DE102014210215A1 - Ermittlung und Nutzung hörraumoptimierter Übertragungsfunktionen - Google Patents

Ermittlung und Nutzung hörraumoptimierter Übertragungsfunktionen Download PDF

Info

Publication number
DE102014210215A1
DE102014210215A1 DE102014210215.4A DE102014210215A DE102014210215A1 DE 102014210215 A1 DE102014210215 A1 DE 102014210215A1 DE 102014210215 A DE102014210215 A DE 102014210215A DE 102014210215 A1 DE102014210215 A1 DE 102014210215A1
Authority
DE
Germany
Prior art keywords
room
listening
hearing
functions
optimized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102014210215.4A
Other languages
English (en)
Inventor
Karlheinz Brandenburg
Stephan Werner
Christoph Sladeczek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Technische Universitaet Ilmenau
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Technische Universitaet Ilmenau
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV, Technische Universitaet Ilmenau filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority to DE102014210215.4A priority Critical patent/DE102014210215A1/de
Priority to JP2016569427A priority patent/JP6446068B2/ja
Priority to EP15724972.3A priority patent/EP3149969B1/de
Priority to CN201580028158.2A priority patent/CN106576203B/zh
Priority to PCT/EP2015/060792 priority patent/WO2015180973A1/de
Priority to KR1020167036695A priority patent/KR102008771B1/ko
Publication of DE102014210215A1 publication Critical patent/DE102014210215A1/de
Priority to US15/362,017 priority patent/US10003906B2/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/305Electronic adaptation of stereophonic audio signals to reverberation of the listening space
    • H04S7/306For headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/301Automatic calibration of stereophonic sound system, e.g. with test microphone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/302Electronic adaptation of stereophonic sound system to listener position or orientation
    • H04S7/303Tracking of listener position or orientation
    • H04S7/304For headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2400/00Details of stereophonic systems covered by H04S but not provided for in its groups
    • H04S2400/11Positioning of individual sound objects, e.g. moving airplane, within a sound field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2420/00Techniques used stereophonic systems covered by H04S but not provided for in its groups
    • H04S2420/01Enhancing the perception of the sound image or of the spatial distribution using head related transfer functions [HRTF's] or equivalents thereof, e.g. interaural time difference [ITD] or interaural level difference [ILD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Stereophonic System (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

Eine Vorrichtung zur Ermittlung von für eine hörraumoptimierten Abhörraum Übertragungsfunktionen, welche zur hörraumoptimierten Nachbearbeitung von Audiosignalen bei der räumlichen Wiedergabe dient, ist dazu ausgebildet, um eine Raumakustik des Abhörraums (12) zu analysieren und ausgehend von der Analyse der Raumakustik die hörraumoptimierten Übertragungsfunktionen für den Abhörraum, in welchem die räumliche Wiedergabe mittels eines binauralen Nahbereichsschallwandlers erfolgen soll, zu ermitteln. Die räumliche Wiedergabe der Audiosignale mittels des binauralen Nahbereichsschallwandlers kann dann unter Zuhilfenahme von bekannten Außenübertragungsfunktionen und unter Zuhilfenahme der hörraumoptimierten Übertragungsfunktionen emuliert werden, wobei basierend auf den Außenohrübertragungsfunktionen (HRTF) ein zu syntetisierender Raum emulierbar ist und wobei basierend auf den hörraumoptimierten Übertragungsfunktionen (TF) der Abhörraum (12) emulierbar ist.

Description

  • Ausführungsbeispiele der vorliegenden Erfindung beziehen sich auf eine Vorrichtung zur Ermittlung von für einen Abhörraum „hörraumoptimierten Übertragungsfunktionen”, auf ein entsprechendes Verfahren und auf eine Vorrichtung zur räumlichen Wiedergabe eines Audiosignals mit entsprechenden Verfahren. Entsprechend bevorzugter Ausführungsbeispiele erfolgt die Wiedergabe mittels eines binauralen Nahbereichsschallwandlers, wie z. B. mittels eines Stereokopfhörers oder Stereo-In-Ear-Hörers. Weitere Ausführungsbeispiele beziehen sich auf ein System, umfassend die zwei Vorrichtungen, und auf ein Computerverfahren zur Durchführung der angesprochenen Verfahren.
  • Die perzeptive Qualität bei der Präsentation einer räumlichen auditiven Szene, z. B. auf Basis eines Mehrkanal-Audiosignals, hängt entscheidend von der akustisch künstlerischen Gestaltung des Inhalts der Präsentation, vom Wiedergabesystem und von der Raumakustik des Abhörraums bzw. Hörraums ab. Ein Hauptziel bei der Entwicklung von Audiowiedergabesystemen ist die Erzeugung von Hörereignissen, die vom Hörer als plausibel eingeschätzt werden. Dies spielt beispielsweise bei der Wiedergabe von Bild-Ton-Inhalten eine besondere Rolle. Bei von dem Nutzer als plausibel wahrgenommenen Inhalten müssen verschiedene perzeptive Qualitätsmerkmale, wie beispielsweise Lokalisierbarkeit, Distanzwahrnehmung, Räumlichkeitswahrnehmung und klangliche Aspekte der Abbildung den Erwartungen entsprechen. Im Idealfall stimmt somit die Wahrnehmung des wiedergegebenen mit der realen Situation im Raum überein.
  • Bei lautsprecherbasierten Audiowiedergabesystemen wird zwei- oder mehrkanaliges Audiomaterial im Abhörraum wiedergegeben. Dieses Audiomaterial kann einer kanalbasierten Mischung entstammen, bei der die fertigen Lautsprechersignale bereits vorliegen. Darüber hinaus können die Lautsprechersignale auch durch ein objektbasiertes Tonwiedergabeverfahren erzeugt werden. Hierbei werden basierend auf einer Beschreibung eines Tonobjekts (z. B.: Position, Lautstärke etc.) und der Kenntnis eines vorherrschenden Lautsprecheraufbaus, die Lautsprecherwiedergabesignale erzeugt. Dabei werden Phantomschallquellen erzeugt, die sich in der Regel auf den Verbindungsachsen zwischen den Lautsprechern befinden. Je nach gewähltem Lautsprecheraufbau und der vorherrschenden Raumakustik des Abhörraums können diese Phantomschallquellen vom Hörer in unterschiedlichen Richtungen und Distanzen wahrgenommen werden. Die Raumakustik selbst hat dabei einen entscheidenden Einfluss auf den Wohlklang der wiedergegebenen auditiven Szene.
  • Die Wiedergabe über Lautsprechersysteme ist allerdings nicht in allen Hörsituationen praktikabel. Weiterhin ist es nicht überall möglich Lautsprecher zu installieren. Als Beispiele solcher Situationen können das Musikhören auf mobilen Endgeräten, die Nutzung in sich wechselnden Räumen, Nutzerakzeptanz oder auch die akustische Belästigung von Mitmenschen genannt werden. Als Alternative für Lautsprecher werden häufig Nahbereichsschallwandler, wie z. B. In-Ears oder Kopfhörer, die direkt an bzw. in unmittelbarer Umgebung zu dem Ohr „getragen” werden, eingesetzt.
  • Die klassische Stereowiedergabe über Schallwandler, die beispielsweise je mit einem akustischen Treiber pro Seite bzw. Ohr ausgestattet sind, erzeugen beim Hörer die Wahrnehmung, dass die sich abbildenden Phantomschallquellen im Kopf auf der Verbindungsachse zwischen den beiden Ohren befinden. Es kommt zur sogenannten „Im-Kopf-Lokalisierung”. Eine plausibel wirkende externe Wahrnehmung (Externizität) der Phantomschallquellen kommt nicht zustande. Die so erzeugten Phantomschallquellen besitzen in der Regel weder ein für einen Nutzer dekodierbare Richtung(-sinformation) noch Distanz(-sinformation), die beispielsweise bei der Wiedergabe der gleichen akustischen Szene über ein Lautsprechersystem (z. B. 2.0 oder 5.1) im Abhörraum vorhanden wäre.
  • Zur Umgehung der Im-Kopf-Lokalisierung bei Kopfhörerwiedergabe werden Methoden der Binauralsynthese verwendet (ohne dass künstlerische Gestaltung und Mischung im Audiomaterial verloren geht). Bei der Binauralsynthese werden sogenannte „Außenohrübertragungsfunktionen” (head-related transfer function, HRTF, Kopfbezogene Übertragungsfunktion) für linkes und rechtes Ohr verwendet. Diese Außenohrübertragungsfunktionen umfassen für jedes Ohr eine Vielzahl an jeweiligen Richtungsvektoren für virtuelle Schallquellen zugeordnete Außenohrübertragungsfunktionen, entsprechend welchen eine Filterung der Audiosignale bei der Wiedergabe derselben erfolgt, so dass eine auditive Szene räumlich dargestellt bzw. die Räumlichkeit emuliert werden. Die Binauralsynthese macht es sich zunutze, dass interaurale Merkmale maßgeblich für das Zustandekommen einer Richtungswahrnehmung einer Schallquelle verantwortlich sind, wobei sich diese interauralen Merkmale in den Außenohrübertragungsfunktionen widerspiegeln. Soll also ein Audiosignal aus einer definierten Richtung wahrgenommen werden, wird dieses Signal mit den zu dieser Richtung gehörenden HRTFs des linken oder rechten Ohrs gefiltert. Mit Hilfe der Binauralsynthese ist es somit möglich, sowohl eine realistische Raumklangszene, z. B. gespeichert als Mehrkanalaudio über den Kopfhörer wiederzugeben. Um einen Lautsprecheraufbau virtuell zu simulieren, verwendet man die richtungsgebundenen HRTF-Paare für jeden zu simulierenden Lautsprecher. Für eine plausible Abbildung von Richtung und Distanz des Lautsprecheraufbaus müssen zusätzlich die richtungsabhängigen akustischen Übertragungsfunktionen des Abhörraums (room-related-transfer-function, RRTF, Raumbezogene Übertragungsfunktion) mit emuliert werden. Diese werden mit den HRTFs kombiniert und ergeben die binauralen Raumimpulsantworten (BRIRs, binaural room-impuls-respons). Die BRIRs können als Filter auf das akustische Signal angewendet werden.
  • Aktuelle Forschungen und Untersuchungen machen allerdings deutlich, dass die Plausibilität einer Audiowiedergabe neben der physikalischen korrekten Synthese der Wiedergabesignale auch maßgeblich von kontextabhängigen Qualitätsparametern und insbesondere von dem Erwartungshorizont des Nutzers in Bezug auf die Raumakustik bestimmt wird. Deshalb besteht der Bedarf nach einem verbesserten Ansatz bei der binauralen Synthese.
  • Aufgabe der vorliegenden Erfindung liegt darin, eine verbesserte räumliche Wiedergabe mittels Nahbereichsschallwandlern, insbesondere in Bezug auf Übereinstimmung von akustischer Synthetisierung und Erwartungshorizont des Konsumenten, zu schaffen.
  • Die Aufgabe wird durch die unabhängigen Patentansprüche gelöst.
  • Ausführungsbeispiele der vorliegenden Erfindung schaffen eine (tragbare) Vorrichtung zur Ermittlung von für einen Abhörraum „hörraumoptimierten Übertragungsfunktionen” auf Basis einer Analyse der Raumakustik. Die hörraumoptimierten Übertragungsfunktionen dient zur hörraumoptimierten Nachbearbeitung von Audiosignalen bei der räumlichen Wiedergabe, wobei basierend auf den Außenohrübertragungsfunktionen (HRTFs) ein zu synthetisierender Raum emulierbar ist und wobei basierend auf den hörraumoptimierten Übertragungsfunktionen der Abhörraum emulierbar ist. Durch die Nutzung dieser zwei Übertragungsfunktionen, die in kombinierter Form auch als binaurale raumbezogene Raumimpulsantwort bezeichnet werden kann, kommt es zu einer realistischen Raumklangsimulation, die in Bezug auf die Räumlichkeit mit den durch das Mehrkanal(-Stereo)-Signal vorgegebenen Merkmalen entspricht, aber unter Berücksichtigung des Erwartungshorizonts, welcher insbesondere durch die Raumakustik vorweggenommen ist, verbessert ist.
  • Entsprechend weiteren Ausführungsbeispielen schafft die vorliegende Erfindung eine weitere (tragbare) Vorrichtung zur räumlichen Wiedergabe eines Audiosignals mittels eines binauralen Nahbereichsschallwandlers, bei der die räumliche Wiedergabe unter Zuhilfenahme von bekannten Außenohrübertragungsfunktionen und unter Zuhilfenahme von für einen hörraumoptimierten Übertragungsfunktionen emuliert wird, so dass bei der Wiedergabe von Audioinhalten den mittels des Nahbereichsschallwandlers ausgehenden akustischen Signalen die Abhörraumcharakteristik aufgeprägt wird.
  • Entsprechend dem Kerngedanken schafft die vorliegende Erfindung also die Voraussetzungen, um kognitive Effekte bei der Wiedergabe von Mehrkanal-Stereo zu berücksichtigen. Hierzu werden entsprechend einem ersten Aspekt hörraumoptimierte Übertragungsfunktionen für den jeweiligen Abhörraum, in welchem beispielsweise mittels eines Kopfhörers (allgemein mittels eines binauralen Nahbereichsschallwandlers) eine auditive Szene wiedergegeben werden soll, ermittelt. Das Ermitteln der hörraumoptimierten Übertragungsfunktion entspricht im Prinzip der Ableitung eines raumakustischen Filters auf Basis der ermittelten bzw. vermessenen Raumakustik mit der Zielsetzung, die akustischen Eigenschaften des Realraums synthetisch abzubilden. In einem zweiten Schritt kann dann die auditive Szene entsprechend einem zweiten Erfindungsaspekt sowohl unter Zuhilfenahme der HRTFs als auch unter Zuhilfenahme der hörraumoptimierten Übertragungsfunktionen als Raumklangsimulation wiedergegebenen werden. Bei der Wiedergabe wird mittels HRTFs die Räumlichkeit erzeugt, während mittels hörraumoptimierter Übertragungsfunktionen die Anpassung der Räumlichkeit an die aktuelle Hörraumsituation erreicht wird. In anderen Worten heißt es, dass die hörraumoptimierten Übertragungsfunktionen eine Anpassung bzw. Nachbearbeitung der HRTFs oder der durch die HRTFs bearbeiteten Signale vornimmt. Im Ergebnis kann so bei der Wiedergabe von Audioinhalten die Divergenz zwischen dem wiederzugebenden Raum, definiert durch das Mehrkanalaudiomaterial, und dem Abhörraum, in dem sich der Hörer befindet, reduziert werden.
  • Für die Ermittlung der hörraumoptimierten Übertragungsfunktionen gibt es unterschiedliche Möglichkeiten, nämlich entsprechend einer ersten Variante die messtechnische Ermittlung unter Zuhilfenahme einer Testschallquelle und eines Mikrofons, so dass die Raumakustik über eine Teststrecke in dem Abhörraum analysiert werden kann, um ein akustisches Model des Raums zu erhalten. Entsprechend einer zweiten Variante können auch natürlich vorkommende Geräusche, wie z. B. eine Stimme, als Testsignale genutzt werden. Die zweite Variante bietet insbesondere den Vorteil, dass praktisch jedes elektrische Endgerät mit einem Mikrofon, wie z. B. ein Mobiltelefon oder ein Smartphone, auf dem die oben beschrieben Funktionalität implementiert ist, ausreicht, um die Raumakustik zu ermitteln. Entsprechend einer dritten Variante kann die Analyse des Abhörraums bzw. die Ermittlung des akustischen Raummodels auf Basis von geometrischen Modellen erfolgen. Denkbar wäre es in diesem Zusammenhang auch, dass ein geometrisches Modell optisch, z. B. mit einer Kamera, die typischerweise auch in mobilen Endgeräten (wie Mobiltelefonen) integriert ist, erfasst wird, um so im Nachgang das akustische Modell des Abhörraums zu errechnen. Ausgehend von einem so ermittelten akustischen Raummodell können nun die hörraumoptimierten Übertragungsfunktionen bestimmt werden.
  • Entsprechend weiteren Ausführungsbeispielen kann nicht nur dem Abhörraum alleine Rechnung getragen werden, sondern auch einer Positionierung des Hörers in dem Abhörraum. Hintergrund hierzu ist, dass sich die Raumakustik bzw. akustische Wahrnehmung entsprechend ändert, je nachdem ob die Hörposition sich näher an der Wand befindet oder in welche Richtung der Hörer schaut. Somit kann entsprechend weiteren Ausführungsbeispielen eine Vielzahl an richtungsabhängigen und/oder positionsabhängigen Übertragungsfunktionen (Übertragungsfunktionen-Scharen) innerhalb der hörraumoptimierten Übertragungsfunktionen hinterlegt sein, die hier beispielsweise in Abhängigkeit von der Position des Hörers in dem Abhörraum oder von dem Blickwinkel des Hörers ausgewählt werden.
  • Auch in Bezug auf die hörraumoptimierte Übertragungsfunktionen ist es vorteilhaft, wenn in der Vorrichtung zur räumlichen Wiedergabe oder in der an die Vorrichtung angekoppelten Datenbank eine Vielzahl von hörraumoptimierten Übertragungsfunktionen-Scharen für unterschiedliche Abhörräume hinterlegt sind, so dass diese in Abhängigkeit davon, in welchem Raum der Hörer sich gerade befindet, abrufbar sind. Hierzu kann beispielsweise die Vorrichtung zur räumlichen Wiedergabe auch eine Positionsbestimmungsvorrichtung, wie z. B. ein GPS umfassen.
  • Entsprechend weiteren Ausführungsbeispielen ist es auch möglich, neben der oder parallel zu der Abhörraumcharakteristik dem wiederzugebenden Audiomaterial die entsprechende Charakteristik eines virtuellen Lautsprechersetups aufzuprägen, welches beispielsweise dem realen Lautsprechersetup in dem Abhörraum entspricht oder frei konfiguriert ist.
  • Weitere Ausführungsbeispiele beziehen sich auf die entsprechenden Verfahren zur Ermittlung der hörraumoptimierten Übertragungsfunktionen und zur Wiedergabe von Mehrkanal-Stereo-Audiosignalen (oder objektbasierten Audiosignalen oder WFS-Audiosignalen) unter Nutzung der hörraumoptimierten Übertragungsfunktionen.
  • Nachfolgende Ausführungsbeispiele werden anhand der beiliegenden Figuren im Detail erläutert. Es zeigen:
  • 1a ein schematisches Blockschaltbild einer Vorrichtung zur Ermittlung von für einen Abhörraum hörraumoptimierten Übertragungsfunktionen;
  • 1b ein schematisches Flussdiagramm eines Verfahrens bei der Ermittlung hörraumoptimierter Übertragungsfunktionen;
  • 2a ein schematisches Blockschaltbild einer Vorrichtung zur räumlichen Wiedergabe von Mehrkanal-Stereo-Audiomaterial unter Berücksichtigung hörraumoptimierter Übertragungsfunktionen;
  • 2b ein schematisches Flussdiagramm für ein Verfahren zur räumlichen Wiedergabe von Mehrkanal-Stereo-Audiomaterial unter Berücksichtigung hörraumoptimierter Übertragungsfunktionen; und
  • 3 ein schematisches Blockschaltbild eines Systems zur Ermittlung und Nutzung von hörraumoptimierten Übertragungsfunktionen.
  • Bevor nachfolgend Ausführungsbeispiele der vorliegenden Erfindung anhand der beiliegenden Zeichnungen näher erläutert werden, sei darauf hingewiesen, dass gleiche Elemente oder gleichwirkende Elemente mit gleichen Bezugszeichen versehen sind, so dass die Beschreibung derer aufeinander anwendbar bzw. austauschbar ist.
  • Im Vorfeld zu der Beschreibung der Erfindung wird nachfolgend auf die Motivation bei der Erfassung und Auralisation der Raumakustik eines Abhörraums zur standortabhängigen räumlichen Tonwiedergabe über Kopfhörer eingegangen. In diesem Zusammenhang wird auch kurz auf die Binauralsynthese eingegangen und ein Überblick über die für die Binauralsynthese genutzten Außenohrübertragungsfunktionen (HRTFs) und die in den Außenohrübertragungsfunktionen enthaltenen, manipulierbaren Variablen gegeben. Anhand dieses Überblicks wird ferner auch aufgezeigt, inwieweit die HRTFs durch die zu ermittelnden hörraumoptimierten Übertragungsfunktionen TF angepasst werden, um den Raumakustikbedingungen erfindungsgemäß Rechnung zu tragen.
  • Die Binauralsynthese basiert darauf, dass ein Audiosignal vor Ausgabe über einen Schallwandler (bevorzugt direkt an einem der Ohren) mit einer bestimmten Filterfunktion bzw. HRTF gefiltert wird, wobei die Filtercharakteristik sich je Richtungsvektor bzw. je virtueller Schallquelle unterscheidet, um so Raumklang, z. B. bei Nutzung eines Kopfhörers, zu emulieren. Die Filterfunktionen/HRTFs sind den natürliche Schalllokalisierungsmechanismen des menschlichen Gehörs nachempfunden. Hierdurch ist es möglich, das Audiosignal in der analogen oder digitalen Domäne so zu bearbeiten bzw. diesem eine akustische Charakteristik aufzuprägen, als ob dieses von einer beliebigen Position im Raum ausgesendet wird. Die Mechanismen bei der Lokalisierung von Schall sind:
    • – Erkennung der seitliche Einfallsrichtung;
    • – Erkennung der Einfallsrichtung in der medialen Ebene; und
    • – Erkennung der Entfernung.
  • Für die Lokalisierung in Bezug auf die seitliche Einfallsrichtung sind akustische Merkmale wie Laufzeitdifferenzen zwischen links/rechts und (frequenzabhängige) Pegeldifferenzen zwischen links/rechts maßgeblich. Bei den Laufzeitunterschieden kann insbesondere zwischen Phasenlaufzeit bei niedrigen Frequenzen und Gruppenlaufzeit bei hohen Frequenzen unterschieden werden. Diese Laufzeitunterschiede können über einen beliebigen Stereo-Treiber via Signalverarbeitung nachgebildet werden. Die Bestimmung der Einfallsrichtung in der medialen Ebene basiert insbesondere darauf, dass die Ohrmuschel und/oder dem Gehörgangseingang eine richtungsselektive Filterung des akustischen Signals durchführt. Diese Filterung ist frequenzselektiv, so dass ein Audiosignal vorab mit einem derartigen Frequenzfilter gefiltert werden kann, um eine bestimmte Einfallsrichtung vorzutäuschen bzw. eine Räumlichkeit zu emulieren. Die Bestimmung der Entfernung einer Schallquelle von dem Hörer basiert auf unterschiedlichen Mechanismen. Die Hauptmechanismen sind Lautstärke, frequenzselektiven Filterung des zurückgelegten Schallwegs, Schallreflexion und Anfangszeitlücke. Ein Großteil der oben genannten Faktoren ist personenindividuell. Personenindividuelle Variable können z. B. der Ohrenabstand sowie die Form der Ohrmuschel sein, die sich insbesondere auf die seitliche und die mediale Lokalisierung auswirkt. Durch Manipulation eines Audiosignals in Hinblick auf die genannten Mechanismen erfolgt die Raumklangemulation, wobei die Manipulationsparameter (je Raumrichtung und Entfernung) in den HRTFs hinterlegt sind.
  • Diese HRTFs (Außenohrübertragungsfunktionen) sind in erster Linie für die Freifeldschallausbreitung gedacht. Hintergrund hierzu ist, dass die oben genannten drei Faktoren zur Lokalisierung für die Anwendung in geschlossenen Räumen insoweit verfälscht werden, dass der von einer Schallquelle ausgesandte Schall nicht nur direkt, sondern auch in reflektierter Form (z. B. über Wände) zu dem Hörer gelangt, was eine Veränderung der akustischen Wahrnehmung zu Folge hat. In Räumen kommt es also zu Direktschall und zu (später eintreffenden) reflektierten Schall, wobei diese Schallarten für den Hörer beispielsweise anhand von Laufzeit für bestimmte Frequenzgruppen und/oder Position der sekundären Schallquelle im Raum differenzierbar sind. Diese (Hall-)Parameter sind ferner von der Raumgröße und Beschaffenheit (z. B. Dämpfung, Form) abhängig, sodass ein Hörer die Raumgröße und Beschaffenheit abschätzen kann. Da diese Raumakustikparameter grundsätzlich über dieselben Mechanismen wahrgenommen werden wie die der Lokalisierung, ist die Raumakustik ebenfalls binaural emulierbar. Zur Emulation der Raumakustik wird die HRTF mittels der RRTF zu der binauralen Raumimpulsantwort (BRIR) erweitert, die dem Hörer im Falle der Kopfhörerwiedergabe bestimmte akustische Raumbedingungen simuliert. So erfolgt je nach virtueller Raumgröße eine Veränderung des Hallverhaltens, einer Verschiebung von Sekundärschallquellen, eine Veränderung der Lautheit der Sekundärschallquellen, insbesondere in Relation zu der Lautheit der Primärschallquellen.
  • Wie eingangs bereits erwähnt, spielen beim Hörer auch kognitive Effekte eine große Rolle. Untersuchungen zu derartigen kognitiven Effekten haben ergeben, dass die Relevanz von Parametern wie dem Übereinstimmungsgrad zwischen dem Abhörraum und dem zu synthetisierendem Raum, das Zustandekommen einer plausiblen auditiven Illusion hoch sind. Der Fachmann spricht im Falle einer geringen Divergenz zwischen Abhörraum und wiederzugebendem Raum von geringer Externizität des Hörereignisses.
  • Motiviert hierdurch soll nun die Binauralsynthese derart erweitert werden, dass die binaurale Simulation einer auditiven Szene an den Kontext der Nutzung angepasst werden kann. Im Detail erfolgt eine Anpassung der Simulation an die Abhörbedingungen, wie beispielsweise an eine aktuelle Raumakustik (Dämpfung) und die Geometrie des Abhörraums. Hierzu können die Distanzwahrnehmung, die Wahrnehmung von Räumlichkeit und die Richtungswahrnehmung so variiert werden, dass sie in Bezug auf den aktuellen Abhörraum plausibel erscheinen. Variationsparameter sind beispielsweise die HRTF- bzw. RRTF-Merkmale, wie z. B. Laufzeitdifferenzen, Pegeldifferenzen, frequenzselektive Filterung oder Anfangszeitlücke. Die Anpassung erfolgt beispielsweise in der Art, dass eine Raumgröße mit einem bestimmten Hallverhalten (Nachhallverhalten bzw. Reflexionsverhalten) emuliert wird oder Abstände z. B. zwischen Hörer und Schallquelle auf einen Maximalwert begrenzt werden. Weiterer Einflussfaktor auf das Raumklangverhalten sind die Position des Nutzers in dem Abhörraum, da es in Hinblick auf Hall und Reflexion entscheidend ist, ob der Nutzer zentral im Raum oder in der Nähe einer Wand steht. Auch dieses Verhalten ist durch Anpassung der HRTF- bzw. RRTF-Parameter emulierbar. Nachfolgend wird erläutert, wie bzw. mit welchen Mitteln die Anpassung der HRTF- bzw. RRTF-Parameter vorgenommen wird, um die Plausibilität der akustischen Simulation Vorort zu verbessern.
  • Das Konzept zur Auralisation der Raumakustik umfasst in der grundlegenden Struktur zwei Bestandteile, die einerseits durch zwei unabhängige Vorrichtungen und andererseits durch zwei entsprechende Verfahren repräsentiert werden. Bezug nehmen auf 1a und 1b wird der erste Bestandteil, nämlich die Erfassung von hörraumoptimierten Übertragungsfunktionen TF erläutert, bevor Bezug nehmend auf 2a und 2b die Nutzung der hörraumoptimierten Übertragungsfunktionen TF erläutert werden.
  • 1a zeigt eine Vorrichtung 10 zur Ermittlung von für einen Abhörraum 12 optimierten Übertragungsfunktionen TF (Transfer Funktion). Zur Ermittlung der hörraumoptimierten Übertragungsfunktionen TF wird der Abhörraum 12 bzw. die Raumakustik desselben analysiert. Deshalb umfasst die Vorrichtung 10 eine Schnittstelle, z. B. wie hier illustriert eine Mikrofonschnittstelle (vgl. Bezugszeichen 14), zur Erfassung von hörraumbezogenen Daten. Da die hörraumoptimierte Übertragungsfunktionen TF, auf Basis welcher anschließend mittels Binauralsynthese einem akustischen Material die Abhörraumcharakteristik aufgeprägt werden soll, typischerweise derart ausgelegt wird, dass bereits vorhandene HRTFs angepasst werden, kann die Vorrichtung 10 die Übertragungsfunktionen TF unter Berücksichtigung der zu nutzenden HRTFs ermitteln. Insofern umfasst die Vorrichtung 10 optionaler Weise eine weitere Schnittstelle zum Einlesen bzw. zum Weiterleiten von HRTFs.
  • Nachfolgend werden ausgehend von der Vorrichtung 10 unterschiedliche Vorgehensweisen für die Ermittlung der Raumakustik erläutert, auf Basis welcher dann in einem nachgelagerten Schritt die hörraumoptimierte Übertragungsfunktionen TF bestimmt werden.
  • Entsprechend einer ersten Variante ist die Erfassung der vorherrschenden raumakustischen Bedingungen des Abhörraums messtechnisch möglich. Beispielsweise wird durch ein akustisches Messverfahren die Raumakustik des Abhörraums 12 unter Zuhilfenahme der Vorrichtung 10 vermessen. Dazu wird dann ein Testsignal, ausgesendet über einen optionalen Lautsprecher (nicht dargestellt), verwendet. Die Wiedergabe des Testsignals bzw. die Ansteuerung des Lautsprechers kann hierbei über die Vorrichtung 10 erfolgen, wenn die Vorrichtung 10 hierzu eine Lautsprecherschnittstelle (nicht dargestellt) oder den Lautsprecher selbst umfasst. Das über den Lautsprecher in den Raum 12 abgestrahlte Messsignal wird mittels des Mikrofons 14 aufgezeichnet, so dass ausgehend von der Signalveränderung über die Messstrecke (zwischen Lautsprechermikrofon) die Raumakustik bestimmt werden kann, so dass zumindest eine hörraumoptimierte Übertragungsfunktion TF z. B. für eine Raumrichtung oder eine Mehrzahl an hörraumoptimierten Übertragungsfunktionen TF ableitbar ist. Aus der gemessenen Übertragungsfunktion aus einer Richtung werden für den Hörraum relevante raumakustische Parameter abgeleitet. Diese werden genutzt, um die hörraumoptimierten Übertragungsfunktionen TF für die anderen benötigten Richtungen zu generieren. Hierfür können bspw. durch Stauchung und/oder Streckung von Bereichen der Impulsantwort (Übertragungsfunktion im Zeitbereich) die diskreten ersten Reflexionen an andere Raumrichtungen und Distanz der abzubildenden virtuellen Schallquellenpositionen angepasst werden. Die für die Richtungswahrnehmung relevanten Informationen liegen in den HRTFs vor. Um die hörraumoptimierten Übertragungsfunktionen TF für alle Raumrichtungen oder in einer sehr hohen Genauigkeit zu ermitteln, kann es entsprechend weiteren Ausführungsbeispielen vorteilhaft sein, die Analyse mittels des Testsignals für unterschiedliche Positionen von Mikrofon 14 und Lautsprecher in dem Abhörraum 12 zu wiederholen.
  • Entsprechend einer weiteren Variante kann die Ermittlung der Raumakustik unter Verwendung von akustischen Signalen, die bereits durch den Abhörraum 12 verhalt sind, geschätzt werden. Beispiele für derartige Signale sind die sowieso vorhandenen Umgebungsgeräusche, wie auch ein Sprachsignal eines Nutzers. Die hierzu eingesetzten Algorithmen leiten sich aus Algorithmen zur Entfernung von Nachhall aus einem Sprachsignal ab. Hintergrund hierzu ist, dass typischerweise bei den Enthallungsalgorithmen eine Schätzung über die auf dem zu enthallenden Signal liegenden Raumübertragungsfunktion erfolgt. Bis dato werden diese Algorithmen dazu genutzt, um ein Filter zu bestimmen, welches angewendet auf das Originalsignal möglichst das unverhallte Signal zum Ergebnis hat. In der Anwendung bei der Analyse der Raumakustik wird die Filterfunktion nicht bestimmt, sondern nur ein Schätzverfahren dazu verwendet, die Eigenschaften des Abhörraums zu erkennen. Auch bei diesem Vorgehen kommt wiederum das Mikrofon 14, welches an die Vorrichtung 10 angekoppelt ist, zum Einsatz.
  • Entsprechend einer dritten Variante kann die Raumakustik basierend auf geometrischen Raumdaten simuliert werden. Dieses Vorgehen basiert darauf, dass geometrische Daten (z. B. Kantenabmessungen, freie Weglänge) eines Raumes 12 es ermöglichen, die Raumakustik abzuschätzen. Die Raumakustik des Raums 12 kann entweder direkt simuliert werden oder basierend auf raumakustischen Filterdatenbank, die akustische Vergleichsmodelle umfassen, näherungsweise bestimmt werden. In diesem Zusammenhang sind beispielsweise Verfahren wie das akustische Ray Tracing oder das Spiegelschallquellenverfahren in Verbindung mit einem Diffusschallmodell zu nennen. Die beiden genannten Verfahren setzen auf geometrischen Modellen des Abhörraums auf. Insofern muss die oben erläuterte Schnittstelle zur Erfassung von hörraumbezogenen Daten der Vorrichtung 10 nicht zwingendermaßen eine Mikrofonschnittstelle sein, sondern kann auch allgemein als Datenschnittstelle bezeichnet werden, die zum Einlesen von Geometriedaten dient. Ferner ist es auch möglich, dass weitere Daten über die Raumakustik hinaus mittels der Schnittstelle eingelesen werden, die beispielsweise Informationen über ein in dem Abhörraum vorhandenes Lautsprechersetup umfassen.
  • Zur Akquise der geometrischen Raumdaten sind mehrere Möglichkeiten denkbar: Entsprechend einer ersten Untervariante können die Daten aus einer Geometriedatenbank, wie z. B. Google Maps Inhouse entnommen werden. Diese Datenbanken umfassen typischerweise geometrische Modelle, wie z. B. Vektormodelle von Raumgeometrien, ausgehend von welchen in erster Linie die Abstände, aber auch Reflektionscharakteristika bestimmbar sind. Entsprechend einer weiteren Untervariante kann auch eine Bilddatenbank als Input genutzt werden, wobei dann im Nachgang mittels Bilderkennung die geometrischen Parameter in einem Zwischenschritt bestimmt werden. Entsprechend einer alternativen Untervariante wäre es auch möglich, anstatt Bildinformationen einer Bilddatenbank zu entnehmen, die Bildinformationen auch mittels einer Kamera oder allgemein eines optischen Sensors zu ermitteln, so dass direkt durch den Nutzer ein geometrisches Modell ermittelt werden kann. Ausgehend von der auf Basis von Bilddaten ermittelten Raumgeometrie kann dann analog zum vorherigen Punkt die Raumakustik simuliert werden.
  • Mittels diesen so simulierten Raumakustikmodellen werden in einem nachgelagerten Schritt für zumindest einen, bevorzugterweise für eine Vielzahl von Räumen, die hörraumoptimierten Übertragungsfunktionen TF abgeleitet. Die Ableitung der hörraumoptimierten Übertragungsfunktionen TF, welche hinsichtlich ihrer Parameter mit den RRTFs vergleichbar ist, entspricht im Prinzip der Bestimmung einer Filterfunktion (je Raumrichtung), mittels welcher das akustische Verhalten im Raum, z. B. bei der Schallausbreitung in einer bestimmten Raumrichtung, nachbildbar ist. Die hörraumspezifischen Übertragungsfunktionen TF je Raum umfassen typischerweise eine Vielzahl an Übertragungsfunktionen, mittels welchen die Außenohrübertragungsfunktionen (zugeordnet zu einzelne Raumwinkeln) entsprechend (vergleichbar zu dem Vorgehen bei der Verarbeitung der Raumimpulsantwort) angepasst werden können. Die Anzahl an hörraumoptimierten Übertragungsfunktionen TF richtet sich deshalb typischerweise nach der Anzahl der Außenohrübertragungsfunktionen, die als Funktionsschar vorkommen und eine Vielzahl, nämlich für links/rechts und für die relevanten Richtungen besteht. Die genaue Anzahl an Außenohrübertragungsfunktionen im HRTF-Modell richtet sich nach der gewünschten Raumauflösungsfähigkeit und kann aufgrund dessen, dass auch HRTF-Modelle existieren, bei denen eine Großzahl der Richtungsvektoren mittels Interpolation ermittelt werden, erheblich variieren. Aus diesem Zusammenhang wird ersichtlich, warum es sinnvoll ist, dass die Vorrichtung zur Ermittlung der hörraumoptimierten Übertragungsfunktion TF das HRTF-Modell mit verwendet. In einem weiteren Schritt werden die ermittelten hörraumoptimierten Übertragungsfunktionen TF z. B. in einer raumakustischen Filterdatenbank, gespeichert.
  • Entsprechend einem weiteren Ausführungsbeispiel kann auch je Abhörraum auch eine Vielzahl an hörraumoptimierten Übertragungsfunktionen-Scharen (TF) ermittelt und gespeichert werden, wodurch Rechnung getragen wird, dass die Abhörraumfunktionen bzw. das akustische Verhalten im Abhörraum je nach Position des Hörers unterschiedlich ist. In anderen Worten ausgedrückt heißt es also, dass je (möglicher) Position des Nutzers in dem Abhörraum 12 eine eigene hörraumoptimierte Übertragungscharakteristik ermittelbar ist, wobei die Ermittlung derselben auf ein und demselben akustischen Modell des Abhörraums 12 basieren kann. Infolgedessen ist vorteilhafterweise die Analyse des Abhörraums nur einmal durchzuführen. Entsprechend einem weiteren Ausführungsbeispiel können auch je Raumrichtung in welche der Nutzer schaut unterschiedliche raumoptimierte Übertragungsfunktionen-Scharen (TF) ermittelt werden.
  • Die oben beschriebene Vorrichtung 10 kann unterschiedlich ausgeführt sein. Entsprechend bevorzugten Ausführungsbeispielen ist die Vorrichtung 10 als mobiles Gerät ausgeführt, wobei dann der Sensor 14, wie z. B. das Mikrofon oder die Kamera, entsprechend integriert sein kann. D. h. also, dass sich weitere Ausführungsbeispiele auf eine Vorrichtung zur Bestimmung der hörraumoptimierten Übertragungsfunktion TF beziehen, die einerseits die Analyseeinheit 10 und andererseits ein Mikrofon und/oder eine Kamera umfassen. Hierbei kann die Analyseeinheit 10 beispielsweise als Hardware implementiert oder Software-basiert ausgeführt sein. Also umfassen Ausführungsbeispiele der Vorrichtung 10 eine interne oder via Cloudcomputing angebundene CPU oder eine andere Logik, die ausgebildet ist, um die Ermittlung von hörraumoptimierten Übertragungsfunktionen TF und/oder die Hörraumanalyse durchzuführen. Nachfolgend wird Bezug nehmend auf 1b das Verfahren bzw. insbesondere die Grundschritte des Verfahrens, auf welchen der Algorithmus für Software-implementierte Ermittlung von hörraumoptimierten Übertragungsfunktionen TF basiert, erläutert.
  • 1b zeigt ein Flussdiagramm 100 des Verfahrens bei der Ermittlung der für einen hörraumoptimierten Übertragungsfunktionen TF. Das Verfahren 100 umfasst den zentralen Schritt 110 des Ermittelns der hörraumoptimierten Übertragungsfunktionen TF. Wie oben bereits erläutert, basiert der Schritt 110 auf der Analyse der Raumakustik 120 (vgl. Schritt 120 „Raumakustik analysieren”) und optionaler Weise auch auf vorhandenen HRTF-Funktionen. Ausgehend von dem Schritt 110 kann ein weiterer optionaler Schritt, nämlich des Speicherns der Übertragungsfunktionen TF folgen. Dieser Schritt ist mit dem Bezugszeichen 130 versehen.
  • Entsprechend weiteren Ausführungsbeispielen wäre es bei dem im Rahmen der 1a und 1b erläuterten Ausführungsbeispielen auch denkbar, dass gleichsam mit dem Ermitteln der hörraumoptimierten Übertragungsfunktionen TF auch eine Bestimmung der Position des Abhörraums erfolgt, so dass der so erhaltene Datensatz über die Position direkt dem Abhörraum zugeordnet werden kann. Dies bietet den Vorteil, dass im Fall des späteren Abrufens der hörraumoptimierten Übertragungsfunktionen TF aus einer Datenbank eine Zuordnung des jeweiligen Datensatzes ausgehend von einer Positionsbestimmung möglich ist.
  • Nachfolgend wird Bezug nehmend auf 2a und 2b die Nutzung der eben ermittelten hörraumoptimierten Übertragungsfunktionen TF erläutert.
  • 2a zeigt eine Vorrichtung zur räumlichen Wiedergabe 20 unter Zuhilfenahme eines binauralen Nahbereichsschallwandlers 22. Die Funktionalität der Vorrichtung 20 wird unter anderem unter Zuhilfenahme des Flussdiagramms aus 2b, welches das Verfahren 200 der Wiedergabe illustriert, erläutert. Die Vorrichtung 20 ist dazu ausgebildet, das Audiosignal 24, wie z. B. ein Mehrkanal-Stereo-Audiosignal (oder ein objektbasiertes Audiosignal oder ein Audiosignal auf Basis eines Wellenfeldsynthese-Algorithmus (WFS)) wiederzugeben, und um gleichzeitig Raumklang zu emulieren (vgl. Schritt 210). Hierzu führt die Wiedergabevorrichtung 20 eine Bearbeitung des Audiosignals unter Zuhilfenahme von HRTFs und unter Zuhilfenahme der hörraumoptimierten Übertragungsfunktionen TF durch.
  • Die Vorrichtung 20 kann einen HRTF-/TF-Speicher umfassen oder ist beispielsweise mit einer Datenbank verbunden, auf welche die HRTFs, wie auch die entsprechend obigen Verfahren ermittelten hörraumoptimierten Übertragungsfunktionen TF gespeichert sind. Entsprechend bevorzugten Ausführungsbeispielen erfolgt vor der Signalverarbeitung des Audiosignals ein Kombinieren (vgl. Schritt 220) der HRTF mit der TF bzw. ein Anpassen der HRTF auf Basis der TF. Das Ergebnis dieses Kombinierens ist eine mit der BRIR (Raumimpulsantwort) vergleichbare Übertragungsfunktion BRIR', mit welcher dann schlussendlich das Audiosignal 24 bearbeitet wird, um den Raumklang zu emulieren (vgl. Schritt 210). Diese Bearbeitung entspricht im Prinzip einem Anwenden eines BRIR'-basierten Filters auf das Audiosignal. Somit ist es also möglich, Binauralsynthese in Kombination mit der Verhallung der Audiosignale in Abhängigkeit von den in dem Abhörraum vorherrschenden akustischen Bedingungen durchzuführen, so dass bei der Wiedergabe ein hoher Grad an Übereinstimmung zwischen dem synthetisierten Raum und dem Abhörraum entsteht. Folglich stimmt der synthetisierte Raum (zumindest annährend) mit dem Erwartungshorizont des Nutzers überein, was die Plausibilität der Szene erhöht.
  • Entsprechend Ausführungsbeispielen kann die Vorrichtung 20 auch die Positionsbestimmungseinheit, wie z. B. einem GPS-Empfänger, umfassen, mittels welcher die aktuelle Position des Hörers feststellbar ist. Ausgehend von der festgestellten Position kann nun der Abhörraum ermittelt werden und die dem Abhörraum zugeordnete hörraumoptimierte Übertragungsfunktionen TF geladen (und ggf. bei einem Raumwechsel aktualisiert) werden. Optional ist es auch möglich, mittels dieser Positionsbestimmungseinrichtung die Position des Hörers in dem Abhörraum zu ermitteln, um hier auch noch, sofern gespeichert, die Unterschiede in der Akustik in Abhängigkeit von der Position des Hörers in dem Raum darzustellen. Diese Positionsbestimmungseinheit kann entsprechend dritten Ausführungsbeispielen auch durch eine Orientierungsbestimmungseinheit erweitert werden, so dass auch die Blickrichtung des Hörers bestimmbar ist und die TFs in Abhängigkeit von der bestimmten Blickrichtung entsprechend geladen werden, um der richtungsabhängigen Abhörraumakustik gerecht zu werden.
  • Ausgehend von dieser Basisbetrachtung der zwei Einheiten 10 und 20 wird nun ein erweitertes Ausführungsbeispiel von 3 erläutert. 3 zeigt eine schematische Darstellung des Signalflusses beim Abhören von angepassten raumakustischen Simulationen zur Verwendung mit der Binauralsynthese ausgehend von einem System 10 + 20, welches die Vorrichtung zur Bestimmung der TFs und die Vorrichtung zur Wiedergabe der Audiosignale unter Nutzung der TFs umfasst.
  • Eine derartiges System 10 + 20 kann beispielsweise als mobiles Endgerät (z. B. als Smartphone) implementiert sein, auf dem auch die wiederzugebende Datei gespeichert ist. Das System 10 + 20 ist prinzipiell eine Kombination der Vorrichtung 10 aus 1a und der Vorrichtung 20 aus 1b, wobei die einzelnen Bestandteile zur funktionsorientierten Erläuterung anders untergliedert sind.
  • Das System 10 + 20 umfasst eine Funktionseinheit zur Auralisation des Abhörraums 20a und eine Funktionseinheit zur Binauralsynthese 20b. Ferner umfasst das System 10 + 20 einen Funktionsblock 10a zur Modellierung der Raumakustik und einen Funktionsblock 10b zur Modellierung des Übertragungsverhaltens. Die Modellierung der Raumakustik basiert wiederum auf einer Erfassung des Abhörraums, welche mit dem Funktionsblock 10c zur Erfassung der Raumakustik durchgeführt wird. Des Weiteren umfasst das System 10 + 20 in der dargestellten Ausführungsform zwei Speicher, nämlich einen zur Speicherung von Szenenpositionsdaten 30a und einen zur Speicherung von HRTF-Daten 30b. Nachfolgend wird ausgehend von dem Informationsfluss bei der Wiedergabe die Funktionalität des Systems 10 + 20 erläutert, wobei davon ausgegangen wird, dass der Abhörraum dem System 10 + 20 bekannt ist oder mittels eines Positionsbestimmungsverfahrens (vgl. oben) bereits bestimmt ist.
  • Bei der Wiedergabe von kanalbasierten bzw. objektbasierten Audiodaten 24 mit dem Kopfhörer 22 werden die Audiodaten in einem ersten Schritt der Signalverarbeitungseinheit 20a zugeführt, die die vorher modellierte Raumübertragungsfunktion TF auf das Signal 24 anwendet und dieses verhallt. Die Modellierung der Raumübertragungsfunktion TF erfolgt in einem Signalverarbeitungsblock 10a, wobei diese Modellierung durch das Modellierungsübertragungsverhalten (vgl. Funktionsblock 10b) überlagert sein kann, wie nachfolgend erläutert wird.
  • Dieser zweite (optionale) Funktionsblock 10b modelliert ein virtuelles Lautsprechersetup in dem jeweiligen Abhörraum. So kann also dem Nutzer ein akustisches Verhalten emuliert werden, als ob die abzuspielende Audiodatei auf einem bestimmten Lautsprechersetup (2.0, 5.1, 9.2) wiedergegeben wird. Hierbei ist dann insbesondere die Lautsprecherposition fix mit dem Abhörraum verbunden und den jeweiligen Lautsprechern auch ein bestimmtes Übertragungsverhalten, z. B. definiert durch die Frequenzgang und Richtungscharakteristik oder unterschiedliche Pegelverhalten, zugeordnet. Hier ist es auch möglich, besondere Schallquellentypen, z. B. eine Spiegelschallquelle fix im Raum zu positionieren. Das Lautsprechersetup wird auf Basis der Szenenpositionsdaten modelliert, die Information über die Position, den Abstand oder auch den Typ des virtuellen Lautsprechers umfassen. Diese Szenenpositionsdaten können einem real vorhandenen Lautsprechersetup entsprechen, oder auf Basis eines virtuellen Lautsprechersetups basieren und sind typischerweise durch den Nutzer individualisierbar.
  • Nach der Verhallung in der Auralisationsverarbeitungseinheit 20a werden die verhallten Signale der Binauralsynthese 20b zugeführt, die durch einen Satz richtungsgebender HRTF-Filter (vgl. 30b) die Richtung der virtuellen Lautsprecher auf das dem Lautsprecher zugehörigen Audiomaterial aufprägen. Das Binauralsynthesesystem kann, wie bereits oben erläutert, optionaler Weise die Kopfdrehung des Hörers auswerten. Das Resultat ist ein Kopfhörersignal, was durch eine entsprechende Entzerrung auf einen speziellen Kopfhörer angepasst werden kann, wobei sich das akustische Signal so verhält, als ob es mit einem spezifischen Lautsprechersetup in dem jeweiligen Abhörraum abgegeben wurde.
  • Das System 10 + 20 kann beispielsweise als mobiles Endgerät oder aus Komponenten einer Heimkinoanlage ausgeführt sein. Im Allgemeinen sind Anwendungsgebiete die Wiedergabe von Musik und Entertainmentinhalten, wie z. B. Ton für Film oder Spielton über den binauralen Nahbereichsschallwandler.
  • An dieser Stelle sei angemerkt, dass entsprechend einem alternativen Ausführungsbeispiel die Vorrichtung 20 aus 2a ebenfalls so ausgelegt sein kann, auf Basis von Szenenpositionsdaten ein bestimmtes Lautsprechersetup bzw. die Wiedergabe eines Audiosignals für ein bestimmtes Lautsprechersetup zu emulieren. Entsprechend kann auch gemäß einem weiteren Ausführungsbeispiel die Vorrichtung 10 dazu ausgebildet sein, die Szenenpositionsdaten eines Lautsprechersetups in dem Abhörraum 12 (z. B. über eine akustische Messung) zu ermitteln, so dass dieses Lautsprechersetup mit der Vorrichtung 20 emuliert werden kann.
  • Obwohl manche Aspekte im Zusammenhang mit einer Vorrichtung beschrieben wurden, versteht es sich, dass diese Aspekte auch eine Beschreibung des entsprechenden Verfahrens darstellen, sodass ein Block oder ein Bauelement einer Vorrichtung auch als ein entsprechender Verfahrensschritt oder als ein Merkmal eines Verfahrensschrittes zu verstehen ist. Analog dazu stellen Aspekte, die im Zusammenhang mit einem oder als ein Verfahrensschritt beschrieben wurden, auch eine Beschreibung eines entsprechenden Blocks oder Details oder Merkmals einer entsprechenden Vorrichtung dar. Einige oder alle der Verfahrensschritte können durch einen Hardware-Apparat (oder unter Verwendung eines Hardware-Apparats), wie zum Beispiel einen Mikroprozessor, einen programmierbaren Computer oder eine elektronische Schaltung ausgeführt werden. Bei einigen Ausführungsbeispielen können einige oder mehrere der wichtigsten Verfahrensschritte durch einen solchen Apparat ausgeführt werden.
  • Ein erfindungsgemäß codiertes Signal, wie beispielsweise ein Audiosignal oder ein Videosignal oder ein Transportstromsignal, kann auf einem digitalen Speichermedium gespeichert sein oder kann auf einem Übertragungsmedium wie beispielsweise einem drahtlosen Übertragungsmedium oder einem verdrahteten Übertragungsmedium, z. B. dem Internet, übertragen werden
  • Das erfindungsgemäße kodierte Audiosignal kann auf einem digitalen Speichermedium gespeichert sein, oder kann auf einem Übertragungsmedium, wie beispielsweise einem drahtlosen Übertragungsmedium oder einem drahtgebundenen Übertragungsmedium, wie beispielsweise dem Internet, übertragen werden.
  • Je nach bestimmten Implementierungsanforderungen können Ausführungsbeispiele der Erfindung in Hardware oder in Software implementiert sein. Die Implementierung kann unter Verwendung eines digitalen Speichermediums, beispielsweise einer Floppy-Disk, einer DVD, einer Blu-ray Disc, einer CD, eines ROM, eines PROM, eines EPROM, eines EEPROM oder eines FLASH-Speichers, einer Festplatte oder eines anderen magnetischen oder optischen Speichers durchgeführt werden, auf dem elektronisch lesbare Steuersignale gespeichert sind, die mit einem programmierbaren Computersystem derart zusammenwirken können oder zusammenwirken, dass das jeweilige Verfahren durchgeführt wird. Deshalb kann das digitale Speichermedium computerlesbar sein.
  • Manche Ausführungsbeispiele gemäß der Erfindung umfassen also einen Datenträger, der elektronisch lesbare Steuersignale aufweist, die in der Lage sind, mit einem programmierbaren Computersystem derart zusammenzuwirken, dass eines der hierin beschriebenen Verfahren durchgeführt wird.
  • Allgemein können Ausführungsbeispiele der vorliegenden Erfindung als Computerprogrammprodukt mit einem Programmcode implementiert sein, wobei der Programmcode dahin gehend wirksam ist, eines der Verfahren durchzuführen, wenn das Computerprogrammprodukt auf einem Computer abläuft.
  • Der Programmcode kann beispielsweise auch auf einem maschinenlesbaren Träger gespeichert sein.
  • Andere Ausführungsbeispiele umfassen das Computerprogramm zum Durchführen eines der hierin beschriebenen Verfahren, wobei das Computerprogramm auf einem maschinenlesbaren Träger gespeichert ist.
  • Mit anderen Worten ist ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens somit ein Computerprogramm, das einen Programmcode zum Durchführen eines der hierin beschriebenen Verfahren aufweist, wenn das Computerprogramm auf einem Computer abläuft.
  • Ein weiteres Ausführungsbeispiel der erfindungsgemäßen Verfahren ist somit ein Datenträger (oder ein digitales Speichermedium oder ein computerlesbares Medium), auf dem das Computerprogramm zum Durchführen eines der hierin beschriebenen Verfahren aufgezeichnet ist.
  • Ein weiteres Ausführungsbeispiel des erfindungsgemäßen Verfahrens ist somit ein Datenstrom oder eine Sequenz von Signalen, der bzw. die das Computerprogramm zum Durchführen eines der hierin beschriebenen Verfahren darstellt bzw. darstellen. Der Datenstrom oder die Sequenz von Signalen kann bzw. können beispielsweise dahin gehend konfiguriert sein, über eine Datenkommunikationsverbindung, beispielsweise über das Internet, transferiert zu werden.
  • Ein weiteres Ausführungsbeispiel umfasst eine Verarbeitungseinrichtung, beispielsweise einen Computer oder ein programmierbares Logikbauelement, die dahin gehend konfiguriert oder angepasst ist, eines der hierin beschriebenen Verfahren durchzuführen.
  • Ein weiteres Ausführungsbeispiel umfasst einen Computer, auf dem das Computerprogramm zum Durchführen eines der hierin beschriebenen Verfahren installiert ist.
  • Ein weiteres Ausführungsbeispiel gemäß der Erfindung umfasst eine Vorrichtung oder ein System, die bzw. das ausgelegt ist, um ein Computerprogramm zur Durchführung zumindest eines der hierin beschriebenen Verfahren zu einem Empfänger zu übertragen. Die Übertragung kann beispielsweise elektronisch oder optisch erfolgen. Der Empfänger kann beispielsweise ein Computer, ein Mobilgerät, ein Speichergerät oder eine ähnliche Vorrichtung sein. Die Vorrichtung oder das System kann beispielsweise einen Datei-Server zur Übertragung des Computerprogramms zu dem Empfänger umfassen.
  • Bei manchen Ausführungsbeispielen kann ein programmierbares Logikbauelement (beispielsweise ein feldprogrammierbares Gatterarray, ein FPGA) dazu verwendet werden, manche oder alle Funktionalitäten der hierin beschriebenen Verfahren durchzuführen. Bei manchen Ausführungsbeispielen kann ein feldprogrammierbares Gatterarray mit einem Mikroprozessor zusammenwirken, um eines der hierin beschriebenen Verfahren durchzuführen. Allgemein werden die Verfahren bei einigen Ausführungsbeispielen seitens einer beliebigen Hardwarevorrichtung durchgeführt. Diese kann eine universell einsetzbare Hardware wie ein Computerprozessor (CPU) sein oder für das Verfahren spezifische Hardware, wie beispielsweise ein ASIC.
  • Die oben beschriebenen Ausführungsbeispiele stellen lediglich eine Veranschaulichung der Prinzipien der vorliegenden Erfindung dar. Es versteht sich, dass Modifikationen und Variationen der hierin beschriebenen Anordnungen und Einzelheiten anderen Fachleuten einleuchten werden. Deshalb ist beabsichtigt, dass die Erfindung lediglich durch den Schutzumfang der nachstehenden Patentansprüche und nicht durch die spezifischen Einzelheiten, die anhand der Beschreibung und der Erläuterung der Ausführungsbeispiele hierin präsentiert wurden, beschränkt sei.

Claims (20)

  1. Vorrichtung (10) zur Ermittlung von für einen Abhörraum (12) hörraumoptimierten Übertragungsfunktionen (TF), welche zur hörraumoptimierten Nachbearbeitung von Audiosignalen (24) bei der räumlichen Wiedergabe dienen, wobei die räumliche Wiedergabe der Audiosignale (24) mittels eines binauralen Nahbereichsschallwandlers (22) unter Zuhilfenahme von bekannten Außenohrübertragungsfunktionen (HRTF) und unter Zuhilfenahme der hörraumoptimierten Übertragungsfunktionen (TF) emuliert wird, wobei basierend auf den Außenohrübertragungsfunktionen (HRTF) ein zu syntetisierender Raum emulierbar ist und wobei basierend auf den hörraumoptimierten Übertragungsfunktionen (TF) der Abhörraum (12) emulierbar ist, wobei die Vorrichtung (10) ausgebildet ist, um eine Raumakustik des Abhörraums (12) zu analysieren und um ausgehend von der Analyse der Raumakustik die hörraumoptimierten Übertragungsfunktionen (TF) für den Abhörraum (12), in welchem die räumliche Wiedergabe mittels des binauralen Nahbereichsschallwandlers (22) erfolgen soll, zu ermitteln.
  2. Vorrichtung (10) gemäß Anspruch 1, wobei die Vorrichtung (10) ein Mikrophon (14) einer tragbaren Vorrichtung zur akustischen Messung umfasst und/oder wobei die Analyse der Raumakustik des Abhörraums (12) mittels akustischer Messung in dem Abhörraum (12) unter Zuhilfenahme von Umgebungsgeräuschen und/oder unter Zuhilfenahme von einem Testsignal erfolgt.
  3. Vorrichtung (10) gemäß Anspruch 1, wobei die Analyse der Raumakustik des Abhörraums (12) auf Berechnung eines geometrischen Modells des Abhörraums (12) und/oder auf Modellierung des geometrischen Modells basierend auf einem kamerabasierten Modell des Abhörraums (12) basiert.
  4. Vorrichtung (10) gemäß Anspruch 2 oder 3, wobei die hörraumoptimierten Übertragungsfunktionen (TF) so gewählt sind, dass auf Basis dieser eine Raumakustik des Abhörraums (12) emulierbar ist.
  5. Vorrichtung (10) gemäß einem der Ansprüche 1 bis 4, wobei die Vorrichtung (10) ausgebildet ist, die hörraumoptimierten Übertragungsfunktionen (TF) unter Berücksichtigung eines virtuellen Lautsprechersetups zu ermitteln, entsprechend welchem eine Anzahl virtueller Lautsprecher in dem Abhörraum (12) positioniert ist.
  6. Vorrichtung (10) gemäß einem der Ansprüche 1 bis 5, wobei die bekannten Außenohrübertragungsfunktionen (HRTF) eine Vielzahl an einzelnen Übertragungsfunktionen (TF) für das linke und das rechte Ohr umfassen, die richtungsgebundenen Vektoren für eine Vielzahl von virtuellen Schallquellen zugeordnet sind.
  7. Vorrichtung (10) gemäß einem der Ansprüche 1 bis 6, wobei die hörraumoptimierten Übertragungsfunktionen (TF) eine Vielzahl an einzelnen, richtungsabhängigen Übertragungsfunktionen (TF) umfasst.
  8. Vorrichtung (10) gemäß einem der Ansprüche 1 bis 7, wobei das Emulieren der räumlichen Wiedergabe auf interauralen Merkmalen, Balance-Merkmalen und Abstands-Merkmalen basiert, wobei die interauralen Merkmale einen Zusammenhang zwischen einer Einfallsrichtung in der medialen Ebene und einer individuellen oder nicht-individuellen Außenohrfilterung umfassen, wobei die Balance-Merkmale einen Zusammenhang zwischen einer seitlichen Einfallsrichtung und einer Lautstärkedifferenz und/oder einen Zusammenhang zwischen der seitlichen Einfallsrichtung und einer Laufzeitdifferenz umfassen, wobei die Entfernungs-Merkmale einen Zusammenhang zwischen einer virtuellen Entfernung und einer frequenzabhängigen Filterung und/oder einen Zusammenhang zwischen der virtuellen Entfernung und einer Anfangszeitlücke und/oder einen Zusammenhang zwischen der virtuellen Entfernung und einem Reflexionsverhalten umfassen.
  9. Vorrichtung (10) gemäß einem der Ansprüche 1 bis 8, wobei die binaurale Nahbereichsschallwandler (22) ein Kopfhörer ist, der ausgebildet ist, ein Mehrkanal-Stereo-Signal, ein objektbasiertes Audiosignal (24) und/oder ein Audiosignal (24) auf Basis eines Wellenfeldsynthese-Algorithmus als Audiosignal (24) auszugeben.
  10. Vorrichtung (10) gemäß einem der Ansprüche 1 bis 9, wobei die Vorrichtung (10) einen Speicher umfasst, in welchem eine Mehrzahl an hörraumoptimierten Übertragungsfunktionen-Scharen (TF) für eine Mehrzahl an Abhörräumen (12) hinterlegbar ist.
  11. Verfahren (100) zur Ermittlung einer für einen Abhörraum (12) hörraumoptimierten Übertragungsfunktionen (TF), welche zur hörraumoptimierten Nachbearbeitung von Audiosignalen (24) bei der räumlichen Wiedergabe dienen, wobei die räumliche Wiedergabe der Audiosignale (24) mittels eines binauralen Nahbereichsschallwandlers (22) unter Zuhilfenahme von bekannten Außenohrübertragungsfunktionen (HRTF) und unter Zuhilfenahme der hörraumoptimierten Übertragungsfunktionen (TF) emuliert wird, wobei basierend auf den Außenohrübertragungsfunktionen (HRTF) ein zu syntetisierender Raum emulierbar ist und wobei basierend auf den hörraumoptimierten Übertragungsfunktionen (TF) der Abhörraum (12) emulierbar ist, mit den Schritten: Analysieren (120) einer vorherrschenden Raumakustik des Abhörraums (12); und Ermitteln (110) der hörraumoptimierten Übertragungsfunktionen (TF) für den Abhörraum (12), in welchem die räumliche Wiedergabe mittels des binauralen Nahbereichsschallwandlers (22) erfolgen soll, auf Basis der Analyse der Raumakustik.
  12. Vorrichtung (20) zur räumlichen Wiedergabe eines Audiosignals (24) mittels eines binauralen Nahbereichsschallwandlers (22), wobei die räumliche Wiedergabe unter Zuhilfenahme von bekannten Außenohrübertragungsfunktionen (HRTF) und unter Zuhilfenahme von für einen Abhörraum (12) hörraumoptimierten Übertragungsfunktionen (TF) emuliert wird, wobei basierend auf den Außenohrübertragungsfunktionen (HRTF) ein zu syntetisierender Raum emulierbar ist und wobei basierend auf den hörraumoptimierten Übertragungsfunktionen (TF) der Abhörraum (12) emulierbar ist, wobei die hörraumoptimierte Übertragungsfunktionen (TF) im Vorfeld für den jeweiligen Abhörraum (12) ermittelt sind.
  13. Vorrichtung (20) gemäß Anspruch 12, wobei die Vorrichtung (20) einen ersten Speicher, in welchem eine erste Vielzahl an Übertragungsfunktionen-Scharen (TF) für unterschiedliche Abhörräume (12) gespeichert ist, und eine Positionsbestimmungseinheit umfasst, wobei die Positionsbestimmungseinheit ausgebildet ist, um die Position zu bestimmen und anhand der bestimmten Position den Abhörraum (12) zu ermitteln; und wobei die Vorrichtung (20) ausgebildet ist, um für die Emulierung der räumlichen Wiedergabe die entsprechenden Übertragungsfunktionen (TF) für den jeweiligen Abhörraum (12) aus den Übertragungsfunktionen-Scharen auszuwählen.
  14. Vorrichtung (20) gemäß einem der Ansprüche 12 oder 13, wobei die Vorrichtung (20) einen zweiten Speicher, in welchem eine zweite Vielzahl an Übertragungsfunktionen-Scharen (TF) für unterschiedliche Orientierungen gespeichert ist, und eine Orientierungsbestimmungseinheit umfasst, wobei die Orientierungsbestimmungseinheit ausgebildet ist, um eine Orientierung in dem Abhörraum (12) zu ermitteln, und wobei die Vorrichtung (20) ausgebildet ist, um für die Emulierung der räumlichen Wiedergabe die entsprechenden Übertragungsfunktionen (TF) für die jeweilige Orientierung aus den Übertragungsfunktionen-Scharen auszuwählen.
  15. Vorrichtung (20) gemäß einem der Ansprüche 12 bis 14, wobei die Vorrichtung (20) einen dritten Speicher, in welchem eine dritte Vielzahl an Übertragungsfunktionenscharen (TF) für unterschiedliche Positionen in dem Abhörraum (12) gespeichert ist, und eine weitere Positionsbestimmungseinheit umfasst, wobei die weitere Positionsbestimmungseinheit ausgebildet ist, um eine Position in dem Abhörraum (12) zu ermitteln, und wobei die Vorrichtung (20) ausgebildet ist, um für die Emulierung der räumlichen Wiedergabe die entsprechenden Übertragungsfunktionen (TF) für die jeweilige Position in dem Abhörraum (12) aus den Übertragungsfunktionen-Scharen auszuwählen.
  16. Vorrichtung (20) gemäß einem der Ansprüche 13 bis 15, wobei die Positionsbestimmungseinheit ausgebildet ist, um während der Wiedergabe die Positionen neu zu bestimmen, und wobei die Vorrichtung (20) ausgebildet ist, um basierend auf der aktualisierten Position die hörraumoptimierten Übertragungsfunktionen (TF) zu aktualisieren.
  17. Verfahren (200) zur räumlichen Wiedergabe eines Audiosignals (24) mittels eines binauralen Nahbereichsschallwandlers (22), mit den Schritten: Nachbearbeiten (210) des Audiosignals (24) unter Zuhilfenahme von bekannten Außenohrübertragungsfunktionen (HRTF) und unter Zuhilfenahme von für einen Abhörraum (12) hörraumoptimierten Übertragungsfunktionen (TF), welche für den Abhörraum (12), in welchem die Wiedergabe mittels des binauralen Nahbereichsschallwandlers (22) erfolgen soll, im Vorfeld ermittelt sind, wobei basierend auf den Außenohrübertragungsfunktionen (HRTF) ein zu syntetisierender Raum emulierbar ist und wobei basierend auf den hörraumoptimierten Übertragungsfunktionen (TF) der Abhörraum (12) emulierbar ist.
  18. Verfahren (200) gemäß Anspruch 17, wobei vor der Wiedergabe ein Kombinieren (220) der Außenohrübertragungsfunktionen (HRTF) und der hörraumoptimierten Übertragungsfunktionen (TF) zu einer Raumbezogenen Raumimpulsantwort (BRIR') erfolgt.
  19. System (10 + 20), umfassend: eine Vorrichtung (10) gemäß einem der Ansprüche 1 bis 10; und eine Vorrichtung (20) gemäß einem der Ansprüche 13 bis 16.
  20. Computerprogramm mit einem Programmcode zur Durchführung des Verfahrens (100; 200) nach Anspruch 11 oder 17, wenn das Programm auf einem Computer, einer CPU oder einem mobilen Endgerät abläuft.
DE102014210215.4A 2014-05-28 2014-05-28 Ermittlung und Nutzung hörraumoptimierter Übertragungsfunktionen Withdrawn DE102014210215A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE102014210215.4A DE102014210215A1 (de) 2014-05-28 2014-05-28 Ermittlung und Nutzung hörraumoptimierter Übertragungsfunktionen
JP2016569427A JP6446068B2 (ja) 2014-05-28 2015-05-15 ルーム最適化された伝達関数の決定および使用
EP15724972.3A EP3149969B1 (de) 2014-05-28 2015-05-15 Ermittlung und nutzung hörraumoptimierter übertragungsfunktionen
CN201580028158.2A CN106576203B (zh) 2014-05-28 2015-05-15 确定和使用房间优化传输函数
PCT/EP2015/060792 WO2015180973A1 (de) 2014-05-28 2015-05-15 Ermittlung und nutzung hörraumoptimierter übertragungsfunktionen
KR1020167036695A KR102008771B1 (ko) 2014-05-28 2015-05-15 청각-공간-최적화 전달 함수들의 결정 및 사용
US15/362,017 US10003906B2 (en) 2014-05-28 2016-11-28 Determining and using room-optimized transfer functions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014210215.4A DE102014210215A1 (de) 2014-05-28 2014-05-28 Ermittlung und Nutzung hörraumoptimierter Übertragungsfunktionen

Publications (1)

Publication Number Publication Date
DE102014210215A1 true DE102014210215A1 (de) 2015-12-03

Family

ID=53268781

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102014210215.4A Withdrawn DE102014210215A1 (de) 2014-05-28 2014-05-28 Ermittlung und Nutzung hörraumoptimierter Übertragungsfunktionen

Country Status (7)

Country Link
US (1) US10003906B2 (de)
EP (1) EP3149969B1 (de)
JP (1) JP6446068B2 (de)
KR (1) KR102008771B1 (de)
CN (1) CN106576203B (de)
DE (1) DE102014210215A1 (de)
WO (1) WO2015180973A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3945729A1 (de) * 2020-07-31 2022-02-02 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. System und verfahren zur kopfhörerentzerrung und raumanpassung zur binauralen wiedergabe bei augmented reality

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2546504B (en) 2016-01-19 2020-03-25 Facebook Inc Audio system and method
US9591427B1 (en) * 2016-02-20 2017-03-07 Philip Scott Lyren Capturing audio impulse responses of a person with a smartphone
US10187740B2 (en) * 2016-09-23 2019-01-22 Apple Inc. Producing headphone driver signals in a digital audio signal processing binaural rendering environment
US11170139B1 (en) * 2017-05-31 2021-11-09 Apple Inc. Real-time acoustical ray tracing
CN109286889A (zh) * 2017-07-21 2019-01-29 华为技术有限公司 一种音频处理方法及装置、终端设备
EP3454578B1 (de) * 2017-09-06 2020-11-04 Sennheiser Communications A/S Kommunikationssystem zur kommunikation von audiosignalen zwischen mehreren kommunikationsvorrichtungen in einer virtuellen schallumgebung
US10390171B2 (en) * 2018-01-07 2019-08-20 Creative Technology Ltd Method for generating customized spatial audio with head tracking
US10764703B2 (en) 2018-03-28 2020-09-01 Sony Corporation Acoustic metamaterial device, method and computer program
EP3547305B1 (de) * 2018-03-28 2023-06-14 Fundació Eurecat Nachhalltechnik für audio-3d
US11617050B2 (en) 2018-04-04 2023-03-28 Bose Corporation Systems and methods for sound source virtualization
US10966046B2 (en) * 2018-12-07 2021-03-30 Creative Technology Ltd Spatial repositioning of multiple audio streams
US11418903B2 (en) 2018-12-07 2022-08-16 Creative Technology Ltd Spatial repositioning of multiple audio streams
US11113092B2 (en) 2019-02-08 2021-09-07 Sony Corporation Global HRTF repository
JPWO2020189263A1 (de) * 2019-03-19 2020-09-24
US11451907B2 (en) 2019-05-29 2022-09-20 Sony Corporation Techniques combining plural head-related transfer function (HRTF) spheres to place audio objects
US11347832B2 (en) 2019-06-13 2022-05-31 Sony Corporation Head related transfer function (HRTF) as biometric authentication
US11146908B2 (en) 2019-10-24 2021-10-12 Sony Corporation Generating personalized end user head-related transfer function (HRTF) from generic HRTF
US11330371B2 (en) 2019-11-07 2022-05-10 Sony Group Corporation Audio control based on room correction and head related transfer function
US11070930B2 (en) * 2019-11-12 2021-07-20 Sony Corporation Generating personalized end user room-related transfer function (RRTF)
US20230007430A1 (en) * 2019-11-29 2023-01-05 Sony Group Corporation Signal processing device, signal processing method, and program
CN111031467A (zh) * 2019-12-27 2020-04-17 中航华东光电(上海)有限公司 一种hrir前后方位增强方法
CN111372167B (zh) * 2020-02-24 2021-10-26 Oppo广东移动通信有限公司 音效优化方法及装置、电子设备、存储介质
JP7463796B2 (ja) 2020-03-25 2024-04-09 ヤマハ株式会社 デバイスシステム、音質制御方法および音質制御プログラム
US11356795B2 (en) 2020-06-17 2022-06-07 Bose Corporation Spatialized audio relative to a peripheral device
US11982738B2 (en) 2020-09-16 2024-05-14 Bose Corporation Methods and systems for determining position and orientation of a device using acoustic beacons
US11696084B2 (en) 2020-10-30 2023-07-04 Bose Corporation Systems and methods for providing augmented audio
US11700497B2 (en) 2020-10-30 2023-07-11 Bose Corporation Systems and methods for providing augmented audio
CN112584277B (zh) * 2020-12-08 2022-04-22 北京声加科技有限公司 一种室内音频均衡的方法
WO2022231338A1 (en) * 2021-04-28 2022-11-03 Samsung Electronics Co., Ltd. A portable receiving device of calibrating device configurations using room geometry and a system including the same
KR102652559B1 (ko) * 2021-11-24 2024-04-01 주식회사 디지소닉 음향실 및 이를 이용한 brir 획득 방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10249416B4 (de) * 2002-10-23 2009-07-30 Siemens Audiologische Technik Gmbh Verfahren zum Einstellen und zum Betrieb eines Hörhilfegerätes sowie Hörhilfegerät
JP2005223713A (ja) * 2004-02-06 2005-08-18 Sony Corp 音響再生装置、音響再生方法
GB0419346D0 (en) * 2004-09-01 2004-09-29 Smyth Stephen M F Method and apparatus for improved headphone virtualisation
US20080273708A1 (en) * 2007-05-03 2008-11-06 Telefonaktiebolaget L M Ericsson (Publ) Early Reflection Method for Enhanced Externalization
EP2356825A4 (de) * 2008-10-20 2014-08-06 Genaudio Inc Audiospatialisierung und umgebungssimulation
BR112013017070B1 (pt) * 2011-01-05 2021-03-09 Koninklijke Philips N.V Sistema de áudio e método de operação para um sistema de áudio
WO2012168765A1 (en) * 2011-06-09 2012-12-13 Sony Ericsson Mobile Communications Ab Reducing head-related transfer function data volume
WO2013058728A1 (en) * 2011-10-17 2013-04-25 Nuance Communications, Inc. Speech signal enhancement using visual information

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
RYCHTÁRIKOVÁ, M. et al.: Binaural Sound Source Localization in Real and Virtual Rooms. In: J. Audio Eng. Soc., Vol. 57, No. 4, April 2009,http://www.aes.org/e-lib/browse.cfm?elib=14814 *
RYCHTÁRIKOVÁ, M. et al.: Perceptual validation of virtual room acoustics: Sound localisation and speech understanding. In: Applied Acoustics, Volume 72, Issue 4, March 2011, S. 196-204. XP027578093. *
RYCHTÁRIKOVÁ, M. et al.: Perceptual validation of virtual room acoustics: Sound localisation and speech understanding. In: Applied Acoustics, Volume 72, Issue 4, March 2011, S. 196–204. XP027578093.
SAUK, P. et al: Creating a Multi-Dimensional Communication Space to Improve the Effectiveness of 3-D Audio. In: Military Communications Conference, 2007. MILCOM 2007. IEEE 29.-31.10.2007; Orlando, FL, USA. XP031232723. *
ZAHORIK, P.: Perceptually relevant parameters for virtual listening simulation of small room acoustics. In: The Journal of the Acoustical Society of America, 126 (2), Aug. 2009. XP012128619. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3945729A1 (de) * 2020-07-31 2022-02-02 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. System und verfahren zur kopfhörerentzerrung und raumanpassung zur binauralen wiedergabe bei augmented reality
WO2022023417A3 (de) * 2020-07-31 2022-03-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. System und verfahren zur kopfhörerentzerrung und raumanpassung zur binauralen wiedergabe bei augmented reality

Also Published As

Publication number Publication date
US10003906B2 (en) 2018-06-19
JP2017522771A (ja) 2017-08-10
EP3149969A1 (de) 2017-04-05
WO2015180973A1 (de) 2015-12-03
KR102008771B1 (ko) 2019-08-09
EP3149969B1 (de) 2019-09-18
US20170078820A1 (en) 2017-03-16
KR20170013931A (ko) 2017-02-07
CN106576203B (zh) 2020-02-07
JP6446068B2 (ja) 2018-12-26
CN106576203A (zh) 2017-04-19

Similar Documents

Publication Publication Date Title
EP3149969B1 (de) Ermittlung und nutzung hörraumoptimierter übertragungsfunktionen
US10129681B2 (en) Calibrating listening devices
DE60304358T2 (de) Verfahren zur verarbeitung von audiodateien und erfassungsvorrichtung zur anwendung davon
DE69734934T2 (de) Verfahren und vorrichtung zur projektion von schallquellen auf lautsprechern
CN111294724B (zh) 多个音频流的空间重新定位
CN112005559B (zh) 改进环绕声的定位的方法
US11317233B2 (en) Acoustic program, acoustic device, and acoustic system
DE102019107302A1 (de) Verfahren zum Erzeugen und Wiedergeben einer binauralen Aufnahme
EP3225039B1 (de) System und verfahren zur erzeugung von kopfexternalisiertem 3d-audio durch kopfhörer
EP3044972A2 (de) Vorrichtung und verfahren zur dekorrelation von lautsprechersignalen
DE102021103210A1 (de) Surround-Sound-Wiedergabe basierend auf Raumakustik
DE112021003592T5 (de) Informationsverarbeitungsvorrichtung, Ausgabesteuerverfahren und Programm
DE102011003450A1 (de) Erzeugung von benutzerangepassten Signalverarbeitungsparametern
DE112021001695T5 (de) Schallverarbeitungsvorrichtung, schallverarbeitungsverfahren und schallverarbeitungsprogramm
US20190394583A1 (en) Method of audio reproduction in a hearing device and hearing device
EP2503799B1 (de) Verfahren und System zur Berechnung synthetischer Außenohrübertragungsfunktionen durch virtuelle lokale Schallfeldsynthese
US20230104111A1 (en) Determining a virtual listening environment
Aspöck et al. Dynamic real-time auralization for experiments on the perception of hearing impaired subjects
DE112021003787T5 (de) Informationsverarbeitungsvorrichtung, Informationsverarbeitungsverfahren und Endgerätevorrichtung
EP3937515A1 (de) Invarianzgesteuerter elektroakustischer übertrager
DE102018120229A1 (de) Verfahren zur Auralisierung von Lautsprechern und Impulsantwort
Netcom et al. SIMULATION OF REALISTIC BACKGROUND NOISE USING MULTIPLE LOUDSPEAKERS
EP3695620A1 (de) Verbesserter schallwandler

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R082 Change of representative

Representative=s name: SCHOPPE, ZIMMERMANN, STOECKELER, ZINKLER, SCHE, DE

R016 Response to examination communication
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee