionnel.
  8. Procédé pour faire fonctionner une prothèse ( 9, 10, 20 ) auditive pouvant être portée sur le corps d'un sujet ( 1 ) et ayant un système de microphone disposé, lorsque la prothèse ( 9, 10, 20 ) auditive est portée, à l'extérieur du tuyau auditif du sujet ( 1 ) et une unité ( 7, 13, 22 ) de traitement du signal,
    - dans lequel un signal acoustique de sortie partant d'une source ( S ) de signal extérieure est reçu par le système de microphone sous la forme d'un signal acoustique d'entrée et est transformé en au moins un signal électrique de microphone,
    - dans lequel une erreur de signal dans le signal électrique de microphone ou dans un signal électrique qui en provient, qui se crée par la réception du signal acoustique d'entrée à l'extérieur des tuyaux auditifs par rapport à un signal acoustique d'entrée, qui aurait produit le même signal acoustique de sortie dans un tuyau auditif du sujet ( 1 ) sans que celui-ci soit doté d'une prothèse auditive, est corrigé au moins en partie, en fonction de la direction dans laquelle la source ( S ) de signal se trouve par rapport à la tête du sujet ( 1 )
    - dans lequel le signal électrique de microphone corrigé ou le signal électrique corrigé provenant du signal de microphone est traité davantage et est transformé en un signal de sortie de prothèse auditive et est envoyé au sujet ( 1 ),
    - et dans lequel le système de microphone comprend au moins deux microphones ( M1', M2', M3' ; M11, M12 ; M21, M22 ; M31, M32 ) et l'erreur de signal est corrigée par des moyens ( F1, F2, F3 ; F1', F2', F3' ) de filtrage montés en aval des microphones.
  9. Procédé suivant la revendication 8, dans lequel, lorsque la prothèse ( 9, 10, 11 ) auditive n'est pas portée sur la tête du sujet ( 1 ), les moyens ( F1, F2, F3 ; F1' F2', F3' ) de filtrage sont réglés en fonction de l'orientation relative entre le système de microphone de la prothèse ( 9, 10, 20 ) auditive et la tête du sujet ( 1 ).
  10. Procédé suivant la revendication 8 ou 9, dans lequel on détermine au moins approximativement la direction dans laquelle la source extérieure de signal se trouve par rapport à la tête du sujet ( 1 ) et dans lequel, pour la correction de l'erreur de signal, on règle les moyens ( F1, F2, F3 ; 12 ) de filtrage en fonction de la direction déterminée.
  11. Procédé suivant la revendication 10, dans lequel on détermine la direction par le système de microphone.
  12. Procédé suivant la revendication 11, dans lequel, lorsqu'il y a plusieurs sources extérieures de signal, on détermine la direction d'un signal acoustique d'entrée ayant des propriétés déterminées à l'avance, qui est reçu par le système de microphone.
  13. Procédé suivant l'une des revendications 10 à 12, dans lequel on détermine la direction au moins approximativement d'une projection de la source de signal dans un plan horizontal dans lequel se trouve aussi la tête du sujet ( 1 ).
  14. Procédé suivant l'une des revendications 10 à 13, dans lequel on détermine la direction au moins approximativement dans l'espace en trois dimensions.
  15. Procédé suivant la revendication 8 ou 9, dans lequel le système de microphone comprend au moins deux microphones ( R1, R2, R3 ) directionnels ayant des directions ( 34, 36, 37 ) de réception préférées différentes et on optimise la direction ( 34, 36, 37 ) de réception préférée respective des moyens ( F1' F2', F3' ) de filtrage montés en aval des microphones ( R1, R2, R3 ) directionnels.
  16. Procédé suivant la revendication 15, dans lequel les directions ( 34, 36, 37 ) de réception préférée d'au moins deux microphones ( R1, R2, R3 ) directionnels se trouvent au moins approximativement dans un plan horizontal.
  17. Procédé suivant la revendication 16, dans lequel la direction de réception préférée d'un autre microphone directionnel est dirigée au moins approximativement dans la direction verticale.
  18. Procédé suivant l'une des revendications 15 à 17, dans lequel on peut, pour au moins un microphone ( R1, R2, R3 ) directionnel, régler la direction ( 34, 36, 37 ) de réception préférée et dans lequel, s'il se produit une modification de la direction ( 34, 36, 37 ) de réception préférée on adapte aussi les filtres ( F1', F2', F3' ) réglés au préalable à la nouvelle direction ( 34, 36, 37 ) de réception préférée nouvellement réglée.
  19. Prothèse ( 9, 10, 20 ) auditive pouvant être portée sur le corps d'un sujet ( 1 ) et comprenant une unité ( 7, 13, 22 ) de traitement du signal et un système de microphone placé , lorsque la prothèse ( 9, 10, 20 ) auditive est portée, à l'extérieur des tuyaux auditifs du sujet ( 1 ) et par lequel un signal acoustique d'entrée, qui provient d'un signal acoustique de sortie partant d'au moins une source ( S ) extérieur de signal, peut être perçu et peut être transformé en au moins un signal électrique de microphone, la prothèse ( 9, 10, 20 ) auditive comprenant des moyens adaptés à la correction d'une erreur de signal qui apparaît, pour le signal électrique de microphone ou un signal qui en provient, par la réception du signal acoustique d'entrée à l'extérieur des tuyaux auditifs du sujet ( 1 ) par rapport à un signal acoustique d'entrée reçu pour un même signal acoustique de sortie dans un tuyau auditif du sujet ( 1 ),
    - et dans lequel le système de microphone comprend au moins deux microphones ( M1', M2', M3' ; M11, M12 ; M21, M22 ; M31, M32 ) en aval desquels sont montés respectivement des moyens ( F1, F2, F3 ; 12 ; F1', F2', F3' ) de filtrage pour la correction de l'erreur du signal.
  20. Prothèse ( 9, 10, 20 ) auditive suivant la revendication 19, dans laquelle le système de microphone comprend au moins deux microphones ( R1, R2, R3 ) directionnels ayant des directions ( 34, 36, 37 ) de réception préférées différentes.
  21. Prothèse ( 9, 10, 20 ) auditive suivant la revendication 20, dans laquelle les microphones ( R1, R2, R3 ) directionnels sont formés par le câblage électrique de plusieurs microphones ( M1', M2', M3' ; M11, M12 ; M21, M22 ; M31, M32 ) omnidirectionnels.
  22. Prothèse ( 9, 10, 20 ) auditive suivant la revendication 20 ou 21, dans laquelle les directions ( 34, 36, 37 ) de réception préférées d'au moins deux microphones ( R1, R2, R3 ) directionnels sont au moins approximativement dans un plan horizontal.
  23. Prothèse ( 9, 10, 20 ) auditive suivant la revendication 20 à 22, dans laquelle la direction de réception préférée d'un microphone directionnel est dirigée au moins approximativement dans la direction verticale.
  24. Prothèse ( 10 ) auditive suivant l'une des revendications 19 à 23, dans laquelle la prothèse ( 10 ) auditive comprend des moyens de détection de la direction dans laquelle se trouve la source ( S ) de signal par rapport à la tête du sujet ( 1 ) et dans laquelle les moyens ( 12 ) de filtrage sont réglables en fonction de la direction déterminée.
  25. Prothèse ( 20 ) auditive suivant la revendication 24, dans laquelle la direction peut être déterminée par le système de microphone.
  26. Prothèse ( 20 ) auditive suivant l'une des revendications 20 à 25, dans laquelle un filtre ( F1', F2', F3' ) de correction est monté en aval d'un microphone ( R1, R2, R3 ) directionnel.
  27. Prothèse ( 20 ) auditive suivant la revendication 26, dans laquelle le filtre ( F1', F2', F3' ) de correction est optimisé par rapport à la direction ( 34, 36, 37 ) de réception préférée du microphone ( R1, R2, R3 ) directionnel.
  28. Prothèse ( 20 ) auditive suivant la revendication 26 ou 27, dans laquelle la direction ( 34, 36, 37 ) de réception préférée du microphone ( R1, R2, R3 ) directionnel est réglable et le filtre ( F1', F2', F3' ) de correction peut être adapté à la direction ( 34, 36, 37 ) de réception préférée réglée.
EP03022928A 2002-10-23 2003-10-09 Procédé d'ajustage et d'utilisation d'une prothèse auditive et une prothèse auditive Expired - Lifetime EP1414268B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10249416 2002-10-23
DE10249416A DE10249416B4 (de) 2002-10-23 2002-10-23 Verfahren zum Einstellen und zum Betrieb eines Hörhilfegerätes sowie Hörhilfegerät

Publications (3)

Publication Number Publication Date
EP1414268A2 EP1414268A2 (fr) 2004-04-28
EP1414268A3 EP1414268A3 (fr) 2010-12-22
EP1414268B1 true EP1414268B1 (fr) 2012-01-25

Family

ID=32049570

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03022928A Expired - Lifetime EP1414268B1 (fr) 2002-10-23 2003-10-09 Procédé d'ajustage et d'utilisation d'une prothèse auditive et une prothèse auditive

Country Status (4)

Country Link
US (1) US7313241B2 (fr)
EP (1) EP1414268B1 (fr)
DE (1) DE10249416B4 (fr)
DK (1) DK1414268T3 (fr)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070036377A1 (en) * 2005-08-03 2007-02-15 Alfred Stirnemann Method of obtaining a characteristic, and hearing instrument
DE102005044417B4 (de) * 2005-09-16 2009-07-23 Siemens Audiologische Technik Gmbh Hörvorrichtung mit Ohrmuschelmikrofonabschnitt
EP1946611B1 (fr) * 2005-11-01 2010-05-05 Koninklijke Philips Electronics N.V. Technique de réglage d'un dispositif de prothèse auditive et système de prothèse auditive correspondant
US20070160242A1 (en) * 2006-01-12 2007-07-12 Phonak Ag Method to adjust a hearing system, method to operate the hearing system and a hearing system
JP4931907B2 (ja) * 2006-02-27 2012-05-16 パナソニック株式会社 ウェアラブル端末、および、携帯撮像収音装置、およびそれらを実現する装置、方法、プログラム
EP2123113B1 (fr) 2006-12-15 2018-02-14 Sonova AG Système auditif à suppression de bruit améliorée et procédé d'opération d'un tel système
KR100862663B1 (ko) * 2007-01-25 2008-10-10 삼성전자주식회사 입력되는 신호를 공간상의 위치로 음상 정위하는 방법 및장치
AU2008203351B2 (en) * 2007-08-08 2011-01-27 Oticon A/S Frequency transposition applications for improving spatial hearing abilities of subjects with high frequency hearing loss
EP2026601A1 (fr) * 2007-08-08 2009-02-18 Oticon A/S Application de transposition de fréquence pour améliorer les capacités d'écoute spatiale de sujets souffrant de pertes auditives dans les hautes fréquences
DE102007051308B4 (de) * 2007-10-26 2013-05-16 Siemens Medical Instruments Pte. Ltd. Verfahren zum Verarbeiten eines Mehrkanalaudiosignals für ein binaurales Hörgerätesystem und entsprechendes Hörgerätesystem
DK2088802T3 (da) 2008-02-07 2013-10-14 Oticon As Fremgangsmåde til estimering af lydsignalers vægtningsfunktion i et høreapparat
JP5523307B2 (ja) * 2008-04-10 2014-06-18 パナソニック株式会社 挿耳型イヤホンを用いた音響再生装置
DE102008046040B4 (de) 2008-09-05 2012-03-15 Siemens Medical Instruments Pte. Ltd. Verfahren zum Betrieb einer Hörvorrichtung mit Richtwirkung und zugehörige Hörvorrichtung
US20100074460A1 (en) * 2008-09-25 2010-03-25 Lucent Technologies Inc. Self-steering directional hearing aid and method of operation thereof
US8638960B2 (en) 2011-12-29 2014-01-28 Gn Resound A/S Hearing aid with improved localization
EP2611218B1 (fr) * 2011-12-29 2015-03-11 GN Resound A/S Prothèse auditive avec localisation améliorée
US9980054B2 (en) * 2012-02-17 2018-05-22 Acoustic Vision, Llc Stereophonic focused hearing
KR101225678B1 (ko) * 2012-09-17 2013-01-24 (주)알고코리아 지향성 자동 조절 보청기 및 자동 조절 방법
EP2750411B1 (fr) * 2012-12-28 2015-09-30 GN Resound A/S Prothèse auditive avec une meilleure localisation
EP2750410B1 (fr) * 2012-12-28 2018-10-03 GN Hearing A/S Prothèse auditive avec une meilleure localisation
US9148735B2 (en) 2012-12-28 2015-09-29 Gn Resound A/S Hearing aid with improved localization
US9338561B2 (en) * 2012-12-28 2016-05-10 Gn Resound A/S Hearing aid with improved localization
US9148733B2 (en) 2012-12-28 2015-09-29 Gn Resound A/S Hearing aid with improved localization
US9100762B2 (en) 2013-05-22 2015-08-04 Gn Resound A/S Hearing aid with improved localization
US9635457B2 (en) 2014-03-26 2017-04-25 Sennheiser Electronic Gmbh & Co. Kg Audio processing unit and method of processing an audio signal
US9432778B2 (en) 2014-04-04 2016-08-30 Gn Resound A/S Hearing aid with improved localization of a monaural signal source
AU2015265541A1 (en) 2014-05-26 2017-01-12 Vladimir Sherman Methods circuits devices systems and associated computer executable code for acquiring acoustic signals
DE102014210215A1 (de) * 2014-05-28 2015-12-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Ermittlung und Nutzung hörraumoptimierter Übertragungsfunktionen
US9424828B2 (en) * 2014-08-01 2016-08-23 Bose Corporation System and method of microphone placement for noise attenuation
US9774960B2 (en) * 2014-12-22 2017-09-26 Gn Hearing A/S Diffuse noise listening
DK3038381T3 (da) * 2014-12-22 2017-11-20 Gn Resound As Lytning i diffus støj
NL2014433B1 (nl) * 2015-03-10 2016-10-13 Exsilent Res Bv Persoonlijke gehoorinrichting, in het bijzonder een hoortoestel.
US10397710B2 (en) 2015-12-18 2019-08-27 Cochlear Limited Neutralizing the effect of a medical device location
EP3229489B1 (fr) * 2016-04-08 2021-03-17 Oticon A/s Prothèse auditive comportant un système de microphone directionnel
US10244333B2 (en) 2016-06-06 2019-03-26 Starkey Laboratories, Inc. Method and apparatus for improving speech intelligibility in hearing devices using remote microphone
DK181045B1 (en) 2020-08-14 2022-10-18 Gn Hearing As Hearing device with in-ear microphone and related method
US11792581B2 (en) * 2021-08-03 2023-10-17 Sony Interactive Entertainment Inc. Using Bluetooth / wireless hearing aids for personalized HRTF creation

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2184629B (en) * 1985-12-10 1989-11-08 Colin David Rickson Compensation of hearing
US4953112A (en) * 1988-05-10 1990-08-28 Minnesota Mining And Manufacturing Company Method and apparatus for determining acoustic parameters of an auditory prosthesis using software model
US5524056A (en) * 1993-04-13 1996-06-04 Etymotic Research, Inc. Hearing aid having plural microphones and a microphone switching system
US5325436A (en) 1993-06-30 1994-06-28 House Ear Institute Method of signal processing for maintaining directional hearing with hearing aids
US5825894A (en) 1994-08-17 1998-10-20 Decibel Instruments, Inc. Spatialization for hearing evaluation
US5550923A (en) * 1994-09-02 1996-08-27 Minnesota Mining And Manufacturing Company Directional ear device with adaptive bandwidth and gain control
DE19618019A1 (de) * 1996-05-04 1997-11-06 Siegfried Dipl Ing Enderlein Anordnung zur Anpassung von Übertragungsparametern in der Hörakustik und Anordnungsverwendung
DE19810043A1 (de) * 1998-03-09 1999-09-23 Siemens Audiologische Technik Hörgerät mit einem Richtmikrofon-System
ATE276634T1 (de) * 1998-11-09 2004-10-15 Widex As Verfahren zum in-situ korrigieren oder anpassen eines signalverarbeitungsverfahrens in einem hörgerät mit hilfe eines referenzsignalprozessors
DE19927278C1 (de) * 1999-06-15 2000-12-14 Siemens Audiologische Technik Verfahren zum Anpassen eines Hörhilfegeräts sowie Hörhilfegerät
DE10045197C1 (de) * 2000-09-13 2002-03-07 Siemens Audiologische Technik Verfahren zum Betrieb eines Hörhilfegerätes oder Hörgerätessystems sowie Hörhilfegerät oder Hörgerätesystem
KR100347595B1 (ko) * 2000-11-02 2002-08-07 심윤주 보청기 자동 피팅방법
US7079658B2 (en) * 2001-06-14 2006-07-18 Ati Technologies, Inc. System and method for localization of sounds in three-dimensional space

Also Published As

Publication number Publication date
DK1414268T3 (da) 2012-05-21
EP1414268A3 (fr) 2010-12-22
US7313241B2 (en) 2007-12-25
DE10249416A1 (de) 2004-05-19
US20040136541A1 (en) 2004-07-15
DE10249416B4 (de) 2009-07-30
EP1414268A2 (fr) 2004-04-28

Similar Documents

Publication Publication Date Title
EP1414268B1 (fr) Procédé d'ajustage et d'utilisation d'une prothèse auditive et une prothèse auditive
EP1619928B1 (fr) Prothèse auditive ou système de communication avec sources virtuelles
EP2180726B2 (fr) Localisation du son avec des prothèses auditives binauriculaires
EP1489885B1 (fr) Procédé pour l'opération d'une prothèse auditive ainsi qu'une prothèse auditive avec un système de microphone dans lequel différents caractéristiques de directivité sont sélectionnables
EP2506603B1 (fr) Système d'aide auditive avec système de microphone directif et procédé de fonctionnement dudit système d'aide auditive avec système de microphone directif
DE102011087984A1 (de) Hörvorrichtung mit Sprecheraktivitätserkennung und Verfahren zum Betreiben einer Hörvorrichtung
EP1473967B1 (fr) Procédé de suppression d'au moins un signal de bruit acoustique et dispositif de mise en oeuvre d'un tel procédé
EP1489884B1 (fr) Procédé de commande d'une prothèse auditive et prothèse auditive avec système de microphone dans lequel différentes caractéristiques directionnelles sont réglables
DE102012200745B4 (de) Verfahren und Hörvorrichtung zum Schätzen eines Bestandteils der eigenen Stimme
CH694606A5 (de) Verfahren zum Anpassen eines Hörhilfegeräts sowie Hörhilfegerät.
DE60316474T2 (de) Mikrofonsystem mit richtansprechverhalten
EP1471770B1 (fr) Procédé de géneration d'une fonction de transfert partielle approximée
DE102020207579A1 (de) Verfahren zur richtungsabhängigen Rauschunterdrückung für ein Hörsystem, welches eine Hörvorrichtung umfasst
DE10334396B3 (de) Hörhilfegerät sowie Verfahren zum Betrieb eines Hörhilfegerätes mit einem Mikrofonsystem, bei dem unterschiedliche Richtcharakteristiken einstellbar sind
EP0484354B1 (fr) Casque stereo pour la localisation en avant de phases auditives generees par des casques stereo
DE102013207161B4 (de) Verfahren zur Nutzsignalanpassung in binauralen Hörhilfesystemen
DE102013207080B4 (de) Binaurale Mikrofonanpassung mittels der eigenen Stimme
EP0025509B1 (fr) Procédé de transmission stéréophonique et moyens pour la mise en oeuvre de ce procédé
DE102021211278B3 (de) Verfahren zur Bestimmung einer HRTF und Hörgerät
EP3695620B1 (fr) Transducteur acoustique amélioré
DE102016104598A1 (de) Demonstrationsvorrichtung für Hörgeräte
WO2022008092A1 (fr) Émetteur électroacoustique commandé par invariance
DE2944851C2 (de) Anordnung zur Aufnahme stereophoner Tonsignale
Schröter et al. Messung des Diffusfeldübertragungsmaßes von Kopfhörern am Kunstkopf
DE9208988U1 (de) Vorrichtung zur gehörgerechten Schallfeldanalyse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20110620

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): CH DE DK FR GB LI

RIC1 Information provided on ipc code assigned before grant

Ipc: H04R 25/00 20060101AFI20110729BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE DK FR GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50314189

Country of ref document: DE

Effective date: 20120322

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20121026

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50314189

Country of ref document: DE

Effective date: 20121026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130501

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50314189

Country of ref document: DE

Effective date: 20130501

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20181025

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20181023

Year of fee payment: 16

Ref country code: CH

Payment date: 20181025

Year of fee payment: 16

Ref country code: GB

Payment date: 20181025

Year of fee payment: 16

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20191031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191009

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031