EP1410505B1 - Dispositif de commutation pour commutation en presence d'une tension de fonctionnement elevee - Google Patents

Dispositif de commutation pour commutation en presence d'une tension de fonctionnement elevee Download PDF

Info

Publication number
EP1410505B1
EP1410505B1 EP02708181A EP02708181A EP1410505B1 EP 1410505 B1 EP1410505 B1 EP 1410505B1 EP 02708181 A EP02708181 A EP 02708181A EP 02708181 A EP02708181 A EP 02708181A EP 1410505 B1 EP1410505 B1 EP 1410505B1
Authority
EP
European Patent Office
Prior art keywords
switching
voltage
terminal
protection element
switching device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02708181A
Other languages
German (de)
English (en)
Other versions
EP1410505A1 (fr
EP1410505B8 (fr
Inventor
Heinz Mitlehner
Peter Friedrichs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SiCED Electronics Development GmbH and Co KG
Original Assignee
SiCED Electronics Development GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SiCED Electronics Development GmbH and Co KG filed Critical SiCED Electronics Development GmbH and Co KG
Publication of EP1410505A1 publication Critical patent/EP1410505A1/fr
Publication of EP1410505B1 publication Critical patent/EP1410505B1/fr
Application granted granted Critical
Publication of EP1410505B8 publication Critical patent/EP1410505B8/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/10Modifications for increasing the maximum permissible switched voltage
    • H03K17/102Modifications for increasing the maximum permissible switched voltage in field-effect transistor switches

Definitions

  • the invention relates to a switching device for switching at a high operating voltage and comprises at least one low-voltage (NV) switching element with an LV cathode connection, an NV anode connection and an NV grid connection, a first high-voltage (HV) switching element with a first HV Cathode terminal, a first HV anode terminal, and a first HV grid terminal, wherein the NV anode terminal is electrically shorted to the first HV cathode terminal and the NV cathode terminal is electrically shorted to the first HV grid terminal.
  • NV low-voltage
  • HV high-voltage
  • Such a switching device is from the US 6,157,049 as well as from the EP 0 063 749 B1 and JP 61 285 770 known.
  • the respectively disclosed electronic switching device is based on said special interconnection of the NV and the HV switching element. It is also called a cascode circuit.
  • the switching device is used for switching a high electric current and is also able to safely lock a high operating voltage.
  • the HV switching element consists of a semiconductor material with a breakdown field strength of more than 10 6 V / cm.
  • the HV switching element then takes in the blocking case, the essential part of the pending on the cascode circuit to be cut voltage.
  • the semiconductor material silicon carbide (SiC) is suitable as a starting material for the HV switching element.
  • a Switching device In the converter technology, which is used, for example, in a variable speed drive, is a Switching device is required, which achieves a high efficiency as close to 100% at a high power, ie generally also at a high operating voltage. If the switching device has the lowest possible static and dynamic losses, a nearly optimal energy utilization and, consequently, a significant reduction of the required cooling effort is achieved.
  • HV switching element typically comes in the converter technology currently used as HV switching element in the voltage range up to 6.5 kV, a silicon IGBT (I nsolated G Gate Bipolar Transistor) or a silicon-GTO (G ate T urn O ff) thyristor and in a voltage range to about 10 kV, a silicon thyristor used.
  • these switching elements are bipolar semiconductor components which, due to their structure, have both a certain delay time and considerable dynamic switching losses due to an unavoidable memory charge effect.
  • a unipolar switching element is also characterized by a short switching time and low dynamic losses due to the lack of memory charge effects.
  • HV switching element which is designed as a barrier layer field effect transistor realized in SiC
  • the maximum permissible reverse voltage can be achieved in two ways. To extend the drift zone. This is equivalent to growing a thicker epitaxial layer on the substrate used in a vertical junction field effect transistor. On the other hand, the dopant concentration is also reduced within the epitaxial layer.
  • both with regard to the maximum permissible reverse voltage favorable measures cause an increase in the ohmic drift resistance.
  • a cascode circuit realized using a SiC unipolar HV switching element is currently limited to a maximum allowable blocking voltage on the order of typically 3.5 kV. In principle, however, an even higher reverse voltage, for example of 5 kV is possible.
  • a switching device for a higher blocking voltage is required, this is currently only by a plurality of series-connected cascode elements, which are constructed in the manner described with unipolar switching elements, or by a series connection of several unipolar switching elements or by the use of the described bipolar silicon switching elements possible.
  • a bipolar switching element leads to a higher switching time and to higher dynamic losses.
  • the cascode circuit is modified by inserting an additional switching element in the form of an auxiliary transistor into the short-circuit connection originally provided between the LV cathode terminal and the first HV grid connection.
  • the low-voltage switching element is to receive a higher blocking voltage before the HV switching element is switched over in its blocking state, so that an overall increased blocking voltage is absorbed by the modified cascode circuit can.
  • a further development of this modified cascode circuit consists in switching further HV switching elements in series with the first HV switching element of the modified cascode circuit.
  • a further auxiliary transistor is provided in each case.
  • protection elements in the form of Zener diodes can be provided for securing, in particular for limiting the potentials at the control terminals.
  • this switching device is just because of in the DE 199 26 109 A1 as marked essential to the invention auxiliary transistors connected to a considerable amount of circuitry.
  • the switching device described at the beginning is characterized by at least one second HV switching element having a second HV cathode connection, a second HV anode connection and a second HV grid connection, wherein the second HV switching element is connected in series with the first HV switching element, and a first protection element is connected between the first and the second HV grid connection.
  • the invention is based on the recognition that the reverse voltage resistance of a cascode circuit can be increased from a low-voltage switching element and a first HV switching element in a simple manner and also scalable by another HV switching element or several other HV switching elements in series is provided to the cascode circuit, ie in particular in series with the first HV switching element, or are.
  • the wiring with the protective element causes an automatic entrainment effect: namely, the further HV switching element is in fact in the blocking state as soon as the first HV switching element is placed on the externally driven NV switching element in its blocking state.
  • the protective element is in particular connected between the two HV grid connections such that it has a conduction behavior in the direction from the first to the second HV grid connection and a blocking behavior in the reverse direction.
  • a switching device which is suitable for switching at a high operating voltage and which in particular also has a high reverse voltage can thus be implemented via the number of HV switching elements connected in series.
  • a high voltage is understood in particular to mean a voltage of more than 1000 V, preferably of more than 3.5 kV.
  • the required circuit complexity compared to a series connection of individual cascode elements including their drive circuits is significantly reduced, since on the one hand, no further NV switching elements and no further external controls are needed. This also reduces the space required for the switching device.
  • a third HV switching element is connected in series with the first two HV switching elements. Thereby can the total achievable maximum allowable reverse voltage continue to increase.
  • the third HV switching element has a third HV cathode terminal, a third HV anode terminal, and a third HV grid terminal. It is particularly advantageous if an additional, ie a second protective element is provided in connection with the further wiring to the third HV switching element. This second protection element is then connected between the third HV grid terminal and one of the other two HV grid terminals.
  • both the circuit variant with a connection to the first HV grid connection as well as with a connection to the second HV grid connection is possible.
  • the second protection element of the advantageous entrainment effect is also extended to the third HV switching element, so that the third HV switching element changes into its blocking state as soon as the second switching element has reached the predetermined in connection with this embodiment of the switching device maximum reverse voltage.
  • Further HV switching elements and protective elements can be added to the switching device in an analogous manner in order to achieve a higher maximum permissible reverse voltage.
  • the protective element in the reverse direction from a certain voltage applied to the protective element on a breakthrough behavior. From this so-called protective element breakdown voltage, the current is no longer blocked, but it also comes in the reverse direction to a flow of current through the protective element.
  • This breakdown behavior is particularly advantageous because it is precisely the blocking current flowing from this protective element breakdown voltage that causes the second or even the third HV switching element to switch over from the conducting state to the blocking state.
  • a particularly simple embodiment of the protective element results in the form of a diode. Possible here is the use of a simple pn diode made of silicon. In particular, an avalanche diode made of silicon has the described advantageous breakdown behavior. Such avalanche diodes are available for various protection element breakdown voltages.
  • an overvoltage protection element is connected between the second HV cathode connection and the second HV grid connection.
  • This achieves an overvoltage safety on the second HV switching element.
  • a corresponding overvoltage protection element may also be provided on each additional HV switching element which is also present.
  • a particularly advantageous embodiment of the overvoltage protection element is a Zener diode.
  • At least one of the HV switching elements used is realized on the basis of the semiconductor material silicon carbide (SiC). Due to the high breakdown field strength of SiC, very high reverse voltages can be achieved with this semiconductor material.
  • silicon carbide in one of its various polytypes, in particular as 3C, 4H, 6H and 15R SiC, can be used as the starting material.
  • a further advantageous embodiment includes an HV switching element designed as a self-conducting field effect transistor.
  • an HV switching element designed as a self-conducting field effect transistor.
  • the current flowing through the switching device can be controlled very simply and quickly. Due to the unipolar property of a field effect transistor very short switching times and low dynamic losses are possible.
  • a particularly advantageous embodiment is the normally-isolated junction field-effect transistor (JFET).
  • JFET normally-isolated junction field-effect transistor
  • a suitable in this context JFET structure is in the US 6,034,385 or in the DE 198 33 214 C1 described. In principle, however, other structures for the junction field effect transistor are conceivable.
  • the protective element breakdown voltage is selected so that the HV switching elements, too whose protection the protective elements are provided to be protected against breakthrough.
  • the protective element breakdown voltage is in each case dimensioned such that it is smaller than the sum of all switching element breakdown voltages of those switching elements to which the respective protective element is connected in parallel. It should be noted that the protective element is connected in parallel not only to the HV switching elements but also to the NV switching element of the cascode circuit. Thus, even if very low breakdown voltage is to be considered in this dimensioning rule for the protective element breakdown voltage.
  • pinch-off voltage indicates the voltage value of a voltage present between the HV cathode terminal and the HV grid terminal of the normally-on field-effect transistor, from which a current flow in the normally-applied field effect transistor between the HV cathode terminal and the HV anode terminal is reliably prevented.
  • the protective element breakdown voltage is therefore to be dimensioned such that it is smaller than the sum of the switching element breakdown voltages reduced by the aforementioned pinch-off voltage those switching elements to which the protective element is connected in parallel.
  • FIG. 1 a switching device 10 is shown, which is intended for connection and disconnection of a load 5 to a high operating voltage UB.
  • the operating voltage UB is 3000 V.
  • the load used is, for example, a converter branch inserted in a variable-speed drive.
  • the switching device 10 includes a low-voltage (NV) switching element in the form of a self-locking MOSFET 50 and a total of three high-voltage (HV) switching elements each in the form of a normally-insulated junction field effect transistor (JFET) 100, 200 and 300 and two protective elements each in the form of a Silicon realized avalanche diode 150 and 250th
  • NV low-voltage
  • HV high-voltage
  • the three HV switching elements 100, 200, and 300 each have an HV cathode terminal 101, 201, 301, an HV anode terminal 102, 202, 302, and an HV grid terminal 103, 203, 303.
  • the MOSFET 50 has an NV cathode terminal 51, an NV anode terminal 52 and an NV grid terminal 53, wherein the last-mentioned HV grid terminal 53 is intended for operation at a control voltage UC, by means of the switching device 10 can be switched between conducting and blocking state.
  • the operating voltage UB In the blocking, i. turned off state, essentially take the three JFETs 100, 200 and 300, the operating voltage UB. Depending on the design, the operating voltage UB is split between the three JFETs 100, 200 and 300. In the present case, the operating voltage UB is divided substantially equally among the three JFETs 100, 200 and 300. In another embodiment, not shown, however, a deviating from the uniform distribution stress distribution is possible.
  • the MOSFET 50 and the JFET 100 are connected together in a so-called cascode circuit.
  • the NV anode terminal 52 with the HV cathode terminal 101 and the NV cathode terminal 51 with the HV grid terminal 103 is electrically short-circuited.
  • Such a cascode circuit is described as well as its mode of action.
  • the MOSFET 50 in silicon (Si) and the JFET 100 as well as the other two JFETs 200 and 300 are realized in silicon carbide (SiC).
  • SiC silicon carbide
  • the avalanche diodes 150 and 250 are connected between the HV grid terminals 103 and 203 and between the HV grid terminals 203 and 303, respectively.
  • the avalanche diodes 150 and 250 protect the JFETs 100 and 200 connected in parallel from breakdown. To this end, the avalanche diode 150 places the JFET 200 and the avalanche diode 250 in the JFET 300 in a blocking state in time to prevent the JFETs 100 and 200 from being driven into the breakdown.
  • the MOSFET 50 is designed for a switching element breakdown voltage UD50 of, for example, at least 50 V.
  • the JFETs 100, 200 and 33 are each designed for a reverse-direction switching element breakdown voltage UD100, UD200 or UD300 of, for example, at least 1000 V.
  • the three JFETs 100, 200 and 300 each have a pinch-off voltage UP100, UP200 and UP300 of approximately 50 V.
  • the HV cathode terminal 101 is biased by 50 V relative to the HV grid terminal 103 of the JFET 100 by the value of the pinch-off voltage UP100
  • JFET 100 there is a complete constriction of the current flow channel between HV cathode terminal 101 and HV anode terminal 102. JFET 100 then turns off. The pinch-off and the blocking of the other two JFETs 200 and 300 takes place in an analogous manner.
  • the JFET 100 also switches into its blocking state due to the mode of operation of the cascode circuit. This means that the HV anode terminal 102 builds up an increasing potential up to about 1000 V, which is still below the maximum permissible switching element breakdown voltage UD100. Shortly before the voltage at the JFET 100 exceeds the breakdown voltage UD100, it switches with appropriate dimensioning the avalanche diode 150 namely the JFET 200 in its blocking state. This is achieved just when the avalanche diode 150 has a breakdown behavior in its reverse direction starting from a protective element breakdown voltage UD150.
  • the protective element breakdown voltage UD150 is smaller than the potential reduced at the pinch-off voltage UP200 at the HV anode terminal 102.
  • the following dimensioning rule therefore applies: UD ⁇ 150 ⁇ UD ⁇ 50 + UD ⁇ 100 - UP ⁇ 200
  • the JFET 200 safely switches to its blocking state before it can cause an undesirable breakdown at the MOSFET 50 or at the JFET 100 and damaging the respective component.
  • the avalanche diode 150 has a protective element breakdown voltage UD150 of about 950 V.
  • a corresponding dimensioning rule can be derived in a similar manner.
  • the avalanche diode 250 is substantially paralleled to the JFET 200 and is intended to protect the JFET 200 from breakdown. The condition here is therefore that the JFET 300 is transferred into its blocking state, before the voltage present between the HV cathode terminal 201 and the HV anode terminal 202 becomes greater than the maximum permissible breakdown voltage UD200.
  • the pinch-off voltage UP300 required for securely pinching the JFET 300 between the HV cathode terminal 301 and the HV grid terminal 303 enters.
  • the following dimensioning rule results: UD ⁇ 250 ⁇ UD ⁇ 200 - UP ⁇ 300
  • a protection element breakdown voltage UD250 of about 950V is provided.
  • the specified voltage values of the individual components of FIG. 1 are only to be understood as examples.
  • FIG. 2 a further switching device 20 is shown, which is based essentially on the basic variant of the switching device 10 of FIG. 1 based.
  • the difference to switching device 10 is that the switching device 20 of FIG. 2 additional overvoltage protection elements in the form of two Zener diodes 175 and 275 has.
  • the Z-diodes 175 and 275 are commercially available silicon components, which are available with a selectable within certain limits Z-voltage UZ175 or UZ275.
  • the Z diodes 175 and 275 are connected between the HV cathode terminal 201 and the HV grid terminal 203, and between the HV cathode terminal 301 and the HV grid terminal 302, respectively. They serve for the overvoltage protection of the JFET 200 or of the JFET 300.
  • the Z voltages UZ175 and UZ275 have approximately the same value as the pinch-off voltage UP200 or UP300 of the JFET 200 to be protected by the respective Zener diode 175 or 275. 300. In the present case, for the Z voltages UZ175 and UZ275 thus provided a value in the order of about 50V.
  • the Z voltage UZ150 that is significantly lower than the pinch-off voltage UP200
  • the Z voltage UZ175 is chosen to be significantly larger than the pinch-off voltage UP200
  • the actually intended protective effect of the Zener diode 175 comes into effect only to a limited extent. Namely, in this case, an internal diode of the JFET 200 between the HV grid terminal 203 and the HV cathode terminal 201 determines the substantial voltage drop at the JFET 200. Therefore, it is most preferable that the value of the Z voltage UZ175 be substantially equal to the value of the Abschnürpressive UP200 matches.
  • FIG. 3 a further switching device 30 is shown, which is another modification of the basic variant of the switching device 10 of FIG. 1 represents.
  • an avalanche diode 251 connected to the HV grid terminal 303 of the JFET 300 is not connected to the HV grid terminal 203 of the JFET 200 but to the HV grid terminal 103 of the JFET 100.
  • this does not change the basic mode of operation of the protective circuit by means of a protective element in the form of an avalanche diode 150 and 251.
  • a protective element breakdown voltage UD251 of the avalanche diode 251 is established in accordance with the specification: UD ⁇ 251 ⁇ UD ⁇ 50 + UD ⁇ 100 + UD ⁇ 200 - UP ⁇ 300 selected.
  • a value of 2000 V is provided for the protection element breakdown voltage UD251.
  • the avalanche diode 251 not only the JFET 200, but also connected in parallel to JFET 100 and MOSFET 50. Therefore, the corresponding switching element breakdown voltages UD50 and UD100 of these switching elements 50 and 100 also enter equation (3).
  • the circuit device 30 exhibits, in principle, the same performance as the switching device 20 or the switching device 10.
  • the described switching devices 10, 20 and 30 due to the use of unipolar switching elements (MOSFET, JFET) on a very low response time and are therefore suitable for use at a high switching frequency. The use of unipolar components also requires very low dynamic losses.

Landscapes

  • Electronic Switches (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Power Conversion In General (AREA)

Claims (11)

  1. Dispositif de commutation pour la commutation dans le cas d'une tension de service élevée, comprenant au moins
    a) un élément de commutation basse tension (50) avec une borne de cathode basse tension (51), une borne d'anode basse tension (52) et une borne de grille basse tension (53),
    b) un premier élément de commutation haute tension (100) avec une première borne de cathode haute tension (101), une première borne d'anode haute tension (102) et une première borne de grille haute tension (103),
    c) la borne d'anode basse tension (52) étant court-circuitée électriquement avec la première borne de cathode haute tension (101) et la borne de cathode basse tension (51) étant court-circuitée électriquement avec la première borne de grille haute tension (103),
    caractérisé en ce que
    d) au moins encore un second élément de commutation haute tension (200) avec une seconde borne de cathode haute tension (201), une seconde borne d'anode haute tension (202) et une seconde borne de grille haute tension (203) étant prévu et
    e) étant commuté en série avec la première borne de commutation haute tension (100),
    f) un premier élément de protection (150) étant monté entre la première et la seconde bornes de grille haute tension (103) et (203).
  2. Dispositif de commutation selon la revendication 1, sur lequel un troisième élément de commutation haute tension (300) avec une troisième borne de cathode haute tension (301), une troisième borne d'anode haute tension (302) et une troisième borne de grille haute tension (303) est prévu et est monté en série avec les deux premiers éléments de commutation haute tension (100, 200).
  3. Dispositif de commutation selon la revendication 2, sur lequel un second élément de protection (250, 251) est branché entre la troisième borne de grille haute tension (303) et l'une des deux autres bornes de grille haute tension (103, 203).
  4. Dispositif de commutation selon l'une quelconque des revendications précédentes, sur lequel l'élément de protection (150, 250) est réalisé de telle sorte qu'il présente un comportement de blocage de courant dans le cas d'une tension s'appliquant dans le sens de blocage sur l'élément de protection (150, 250) jusqu'à une tension de claquage de l'élément de protection (UD150, UD250) et un comportement véhiculant du courant dans le cas d'une valeur de tension supérieure à la tension de claquage de l'élément de protection (UD150, UD250).
  5. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'élément de protection (150, 250) est conçu comme diode, en particulier comme diode à avalanche.
  6. Dispositif de commutation selon l'une quelconque des revendications précédentes, sur lequel un élément de protection de surtension (175) est monté au moins entre la seconde borne de cathode haute tension (201) et la seconde borne de grille haute tension (203).
  7. Dispositif de commutation selon la revendication 6, sur lequel l'élément de protection de surtension est conçu sous forme de diode Z (175).
  8. Dispositif de commutation selon l'une quelconque des revendications précédentes, sur lequel au moins l'un des éléments de commutation haute tension (100, 200, 300) est à base du matériau semi-conducteur qu'est le carbure de silicium.
  9. Dispositif de commutation selon l'une quelconque des revendications précédentes, sur lequel au moins l'un des éléments de commutation haute tension (100, 200, 300) est conçu comme transistor à effet de champ autoconducteur, en particulier sous forme de transistor à effet de champ à jonction de grille autoconducteur.
  10. Dispositif de commutation selon la revendication 4, sur lequel les éléments de commutation (50, 100, 200, 300) ont chacun une tension de claquage (UD50, UD100, UD200, UD300) et la tension de claquage de l'élément de protection (UD150, UD250) est respectivement inférieure à la somme des tensions de claquage (UD50, UD100, UD200, UD300) des éléments de commutation (50, 100, 200, 300), parallèlement auxquels l'élément de protection (150, 250) respectif est monté.
  11. Dispositif de commutation selon la revendication 4 et la revendication 9, sur lequel les éléments de commutation (50, 100, 200, 300) ont chacun une tension de claquage (UD50, UD100, UD200, UD300) et les éléments de commutation haute tension (100, 200, 300) conçus comme des transistors à effet de champ autoconducteurs ont chacun une tension de blocage (UP100, UP200, UP300) et la tension de claquage d'élément de protection (UD150, UD250) est respectivement inférieure à la différence entre la somme des tensions de claquage (UD50, UD100, UD200) des éléments de commutation (50, 100, 200), parallèlement auxquels l'élément de protection (150, 250) respectif est monté, et la tension de blocage (UP200, UP300) du transistor à effet de champ (200, 300) autoconducteur, à la borne de grille haute tension (203, 303) duquel l'élément de protection (150, 250) est raccordé et qui n'est pas branché parallèlement à l'élément de protection (150, 250).
EP02708181A 2001-07-23 2002-01-29 Dispositif de commutation pour commutation en presence d'une tension de fonctionnement elevee Expired - Lifetime EP1410505B8 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10135835 2001-07-23
DE10135835A DE10135835C1 (de) 2001-07-23 2001-07-23 Schalteinrichtung zum Schalten bei einer hohen Betriebsspannung
PCT/DE2002/000307 WO2003012996A1 (fr) 2001-07-23 2002-01-29 Dispositif de commutation pour commutation en presence d'une tension de fonctionnement elevee

Publications (3)

Publication Number Publication Date
EP1410505A1 EP1410505A1 (fr) 2004-04-21
EP1410505B1 true EP1410505B1 (fr) 2009-03-25
EP1410505B8 EP1410505B8 (fr) 2009-06-10

Family

ID=7692798

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02708181A Expired - Lifetime EP1410505B8 (fr) 2001-07-23 2002-01-29 Dispositif de commutation pour commutation en presence d'une tension de fonctionnement elevee

Country Status (6)

Country Link
US (1) US6822842B2 (fr)
EP (1) EP1410505B8 (fr)
JP (1) JP3730244B2 (fr)
AT (1) ATE426943T1 (fr)
DE (2) DE10135835C1 (fr)
WO (1) WO2003012996A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102388535A (zh) * 2009-03-27 2012-03-21 瑞士苏黎世联邦理工学院 具有栅地阴地放大器电路的开关装置
CN106712749A (zh) * 2016-11-14 2017-05-24 南京工程学院 基于碳化硅mosfet和jfet的混合高压器件

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6861159B2 (en) * 1992-03-27 2005-03-01 The Louis Berkman Company Corrosion-resistant coated copper and method for making the same
US20040228056A1 (en) * 2003-05-15 2004-11-18 Vice Michael W. Switching circuit with equity voltage division
JP2005108980A (ja) * 2003-09-29 2005-04-21 Rohm Co Ltd 半導体装置
US7105875B2 (en) * 2004-06-03 2006-09-12 Wide Bandgap, Llc Lateral power diodes
US7205629B2 (en) * 2004-06-03 2007-04-17 Widebandgap Llc Lateral super junction field effect transistor
US7026669B2 (en) 2004-06-03 2006-04-11 Ranbir Singh Lateral channel transistor
US7019344B2 (en) * 2004-06-03 2006-03-28 Ranbir Singh Lateral drift vertical metal-insulator semiconductor field effect transistor
DE102004039619B3 (de) 2004-08-06 2005-08-25 Atmel Germany Gmbh Schaltungsanordnung mit aktiven Bauelementen und hoher Durchbruchspannung
GB2419048A (en) * 2004-10-06 2006-04-12 Vetco Gray Controls Ltd A high-temperature cascode power switch
US7005829B2 (en) * 2005-03-01 2006-02-28 York International Corp. System for precharging a DC link in a variable speed drive
US7555912B2 (en) * 2005-03-01 2009-07-07 York International Corporation System for precharging a DC link in a variable speed drive
US7619906B2 (en) * 2005-03-01 2009-11-17 York International Corporation System for precharging a DC link in a variable speed drive
US7408399B2 (en) * 2005-06-27 2008-08-05 International Rectifier Corporation Active driving of normally on, normally off cascoded configuration devices through asymmetrical CMOS
US7449762B1 (en) 2006-04-07 2008-11-11 Wide Bandgap Llc Lateral epitaxial GaN metal insulator semiconductor field effect transistor
DE102007060231A1 (de) * 2007-12-14 2009-06-18 Robert Bosch Gmbh Generator mit Gleichrichteranordnung
DE102008034688B4 (de) 2008-07-25 2010-08-12 Siemens Aktiengesellschaft Schalteinrichtung zum Schalten bei einer hohen Betriebsspannung
DE102008035075A1 (de) 2008-07-28 2010-02-04 Siemens Aktiengesellschaft Schalteinrichtung und Schaltungsanordnungen zum Schalten bei einer hohen Betriebsspannung
US8336323B2 (en) 2008-10-03 2012-12-25 Johnson Controls Technology Company Variable speed drive with pulse-width modulated speed control
FR2937811B1 (fr) * 2008-10-24 2011-10-07 Hispano Suiza Sa Dispositif de protection d'un circuit electronique comportant au moins un transistor de type jfet ou mesfet
CH700419A2 (de) * 2009-02-05 2010-08-13 Eth Zuerich Jfet-serieschaltung.
CH702971A2 (de) 2010-04-07 2011-10-14 Eth Zuerich Eth Transfer Schalteinrichtung mit jfet-serieschaltung.
WO2011139269A1 (fr) 2010-05-04 2011-11-10 Johnson Controls Technology Company Dispositif d'entraînement à vitesse variable
US8866253B2 (en) * 2012-01-31 2014-10-21 Infineon Technologies Dresden Gmbh Semiconductor arrangement with active drift zone
US9093420B2 (en) 2012-04-18 2015-07-28 Rf Micro Devices, Inc. Methods for fabricating high voltage field effect transistor finger terminations
DE102013010188A1 (de) * 2012-06-21 2013-12-24 Fairchild Semiconductor Corp. Schalt-Schaltkreis und Steuer- bzw. Regelschaltkreis
US9124221B2 (en) 2012-07-16 2015-09-01 Rf Micro Devices, Inc. Wide bandwidth radio frequency amplier having dual gate transistors
US9142620B2 (en) 2012-08-24 2015-09-22 Rf Micro Devices, Inc. Power device packaging having backmetals couple the plurality of bond pads to the die backside
US20140055192A1 (en) * 2012-08-24 2014-02-27 Rf Micro Devices, Inc. Saturation current limiting circuit topology for power transistors
US9202874B2 (en) 2012-08-24 2015-12-01 Rf Micro Devices, Inc. Gallium nitride (GaN) device with leakage current-based over-voltage protection
US9917080B2 (en) 2012-08-24 2018-03-13 Qorvo US. Inc. Semiconductor device with electrical overstress (EOS) protection
US9147632B2 (en) 2012-08-24 2015-09-29 Rf Micro Devices, Inc. Semiconductor device having improved heat dissipation
US8988097B2 (en) 2012-08-24 2015-03-24 Rf Micro Devices, Inc. Method for on-wafer high voltage testing of semiconductor devices
US9070761B2 (en) 2012-08-27 2015-06-30 Rf Micro Devices, Inc. Field effect transistor (FET) having fingers with rippled edges
WO2014035794A1 (fr) 2012-08-27 2014-03-06 Rf Micro Devices, Inc Dispositif latéral à semi-conducteur à région verticale de claquage
US9112428B2 (en) * 2012-10-05 2015-08-18 Power Integrations, Inc. Application of normally-on switching elements/devices in a stacked switching circuit
US9325281B2 (en) 2012-10-30 2016-04-26 Rf Micro Devices, Inc. Power amplifier controller
JP2015084622A (ja) * 2013-10-25 2015-04-30 三菱重工オートモーティブサーマルシステムズ株式会社 スイッチング素子の駆動装置及び駆動方法並びに車両用空調装置
US9455327B2 (en) 2014-06-06 2016-09-27 Qorvo Us, Inc. Schottky gated transistor with interfacial layer
US9536803B2 (en) 2014-09-05 2017-01-03 Qorvo Us, Inc. Integrated power module with improved isolation and thermal conductivity
US9190993B1 (en) * 2015-01-08 2015-11-17 United Silicon Carbide, Inc. High voltage switch
US10062684B2 (en) 2015-02-04 2018-08-28 Qorvo Us, Inc. Transition frequency multiplier semiconductor device
US10615158B2 (en) 2015-02-04 2020-04-07 Qorvo Us, Inc. Transition frequency multiplier semiconductor device
KR102265460B1 (ko) * 2016-01-11 2021-06-16 한국전자통신연구원 캐스코드 스위치 회로
US9871510B1 (en) 2016-08-24 2018-01-16 Power Integrations, Inc. Clamp for a hybrid switch
US9866213B1 (en) * 2016-09-08 2018-01-09 United Silicon Carbide, Inc. High voltage switch module
US10033298B1 (en) 2017-01-20 2018-07-24 General Electric Company Automatic short circuit protection switching device systems and methods
KR102400459B1 (ko) * 2019-01-14 2022-05-20 (주)팔콘시스템 트랜지스터 드라이버 회로
JP2020178312A (ja) * 2019-04-22 2020-10-29 株式会社東芝 電流遮断装置及びトランジスタ選定方法
US11784641B2 (en) 2021-01-15 2023-10-10 North Carolina State University High voltage cascaded supercascode power switch
US11728804B1 (en) * 2022-05-05 2023-08-15 National Technology & Engineering Solutions Of Sandia, Llc High voltage switch with cascaded transistor topology

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55121682A (en) * 1979-03-14 1980-09-18 Nec Corp Field effect transistor
US4663547A (en) 1981-04-24 1987-05-05 General Electric Company Composite circuit for power semiconductor switching
JPS61285770A (ja) * 1985-06-12 1986-12-16 Toshiba Corp 拡散型半導体素子
US5406096A (en) * 1993-02-22 1995-04-11 Texas Instruments Incorporated Device and method for high performance high voltage operation
DE19548443A1 (de) * 1995-12-22 1997-06-26 Siemens Ag Halbleiteranordnung zur Strombegrenzung
DE19610135C1 (de) * 1996-03-14 1997-06-19 Siemens Ag Elektronische Einrichtung, insbesondere zum Schalten elektrischer Ströme, für hohe Sperrspannungen und mit geringen Durchlaßverlusten
DE19833214C1 (de) 1998-07-23 1999-08-12 Siemens Ag J-FET-Halbleiteranordnung
DE19926109B4 (de) * 1999-06-08 2004-08-19 Infineon Technologies Ag Leistungsschalter
US6617906B1 (en) * 2002-10-01 2003-09-09 Texas Instruments Incorporated Low-current compliance stack using nondeterministically biased Zener strings

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102388535A (zh) * 2009-03-27 2012-03-21 瑞士苏黎世联邦理工学院 具有栅地阴地放大器电路的开关装置
CN102388535B (zh) * 2009-03-27 2015-06-24 瑞士苏黎世联邦理工学院 具有栅地阴地放大器电路的开关装置
CN106712749A (zh) * 2016-11-14 2017-05-24 南京工程学院 基于碳化硅mosfet和jfet的混合高压器件

Also Published As

Publication number Publication date
JP2004521585A (ja) 2004-07-15
WO2003012996A1 (fr) 2003-02-13
EP1410505A1 (fr) 2004-04-21
ATE426943T1 (de) 2009-04-15
US20030168919A1 (en) 2003-09-11
DE10135835C1 (de) 2002-08-22
JP3730244B2 (ja) 2005-12-21
DE50213393D1 (de) 2009-05-07
US6822842B2 (en) 2004-11-23
EP1410505B8 (fr) 2009-06-10

Similar Documents

Publication Publication Date Title
EP1410505B1 (fr) Dispositif de commutation pour commutation en presence d'une tension de fonctionnement elevee
DE19902520B4 (de) Hybrid-Leistungs-MOSFET
EP1342318B1 (fr) Circuit electronique
EP1980013B1 (fr) Cellule de commutation et circuit convertisseur pour la connexion d'une pluralité de niveaux de tension
EP0108283B1 (fr) Commutateur électronique
DE112005002029B4 (de) Kaskodierter Gleichrichter
DE10101744C1 (de) Elektronische Schalteinrichtung und Betriebsverfahren
DE102014100717A1 (de) Stromrichter
EP0766395A2 (fr) Transistor de puissance protégé contre les courts-circuits
DE112019005375T5 (de) Spannungsklemmschaltung für festkörper-leistungsschalter
DE10308313B4 (de) Halbleiterdiode, elektronisches Bauteil, Spannungszwischenkreisumrichter und Steuerverfahren
EP0717886B1 (fr) Limiteur de courant
WO2017194598A1 (fr) Convertisseur de tension muni d'une diode de protection contre les inversions de polarité
EP0361211B1 (fr) Circuit de protection pour une unité semi-conductrice de puissance
EP3853957B1 (fr) Commutateur électronique à protection contre les surtensions
DE19838109B4 (de) Ansteuerschaltung für induktive Lasten
DE102008035075A1 (de) Schalteinrichtung und Schaltungsanordnungen zum Schalten bei einer hohen Betriebsspannung
DE2716367C2 (de) Schutzbeschaltung für im Wechselschaltbetrieb gegen induktive Last arbeitende Transistoren
DE10035388C2 (de) Stromschaltanordnung
EP0590167A1 (fr) Commutateur de puissance
EP2466753A1 (fr) Circuit de résistance, agencement de commutation et pilote
DE102019107112B3 (de) Schaltvorrichtung, Spannungsversorgungssystem, Verfahren zum Betreiben einer Schaltvorrichtung und Herstellverfahren
EP3236572A1 (fr) Cellule de coupure d'électronique de puissance et circuit convertisseur comprenant de telles cellules de coupure
DE102012216185A1 (de) Begrenzerschaltung für einen Halbleitertransistor und Verfahren zum Begrenzen der Spannung über einen Halbleitertransistor
DE10147696A1 (de) Halbleiteraufbau mit zwei Kathodenelektroden und Schalteinrichtung mit dem Halbleiteraufbau

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030224

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SICED ELECTRONICS DEVELOPMENT GMBH & CO KG

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50213393

Country of ref document: DE

Date of ref document: 20090507

Kind code of ref document: P

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: SICED ELECTRONICS DEVELOPMENT GMBH & CO KG

Effective date: 20090415

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090901

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20091229

BERE Be: lapsed

Owner name: SICED ELECTRONICS DEVELOPMENT G.M.B.H. & CO. K.G.

Effective date: 20100131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100129

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100131

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090626

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100131

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100129

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50213393

Country of ref document: DE

Owner name: INFINEON TECHNOLOGIES AG, DE

Free format text: FORMER OWNER: SICED ELECTRONICS DEVELOPMENT GMBH & CO. KG, 91058 ERLANGEN, DE

Effective date: 20110419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100129

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200320

Year of fee payment: 19

Ref country code: IT

Payment date: 20200131

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200121

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50213393

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210129