EP1404758A1 - Ressort de suspension elastomere pour vehicule a moteur et articulation l'incorporant - Google Patents

Ressort de suspension elastomere pour vehicule a moteur et articulation l'incorporant

Info

Publication number
EP1404758A1
EP1404758A1 EP02747317A EP02747317A EP1404758A1 EP 1404758 A1 EP1404758 A1 EP 1404758A1 EP 02747317 A EP02747317 A EP 02747317A EP 02747317 A EP02747317 A EP 02747317A EP 1404758 A1 EP1404758 A1 EP 1404758A1
Authority
EP
European Patent Office
Prior art keywords
phr
filler
composition
suspension spring
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02747317A
Other languages
German (de)
English (en)
Inventor
Patrick Pennequin
Yolanda Yague
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compagnie Generale des Etablissements Michelin SCA
Michelin Recherche et Technique SA France
Original Assignee
Michelin Recherche et Technique SA Switzerland
Michelin Recherche et Technique SA France
Societe de Technologie Michelin SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Michelin Recherche et Technique SA Switzerland, Michelin Recherche et Technique SA France, Societe de Technologie Michelin SAS filed Critical Michelin Recherche et Technique SA Switzerland
Publication of EP1404758A1 publication Critical patent/EP1404758A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/3605Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by their material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G11/00Resilient suspensions characterised by arrangement, location or kind of springs
    • B60G11/32Resilient suspensions characterised by arrangement, location or kind of springs having springs of different kinds
    • B60G11/48Resilient suspensions characterised by arrangement, location or kind of springs having springs of different kinds not including leaf springs
    • B60G11/60Resilient suspensions characterised by arrangement, location or kind of springs having springs of different kinds not including leaf springs having both rubber springs and torsion-bar springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G21/00Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
    • B60G21/02Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
    • B60G21/04Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically
    • B60G21/05Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically between wheels on the same axle but on different sides of the vehicle, i.e. the left and right wheel suspensions being interconnected
    • B60G21/051Trailing arm twist beam axles
    • B60G21/052Mounting means therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2200/00Indexing codes relating to suspension types
    • B60G2200/20Semi-rigid axle suspensions
    • B60G2200/21Trailing arms connected by a torsional beam, i.e. twist-beam axles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/10Type of spring
    • B60G2202/13Torsion spring
    • B60G2202/136Twist-beam type arrangement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/10Type of spring
    • B60G2202/14Plastic spring, e.g. rubber
    • B60G2202/142Plastic spring, e.g. rubber subjected to shear, e.g. Neidhart type
    • B60G2202/1424Torsional
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/10Mounting of suspension elements
    • B60G2204/12Mounting of springs or dampers
    • B60G2204/122Mounting of torsion springs
    • B60G2204/1226Mounting of torsion springs on the trailing arms of a twist beam type arrangement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/10Mounting of suspension elements
    • B60G2204/12Mounting of springs or dampers
    • B60G2204/125Mounting of rubber type springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/10Mounting of suspension elements
    • B60G2204/14Mounting of suspension arms
    • B60G2204/143Mounting of suspension arms on the vehicle body or chassis
    • B60G2204/1434Mounting of suspension arms on the vehicle body or chassis in twist-beam axles arrangement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/40Auxiliary suspension parts; Adjustment of suspensions
    • B60G2204/41Elastic mounts, e.g. bushings

Definitions

  • Elastomeric suspension spring for a motor vehicle and articulation incorporating it.
  • the present invention relates to an elastomeric suspension spring usable for carrying the load of a motor vehicle, which has both reduced creep and improved torsional endurance, a suspension joint comprising this spring and a method for reducing creep of this spring when incorporated into said articulation on said vehicle.
  • a suspension device comprising elastomeric suspension springs has the advantage of having a total number of parts which is reduced, in particular because it does not have a separate filter block for connecting an axle or a suspension arm to the vehicle body.
  • these elastomeric springs also makes it possible to give the corresponding suspension device the required degrees of freedom, while ensuring satisfactory filtering, in particular from an acoustic point of view.
  • these elastomeric springs can be given fairly elaborate guide functions by controlling their deformations under service stresses, for example for making self-steering axles, that is to say axles which slightly turn the plane wheels under the sole effect of support transfers, or to integrate a horizontal degree of freedom.
  • the international patent document WO-A-97/47486 presents a suspension device, the axle of which is provided with elastomeric suspension and anti-roll springs, which are subjected to torsional stress.
  • the suspension springs which are intended to carry the load of the vehicle, control the travel of the wheel with respect to a fulcrum formed by the body of the vehicle.
  • the anti-roll springs control the travel of the wheel (or of the arm carrying the wheel) relative to a fulcrum formed by the opposite wheel (or the opposite arm, respectively).
  • American patent document US-A-4 383 074 discloses an elastomeric spring composition based on natural rubber which is intended to give this spring satisfactory endurance in dynamic operation.
  • This composition comprises, in an amount less than or equal to 40 pce (pce: 5 parts by weight per hundred parts of elastomer) a reinforcing filler which consists of a blend of two carbon blacks, one being a very black end of grade 200 (black “ISAF” of reinforcing grade) and the other being a “coarse” black of grade 700 (black “SRF” of non-reinforcing grade).
  • the reinforcing filler comprises said black of grade 200 according to a mass fraction greater than 45% and said black of grade 700 according to a mass fraction of less than 55%. This charge therefore comprises a relatively high proportion of reinforcing grade carbon black, in order to obtain the abovementioned endurance.
  • This composition is also obtained by means of a sulfur crosslinking system, with a quantity of sulfur equal to 2.75 phr and a mass ratio sulfur / i 5 crosslinking accelerator equal to 2.75.
  • the American patent document US-A-5 904 220 discloses, in its exemplary embodiments, an elastomeric spring composition based on natural rubber and which also comprises a reinforcing filler made of reinforcing grade carbon black. This reinforcing filler is present in said composition in an amount of
  • This composition is also obtained by means of a sulfur crosslinking system, with a quantity of sulfur equal to 0.5 phr and a sulfur / crosslinking accelerator ratio of approximately 0.14.
  • a crosslinked rubber composition based on natural rubber in an amount equal to or greater than 60 phr (phr: parts by weight per hundred parts of diene elastomer (s))
  • a sulfur crosslinking system comprising from 0.7 to 1.2 phr of sulfur and comprising at least one crosslinking accelerator so that the mass ratio sulfur / crosslinking accelerator (s) varies from 0.15 to 2 , 70, and a charge comprising, according to a mass fraction greater than 55%:
  • composition comprising in this case a total amount of filler ranging from 10 to 60 phr, or - an inert white filler, said composition comprising in this case a total amount of filler ranging from 10 to 30 pc, can be used to constitute an elastomeric suspension spring which, when it is mounted between two coaxial reinforcements to carry the load of a motor vehicle, advantageously has a minimized dynamic creep and a satisfactory endurance in torsion .
  • composition based on means a composition comprising the mixture and / or the reaction product in situ of the various constituents used, some of these compounds being able to react and / or being intended to react between them, at least partially, during the various stages of manufacturing the composition.
  • Natural rubber can be used in combination with one or more other “essentially unsaturated” diene elastomers in the rubber composition according to the invention, which can be present in an amount less than or equal to 40 phr.
  • diene elastomer in known manner an elastomer (homopolymer or a copolymer) derived at least in part from diene monomers (monomers carrying two carbon-carbon double bonds, conjugated or not).
  • diene elastomer in general, is understood here to mean a diene elastomer derived at least in part from conjugated diene monomers, this elastomer having a proportion of units or units of diene origin (conjugated dienes) which is greater than 15% (% in moles).
  • conjugated diene monomers this elastomer having a proportion of units or units of diene origin (conjugated dienes) which is greater than 15% (% in moles).
  • the diene elastomer of the composition according to the invention is, for example, chosen from the group of diene elastomers constituted by polybutadienes (BR), polyisoprenes (IR), or butadiene-styrene copolymers (SBR).
  • BR polybutadienes
  • IR polyisoprenes
  • SBR butadiene-styrene copolymers
  • the composition according to the invention comprises a blend: of natural rubber in an amount ranging from 70 phr to 100 phr, and of synthetic polyisoprene in an amount ranging from 30 phr to 0 phr. Even more preferably, the composition according to the invention comprises only natural rubber (that is to say in an amount of 100 phr).
  • the charge that comprises the composition according to the invention preferably comprises, according to a mass fraction greater than 70%, said carbon black whose grade varies from 600 to 900 or said inert white charge.
  • a filler of the composition according to the invention it is possible to use a blend of said carbon black, the grade of which varies from 600 to 900 and of said inert white filler.
  • filler for said composition either said carbon black, the grade of which varies from 600 to 900, or said inert white filler (the aforementioned mass fraction being in this case equal to 100%).
  • said charge comprises, depending on the aforementioned mass fraction (greater than 55% or preferably 70%), said carbon black of grade 600 to 900 (that is to say a "coarse" black of a grade known to be non-reinforcing).
  • carbon blacks which can be used in the composition according to the invention for example, carbon blacks of grade 700 can be cited, such as those corresponding to the names "N772" or "N765".
  • the charge of said composition comprises this grade black carbon
  • the charge of the composition according to the invention comprises, according to the aforementioned mass fraction (greater than 55% or preferably 70%), an inert white charge.
  • an inert white filler that is to say an inorganic filler with little or no reinforcement, sometimes also called inert clear filler
  • the BET and CTAB specific surface values are close to 60 m 2 / g, such as the silica sold under the name "ULTRASIL 360”.
  • clays such as kaolin, bentonite, or chalks, or even titanium oxides.
  • the filler of said composition can comprise this inert white filler in an amount ranging from 10 to 30 phr. It will be noted that such an amount of inert white filler is particularly well suited to impart satisfactory cold stiffening to the composition according to the invention (by cold stiffening is understood in known manner an increase in static stiffness when the temperature decreases ).
  • the filler of the composition according to the invention can comprise several carbon blacks of grade ranging from 600 to 900 and / or several inert white fillers.
  • a system such as the sulfur crosslinking system is used such that the mass ratio sulfur / crosslinking accelerator (s) varies from 0.15 to 0.50. It will be noted that this preferential range for the value of the sulfur / accelerator (s) ratio makes it possible to minimize the secondary creep of the composition according to the invention (by secondary creep, one understands a creep of chemical nature due to the evolution of the network of crosslinking).
  • the elastomer spring according to the invention is for example obtained: by thermo-mechanical mixing of the various constituents of the rubber composition according to the invention, which is carried out in one or more [0 steps in an internal mixer, followed by crosslinking of the crosslinkable composition thus obtained in an injection mold, according to techniques known to those skilled in the art.
  • said crosslinked composition has a dynamic shear modulus G * at 100% deformation, measured according to standard ASTM D 5992-96 at a temperature of 23 ° C and at a frequency of 10 Hz according to ASTM D 1349-99, which belongs to a range from 0.5 MPa to 5.5 MPa.
  • the present invention also relates to a suspension articulation of a motor vehicle, said articulation being intended to carry the load of said vehicle and consisting of two substantially cylindrical and concentric reinforcements which are connected together by an elastomeric suspension spring .
  • this articulation is such that said suspension spring is as defined above.
  • the present invention also relates to a method for reducing the creep of an elastomeric suspension spring usable for carrying the load of a motor vehicle, when said spring is mounted between two coaxial reinforcements in order to carry the load of a motor vehicle, said spring consisting of a crosslinked rubber composition.
  • this process essentially consists in mixing by thermomechanical work:
  • - one or more diene elastomers which comprise natural rubber in an amount equal to or greater than 60 phr
  • a filler which comprises, according to a mass fraction greater than 55%: a carbon black whose grade varies from 600 to 900, said filler being in this case present in the composition in an amount ranging from 10 to 60 phr, or an inert white filler, said filler being in this case present in said composition in an amount ranging from 10 to 30 phr
  • - a system of sulfur crosslinking comprising at least one crosslinking accelerator, said crosslinking system comprising from 0.7 to 1.2 phr of sulfur and being such that the mass ratio of sulfur to crosslinking accelerator (s) varies from 0.15 to 2 70.
  • FIG. 1 is a sectional view of a rear vehicle suspension device comprising elastomeric spring joints ensuring in particular the function of suspension spring and anti-roll spring
  • FIG. 2 is a sectional view along the plane II-II of FIG. 1 of said suspension device
  • FIG. 3 is a sectional view along the plane of FIG. 1 of an example of an elastomeric spring suspension joint
  • FIG. 4 is a schematic view of a device for measuring the static creep and the static thermo-elasticity of an elastomer spring according to the invention inside the corresponding joint
  • FIG. 5 is a schematic view of a device for measuring the dynamic creep and the endurance of a spring according to the invention inside the corresponding joint.
  • FIG. 1 and 2 represent a rear suspension device 1 of a motor vehicle, a more complete description of which can be found in patent document WO-A-97/47486.
  • the joints 2, 2 ′ which exercise a load-carrying spring function, are fixed to the vehicle body by means of supports 4, 4 ′ and hold the suspension arms 5, 5 ′ which carry the rockets 6, 6 ', which carry the wheels 7,7'.
  • the joints 8, 9 having the anti-roll function maintain the profiles 10, 11 rigidly integral with the arms 5, 5 'in a substantially concentric mutual position, and they resist elastically their relative rotation.
  • Fig. 3 there is shown schematically a joint usable in the device of Figs. 1 and 2.
  • This articulation 2, 2 ', 8, 9 consists of two substantially cylindrical and concentric reinforcements 12, 13 which are connected together by an elastomer spring 14, deformable and subjected to torsion around its axis 20, 20 ', 21.
  • each elastomer spring 14 according to the invention was measured in the following manner.
  • each elastomer spring 14 has been measured between an axis 12 'and a ring 13' on which it is mounted by fitting, the latter being respectively provided for forming said internal and external armatures of a suspension joint 2.
  • This device 20 essentially comprises a displacement means 22 in torsion of the axis 12 ', which is intended to simulate the stresses applied to the elastomer spring 14 on a vehicle in service, and a sensor 23 intended to detect the variation in elevation (similar to a "trim") of the joint 2 due to the static creep of the spring 14, in response to the torsion of said axis 12 '.
  • the initial mounting dimension of articulation 2 (starting attitude) is fixed by calibration.
  • This displacement means 22 comprises a load 24 which is mounted at the end of an arm 25 of 1 m long, and whose weight has a given nominal value (representative of the load to which a joint 2 is subjected on a vehicle containing two people and full of fuel, load equivalent to 185 daN according to an exemplary embodiment).
  • a load 24 which is mounted at the end of an arm 25 of 1 m long, and whose weight has a given nominal value (representative of the load to which a joint 2 is subjected on a vehicle containing two people and full of fuel, load equivalent to 185 daN according to an exemplary embodiment).
  • the evolution of the base of the joint 2 is measured at 250 mm from said axis 12 ′.
  • Each test carried out consisted of measuring, from the graphical characteristic of the attitude (in mm) as a function of time t (in hours), a creep slope (in% per decade) for each joint 2 tested, in two different configurations.
  • a first configuration is characterized by a progressive loading of the joint 2 (over a period of approximately 30 seconds), in order to obtain said nominal stress value applied to the joint 2 by the load 24 (configuration of "nominal” test below), value maintained for the 24 hours mentioned above.
  • a second configuration is characterized by an initial loading of the joint 2, carried out prior to the aforementioned loading at nominal stress. This initial loading is carried out by applying a predetermined stress corresponding substantially to the maximum deformation of which the spring 14 can be the seat in service, that is to say at the maximum compression limit on a vehicle (configuration "pre-deformed” test below), then by releasing this predetermined stress before carrying out said charging at nominal stress for the 24 hours mentioned above.
  • each elastomer spring 14 has been measured between an axis 12 'and a ring 13' on which it is mounted by fitting, like the articulation 2 of paragraph 1 / above.
  • the device 30 of FIG. 5 tests in torsion on each suspension joint 2 thus obtained, so that the corresponding spring 14 can move in torsion (for this purpose, the axis 12 is movable in torsion and the ring 13 'is connected to the frame 31 of the device 30 so as to be locked in rotation).
  • This device 30 essentially comprises a displacement means 32 in torsion of the axis 12 ', which is intended to simulate the dynamic stresses applied to the elastomer spring 14 on a vehicle in service, and a sensor (not shown) intended to detect the variation side or "attitude" of the joint 2, in response to the twist of said axis 12 '.
  • the initial mounting dimension of articulation 2 (starting attitude) is fixed by calibration.
  • the displacement means 32 comprises a link 34 which is connected, at one of its ends, to a mobile gantry 35 mounted on the frame 31 and, at its other end, to an arm 36 which is itself connected to the 'axis 12' of the articulation 2.
  • This displacement means 32 is controlled by a cylinder 37 with a linear stroke which is connected to the frame 31.
  • each joint 2 is subjected to dynamic stress cycles which each have a duration of 30 minutes, so as to correspond to a real signal measured on the road, and which end with an application of said nominal load during 10 minutes for creep. Finally, each joint 2 is subjected to said nominal load for a period of 4 hours, following the above-mentioned dynamic cycles.
  • Each test carried out consisted of measuring, from the graphical characteristic of the attitude (in mm) as a function of time t (in seconds), a creep slope (in% per decade) for each joint 2 tested.
  • each elastomer spring 14 according to the invention has been measured between an axis 12 'and a ring 13' on which it is mounted by fitting, at the 'like articulations 2 of paragraphs 1 / and 11 / above.
  • the device 30 of FIG. 5 torsional tests on three suspension joints 2 juxtaposed, as detailed in paragraph II /, so as to be able to follow the evolution of the parameters of force and deformation.
  • each articulation 2 For each of the measurements carried out, an initial loading of each articulation 2 is carried out to a “shock” position of maximum deformation, then to a relaxation of this constraint until a so-called nominal attitude is obtained (the latter corresponding to the geometric position of an axle for a rolling load of 185 daN comprising two people in the vehicle and filling up with fuel), which plate is maintained for a period of 10 seconds where the effort is measured on each joint 2.
  • shock means the maximum stroke of compression travel and “rebound” means the maximum possible rebound stroke for the axle incorporating these joints 2) , the last cycle being intended to provide a measure of stiffness under a large clearance.
  • the measurements are stopped as a function of the minimum force values to be reached in the “shock” position.
  • a so-called “static” stiffness Ks is determined at a relatively high deformation ranging from 10 to 200% in shear and at low frequency, by a measurement of dynamic shear stiffness at 15 Hz with a peak-to-peak deformation of approximately 100%. .
  • a “dynamic” stiffness Kd with low deformation ranging from 0.1 to 2% in shear and at a frequency of 150 Hz is determined (the joint 2 will absorb the acoustic vibrations the better as the stiffness Ks and Kd / Ks ratio will be reduced).
  • the shear moduli G * of the elastomeric springs 14 according to the invention are measured on a “SCHENCK” machine according to standard ASTM D 5992-96, at a temperature of 23 ° C and at a frequency of 10 Hz according to standard ASTM D 1349-1399. A deformation amplitude sweep is carried out from 0.1 to 100% ("outward” cycle), then from 100 to 0.1% ("return” cycle). Examples of “Control” Elastomeric Springs and According to the Invention and Joints Incorporating These Springs
  • composition Tl Composition Tl:
  • composition T4 is a composition of Composition T4:
  • composition II Composition II:
  • Composition 13 is a composition of Composition 13:
  • antioxidant N- (1,3-dimethyl butyl) -N'-phenyl-p-phenylenediamine (6PPD) type 1 accelerators: n-oxy-diethylene-benzothiazyl-2-sulfonamide (NOBS) and
  • Zinc-dibutylphosphorodithioate "ZBPD” Zinc-dibutylphosphorodithioate "ZBPD”; type 2 accelerators: n-oxy-diethylene-benzothiazyl-2-sulfonamide (NOBS) and tetrabenzyl thiuramdisulfide (TBZTD).
  • NOBS n-oxy-diethylene-benzothiazyl-2-sulfonamide
  • TBZTD tetrabenzyl thiuramdisulfide
  • Each articulation comprising the elastomer spring RT1 to RT5 and RIl, RI2 and RI3 was obtained by mixing by thermo-mechanical work the various constituents of the corresponding composition in an internal mixer, followed by crosslinking of this composition between the two cylindrical reinforcements 12 and 13 above (see Fig. 3) in an injection mold.
  • each articulation incorporating the spring RT1 to RT5 or RIl, RI2, RI3 corresponding are the following:
  • Inner frame diameter 13 55 mm
  • Outer frame diameter 12 114 mm
  • Interior frame height 13 115 mm
  • Inner spring height 14 100 mm
  • Inner frame height 13 57.5 mm
  • Inner spring height 14 50 mm
  • elastomeric springs RIl, RI2 or RI3 included in the joints according to the invention which comprise as filler a non-reinforcing carbon black or a coarse silica, an amount of sulfur of between 0.7 and 1, 2 pce and a sulfur / accelerator mass ratio of between 0.15 and 2.70, present both a minimized dynamic creep between the reinforcements of said joints, as well as satisfactory endurance at torsion, unlike RTl “control” springs at RT5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Springs (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Vibration Prevention Devices (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

La présente invention concerne un ressort de suspension élastomère utilisable pour porter la charge d'un véhicule à moteur, qui présente à la fois un fluage réduit et une endurance améliorée en torsion, et une articulation de suspension comportant ce ressort. Un ressort de suspension élastomère (14) selon l'invention est constitué d'une composition de caoutchouc réticulée à base: a) de caoutchouc naturel selon une quantité égale ou supérieure à 60 pce, b) d'une charge, et c) d'un système de réticulation au souffre comprenant au moins un accélérateur de réticulation, et il est tel que ladite charge comprend, selon une fraction massique supérieure à 55%: d) un noir de carbone dont le grade varie de 600 à 900, ladite composition comprenant dans ce cas une quantité totale de charge allant de 10 à 60 pce, ou e) une charge blanche inerte, ladite composition comprenant dans ce cas une quantité totale de charge allant de 10 à 30 pce, ledit système de réticulation comprenant de 0,7 à 1,2 pce de soufre et étant tel que le rapport massique soufre/ accélérateur(s) de réticulation varie de 0,15 à 2,70.

Description

Ressort de suspension élastomère pour véhicule à moteur et articulation l'incorporant.
La présente invention concerne un ressort de suspension élastomère utilisable pour porter la charge d'un véhicule à moteur, qui présente à la fois un fluage réduit et une endurance améliorée en torsion, une articulation de suspension comportant ce ressort et un procédé pour réduire le fluage de ce ressort lorsqu'il est incorporé à ladite articulation sur ledit véhicule.
Pour les articulations de suspension des véhicules automobiles, on utilise d'une manière générale des blocs comportant chacun un ressort élastomère pour une intégration améliorée des fonctions de reprise de charge,-d'amortissement et de filtrage des vibrations ou des chocs, par rapport aux roulements ou paliers lisses qui étaient utilisés par le passé. Un dispositif de suspension comportant des ressorts de suspension élastomères présente l'avantage de comporter un nombre total de pièces qui est réduit, notamment du fait qu'il ne comporte pas de bloc de filtrage séparé pour relier un essieu ou un bras de suspension à la caisse du véhicule.
L'utilisation de ces ressorts élastomères permet également de conférer au dispositif de suspension correspondant les degrés de liberté requis, tout en assurant un filtrage satisfaisant, notamment sur le plan acoustique. En outre, on peut conférer à ces ressorts élastomères des fonctions de guidage assez élaborées en maîtrisant leurs déformations sous les sollicitations de service, pour réaliser par exemple des essieux auto-directionnels, c'est-à-dire des essieux qui braquent légèrement le plan des roues sous le seul effet des transferts d'appui, ou pour intégrer un degré de liberté horizontal.
Le document de brevet international WO-A-97/47486 présente un dispositif de suspension dont l'essieu est pourvu de ressorts élastomères de suspension et anti -roulis, qui sont sollicités en torsion. Les ressorts de suspension, qui sont destinés à porter la charge du véhicule, contrôlent le débattement de la roue par rapport à un point d'appui constitué par la caisse du véhicule. Les ressorts anti-roulis contrôlent quant à eux le débattement de la roue (ou du bras portant la roue) par rapport à un point d'appui constitué par la roue opposée (ou le bras opposé, respectivement). Le document de brevet américain US-A-4 383 074 divulgue une composition de ressort élastomère à base de caoutchouc naturel qui est prévue pour conférer à ce ressort une endurance satisfaisante en fonctionnement dynamique.
Cette composition comprend, selon une quantité inférieure ou égale à 40 pce (pce: 5 parties en poids pour cent parties d'élastomère) une charge renforçante qui est constituée d'un coupage de deux noirs de carbone, l'un étant un noir très fin de grade 200 (noir « ISAF » de grade renforçant) et l'autre étant un noir « grossier » de grade 700 (noir « SRF » de grade non renforçant). Au vu des exemples de réalisation figurant dans ce document, la charge renforçante comprend ledit noir de grade 200 selon une fraction massique supérieure à 45 % 10 et ledit noir de grade 700 selon une fraction massique inférieure à 55 %. Cette charge comporte donc une proportion relativement élevée de noir de carbone de grade renforçant, pour l'obtention de l'endurance précitée.
Cette composition est par ailleurs obtenue au moyen d'un système de réticulation au soufre, avec une quantité de soufre égale à 2,75 pce et un rapport massique soufre/ i 5 accélérateur de réticulation égal à 2,75.
Le document de brevet américain US-A-5 904 220 divulgue, dans ses exemples de réalisation, une composition de ressort élastomère à base de caoutchouc naturel et qui comprend également une charge renforçante constituée de noir de carbone de grade renforçant. Cette charge renforçante est présente dans ladite composition selon une quantité de
.0 55 pce.
Cette composition est également obtenue au moyen d'un système de réticulation au soufre, avec une quantité de soufre égale à 0,5 pce et un rapport soufre/ accélérateurs de réticulation d'environ 0,14.
.5 Aucun de ces documents de brevet ne se rapporte au problème technique du fluage des compositions de ressorts élastomères, qui est un inconvénient majeur des articulations de suspension connues à ce jour et qui se manifeste après leur montage sur les essieux du véhicule, notamment dans les quelques jours de fonctionnement dynamique de ces articulations en torsion (on parle alors de fluage dynamique). Ce fluage se traduit par une
30 évolution de la hauteur de caisse du véhicule au cours du temps. La demanderesse a découvert d'une manière surprenante qu'une composition de caoutchouc réticulée à base de caoutchouc naturel selon une quantité égale ou supérieure à 60 pce (pce: parties en poids pour cent parties d'élastomère(s) diénique(s)), d'un système de réticulation au soufre comprenant de 0,7 à 1,2 pce de soufre et comprenant au moins un accélérateur de réticulation de sorte que le rapport massique soufre/ accélérateur(s) de réticulation varie de 0,15 à 2,70, et d'une charge comprenant, selon une fraction massique supérieure à 55 % :
- un noir de carbone dont le grade varie de 600 à 900, ladite composition comprenant dans ce cas une quantité totale de charge allant de 10 à 60 pce, ou - une charge blanche inerte, ladite composition comprenant dans ce cas une quantité totale de charge allant de 10 à 30 pce, est utilisable pour constituer un ressort de suspension élastomère qui, lorsqu'il est monté entre deux armatures coaxiales pour porter la charge d'un véhicule à moteur, présente avantageusement un fluage dynamique minimisé et une endurance satisfaisante en torsion.
Bien entendu, par l'expression « composition à base de », il faut entendre une composition comportant le mélange et/ou le produit de réaction in situ des différents constituants utilisés, certains de ces composés pouvant réagir et/ou étant destinés à réagir entre eux, au moins partiellement, lors des différentes phases de fabrication de la composition.
Q Le caoutchouc naturel peut être utilisé en coupage avec un ou plusieurs autres élastomères diéniques « essentiellement insaturés » dans la composition de caoutchouc selon l'invention, lesquels peuvent être présents selon une quantité inférieure ou égale à 40 pce.
Par élastomère diénique, on entend de manière connue un élastomère (homopolymère ou un copolymere) issu au moins en partie de monomères diènes (monomères porteurs de deux doubles liaisons carbone-carbone, conjuguées ou non).
De manière générale, on entend ici par élastomère diénique "essentiellement insaturé" un élastomère diénique issu au moins en partie de monomères diènes conjugués, cet élastomère ayant un taux de motifs ou unités d'origine diénique (diènes conjugués) qui est supérieur à 15% (% en moles). Ces définitions étant données, on entend en particulier par élastomère(s) diénique(s) susceptibles d'être utilisés en coupage ave le caoutchouc naturel dans les compositions conformes à l'invention:
- tout homopolymère obtenu par polymérisation d'un monomère diène conjugué ayant de 4 à 12 atomes de carbone;
- tout copolymere obtenu par copolymérisation d'un ou plusieurs diènes conjugués entre eux ou avec un ou plusieurs composés vinylaromatiques ayant de 8 à 20 atomes de carbone;
L'élastomère diénique de la composition conforme à l'invention est par exemple choisi dans le groupe des élastomères diéniques constitué par les polybutadiènes (BR), les polyisoprènes (IR), ou les copolymères de butadiène-styrène (SBR).
De préférence, la composition selon l'invention comprend un coupage : de caoutchouc naturel selon une quantité allant de 70 pce à 100 pce, et de polyisoprène de synthèse selon une quantité allant de 30 pce à 0 pce. A titre encore plus préférentiel, la composition selon l'invention comprend uniquement du caoutchouc naturel (c'est-à-dire selon une quantité de 100 pce).
α Concernant la charge que comprend la composition selon l'invention, elle comprend de préférence, selon une fraction massique supérieure à 70 %, ledit noir de carbone dont le grade varie de 600 à 900 ou ladite charge blanche inerte.
On peut utiliser à titre de charge de la composition selon l'invention un coupage dudit noir de carbone dont le grade varie de 600 à 900 et de ladite charge blanche inerte.
On peut également utiliser à titre de charge de ladite composition, soit ledit noir de carbone dont le grade varie de 600 à 900, soit ladite charge blanche inerte (la fraction massique précitée étant dans ce cas égale à 100 %).
Selon un exemple préférentiel de réalisation de l'invention, ladite charge comprend, selon la fraction massique précitée (supérieure à 55 % ou de préférence à 70 %), ledit noir de carbone de grade 600 à 900 (c'est-à-dire un noir « grossier » d'un grade connu comme étant non renforçant). A titre de tels noirs de carbone qui sont utilisables dans la composition selon l'invention, on peut par exemple citer des noirs de carbone de grade 700, tels que ceux répondant aux dénominations « N772 » ou « N765 ».
De préférence, la charge de ladite composition comprend ce noir de carbone de grade
600 à 900 selon une quantité allant de 40 à 60 pce. On notera qu'une telle quantité de noir de carbone est particulièrement bien adaptée pour conférer une thermo-élasticité satisfaisante à l'articulation correspondante, i.e. qui est représentative d'une variation d'assiette minimisée en fonction des gradients de température auxquels elle est soumise.
Selon une variante de réalisation de l'invention, la charge de la composition selon l'invention comprend, selon la fraction massique précitée (supérieure à 55 % ou de préférence à 70 %), une charge blanche inerte. A titre de charge blanche inerte (c'est-à-dire une charge inorganique peu ou pas renforçante, parfois appelée aussi charge claire inerte), qui est utilisable comme tout ou partie de ladite charge, on utilise par exemple une silice peu renforçante dont les valeurs de surface spécifique BET et CTAB sont proches de 60 m2/g, telle que la silice commercialisée sous la dénomination « ULTRASIL 360 ». On peut également utiliser, à titre de charge blanche non renforçante, des argiles, tels que le kaolin, la bentonite, ou des craies, ou encore des oxydes de titane.
La charge de ladite composition peut comprendre cette charge blanche inerte selon une quantité allant de 10 à 30 pce. On notera qu'une telle quantité de charge blanche inerte est particulièrement bien adaptée pour conférer une rigidification à froid satisfaisante à la composition selon l'invention (par rigidification à froid, on entend de manière connue une augmentation de la raideur statique lorsque la température diminue).
Bien entendu, la charge de la composition selon l'invention peut comprendre plusieurs noirs de carbone de grade allant de 600 à 900 et/ou plusieurs charges blanches inertes.
α Selon un exemple préférentiel de réalisation de l'invention, on utilise à titre de système de réticulation au soufre un système tel que le rapport massique soufre/ accélérateur(s) de réticulation varie de 0,15 à 0,50. On notera que ce domaine préférentiel pour la valeur du rapport soufre/ accélérateur(s) permet de minimiser le fluage secondaire de la composition selon l'invention (par fluage secondaire, on entend un fluage de nature chimique dû à l'évolution du réseau de réticulation).
Avantageusement, on utilise, à titre d' activateur de réticulation, le 2-éthylhexanoate de
5 zinc. On notera que cet activateur spécifique permet de minimiser encore le fluage dynamique du ressort élastomère constitué par la composition selon l'invention.
Le ressort élastomère selon l'invention est par exemple obtenu : par un mélangeage par travail thermo-mécanique des divers constituants de la composition de caoutchouc selon l'invention, qui est réalisé en une ou plusieurs [0 étapes dans un mélangeur interne, suivi d'une réticulation de la composition réticulable ainsi obtenue dans un moule à injection, selon les techniques connues de l'homme du métier.
Selon une autre caractéristique de l'invention, ladite composition réticulée présente un i 5 module dynamique en cisaillement G* à 100 % de déformation, mesuré selon la norme ASTM D 5992-96 à une température de 23° C et à une fréquence de 10 Hz selon la norme ASTM D 1349-99, qui appartient à un domaine allant de 0,5 MPa à 5,5 MPa.
La présente invention a également pour objet une articulation de suspension d'un 10 véhicule à moteur, ladite articulation étant destinée à porter la charge dudit véhicule et étant constituée de deux armatures sensiblement cylindriques et concentriques qui sont reliées entre elles par un ressort de suspension élastomère.
Selon l'invention, cette articulation est telle que ledit ressort de suspension est tel que défini précédemment.
.5
La présente invention a également pour objet un procédé pour réduire le fluage d'un ressort de suspension élastomère utilisable pour porter la charge d'un véhicule à moteur, lorsque ledit ressort est monté entre deux armatures coaxiales en vue de porter la charge d'un véhicule à moteur, ledit ressort étant constitué d'une composition de caoutchouc réticulée. Selon l'invention, ce procédé consiste essentiellement à mélanger par travail thermomécanique :
- un ou plusieurs élastomères diéniques, qui comprennent du caoutchouc naturel selon une quantité égale ou supérieure à 60 pce, - une charge qui comprend, selon une fraction massique supérieure à 55 % : un noir de carbone dont le grade varie de 600 à 900, ladite charge étant dans ce cas présente dans la composition selon une quantité allant de 10 à 60 pce, ou une charge blanche inerte, ladite charge étant dans ce cas présente dans ladite composition selon une quantité allant de 10 à 30 pce, et - un système de réticulation au soufre comprenant au moins un accélérateur de réticulation, ledit système de réticulation comprenant de 0,7 à 1 ,2 pce de soufre et étant tel que le rapport massique soufre/ accélérateur(s) de réticulation varie de 0,15 à 2,70.
Les caractéristiques précitées de la présente invention, ainsi que d'autres, seront mieux comprises à la lecture de la description suivante de plusieurs exemples de réalisation de l'invention, donnés à titre illustratif et non limitatif, ladite description étant réalisée en relation avec les dessins joints, dans lesquels :
La Fig. 1 est une vue en coupe d'un dispositif de suspension arrière de véhicule comprenant des articulations à ressort élastomère assurant notamment la fonction de ressort de suspension et de ressort anti-roulis, la Fig. 2 est une vue en coupe selon le plan II-II de la Fig. 1 dudit dispositif de suspension, la Fig. 3 est une vue en coupe selon le plan de la Fig. 1 d'un exemple d'une articulation de suspension à ressort élastomère, la Fig. 4 est une vue schématique d'un dispositif pour mesurer le fluage statique et la thermo-élasticité statique d'un ressort élastomère selon l'invention à l'intérieur de l'articulation correspondante, et la Fig. 5 est une vue schématique d'un dispositif pour mesurer le fluage dynamique et l'endurance d'un ressort selon l'invention à l'intérieur de l'articulation correspondante. Les Figs. 1 et 2 représentent un dispositif de suspension arrière 1 d'un véhicule à moteur, dont on peut trouver une description plus complète dans le document de brevet W0- A-97/47486. Les articulations 2, 2', qui exercent une fonction de ressort portant la charge, sont fixées à la caisse du véhicule par l'intermédiaire de supports 4, 4' et maintiennent les bras de suspension 5, 5' qui portent les fusées 6, 6', lesquelles portent les roues 7,7'. Les articulations 8, 9 ayant la fonction anti-roulis maintiennent les profils 10, 1 1 rigidement solidaires des bras 5, 5' dans une position mutuelle sensiblement concentrique, et elles résistent élastiquement à leur rotation relative. A la Fig. 3, on a représenté de manière schématique une articulation utilisable dans le dispositif des Figs. 1 et 2. Cette articulation 2, 2', 8, 9 est constituée de deux armatures 12, 13 sensiblement cylindriques et concentriques, qui sont reliées entre elles par un ressort élastomère 14, déformable et sollicité en torsion autour de son axe 20, 20', 21.
On a mesuré les propriétés mécaniques de chaque ressort élastomère 14 selon l'invention de la manière suivante.
1/ Fluage statique :
En référence à la Fig. 4, on a mesuré le fluage statique de chaque ressort élastomère 14 selon l'invention entre un axe 12' et une bague 13' sur lesquels il est monté par emmanchement, ces derniers étant respectivement prévus pour former lesdites armatures interne et externe d'une articulation de suspension 2.
A cet effet, on a réalisé au moyen du dispositif 20 de la Fig. 4 des essais en torsion sur chaque articulation de suspension 2 ainsi obtenue, de telle manière que le ressort 14 correspondant puisse seulement se mouvoir en torsion axiale, c'est-à-dire selon un seul degré de liberté (à cet effet, l'axe 12 'est mobile en torsion et la bague 13 'est reliée à un bâti 21 du dispositif 20 de manière à être bloquée en rotation).
Ce dispositif 20 comporte essentiellement un moyen de déplacement 22 en torsion de l'axe 12', qui est destiné à simuler les contraintes appliquées au ressort élastomère 14 sur un véhicule en service, et un capteur 23 destiné à détecter la variation de côte (assimilable à une « assiette ») de l'articulation 2 du fait du fluage statique du ressort 14, en réponse à la torsion dudit axe 12'. La côte de montage initiale de l'articulation 2 (assiette de départ) est fixée par étalonnage. Ce moyen de déplacement 22 comporte une charge 24 qui est montée à l'extrémité d'un bras 25 de 1 m de long, et dont le poids présente une valeur nominale donnée (représentative de la charge à laquelle est soumise une articulation 2 sur un véhicule contenant deux personnes et le plein de carburant, charge équivalent à 185 daN selon un exemple de réalisation). On mesure en fonction du temps l'évolution de l'assiette de l'articulation 2 à 250 mm dudit axe 12'.
On a réalisé ces mesures d'assiette pendant une durée de 24 heures, et à une température constante de 20° C.
Chaque essai réalisé a consisté à mesurer, à partir de la caractéristique graphique de l'assiette (en mm) en fonction du temps t (en heures), une pente de fluage (en % par décade) pour chaque articulation 2 testée, dans deux configurations différentes.
Une première configuration est caractérisée par une mise en charge progressive de l'articulation 2 (pendant une durée de 30 secondes environ), pour l'obtention de ladite valeur de contrainte nominale appliquée à l'articulation 2 par la charge 24 (configuration d'essai « nominale » ci-après), valeur maintenue pendant les 24 heures précitées. Une seconde configuration est caractérisée par une mise en charge initiale de l'articulation 2, effectuée préalablement à la mise en charge précitée à contrainte nominale. Cette mise en charge initiale est réalisée par l'application d'une contrainte prédéterminée correspondant sensiblement à la déformation maximale dont le ressort 14 peut être le siège en service, c'est-à-dire en limite de compression maximale sur un véhicule (configuration d'essai « pré-déformé » ci-après), puis par un relâchement de cette contrainte prédéterminée avant de réaliser ladite mise en charge à contrainte nominale pendant les 24 heures précitées.
On pourra se reporter à la demande de brevet américain n° 09/677219, dont le contenu est incorporé par référence, pour une description détaillée relative à ladite contrainte prédéterminée correspondant à la déformation maximale du ressort 14 en service. La pente de fluage précitée a été calculée à partir d'un graphique représentatif de l'évolution de l'assiette (ordonnée Y en mm) en échelle semi-logarithmique, c'est-à-dire en fonction de l'abscisse X = log10 (1+t), au moyen de l'équation : Pente = ( 100 x A ) / ( B - C )
A et B représentant respectivement le coefficient directeur et l'ordonnée à l'origine de la droite d'équation Y = A X + B qui caractérise globalement ce graphique, et C représentant la valeur initiale précitée de l'assiette (mm).
11/ Fluages statique et dynamique :
En référence à la Fig. 5, on a mesuré le fluage dynamique de chaque ressort élastomère 14 selon l'invention entre un axe 12' et une bague 13' sur lesquels il est monté par emmanchement, à l'instar de l'articulation 2 du paragraphe 1/ précité. A cet effet, on a réalisé au moyen du dispositif 30 de la Fig. 5 des essais en torsion sur chaque articulation de suspension 2 ainsi obtenue, de telle manière que le ressort 14 correspondant puisse se mouvoir en torsion (à cet effet, l'axe 12'est mobile en torsion et la bague 13 'est reliée au bâti 31 du dispositif 30 de manière à être bloquée en rotation).
Ce dispositif 30 comporte essentiellement un moyen de déplacement 32 en torsion de l'axe 12', qui est destiné à simuler les contraintes dynamiques appliquées au ressort élastomère 14 sur un véhicule en service, et un capteur (non représenté) destiné à détecter la variation de côte ou « assiette » de l'articulation 2, en réponse à la torsion dudit axe 12'. La côte de montage initiale de l'articulation 2 (assiette de départ) est fixée par étalonnage.
Le moyen de déplacement 32 comporte une biellette 34 qui est reliée, à l'une de ses extrémités, à un portique mobile 35 monté sur le bâti 31 et, à son autre extrémité, à un bras 36 qui est lui-même relié à l'axe 12' de l'articulation 2. Ce moyen de déplacement 32 est commandé par un vérin 37 à course linéaire qui est relié au bâti 31.
Pour chacune des mesures réalisées au moyen de ce dispositif 30, on procède à une mise en charge initiale de l'articulation 2 jusqu'à une position « choc » de déformation maximale en compression (par analogie avec la configuration « pré-déformée » du paragraphe 11), puis à un relâchement de cette contrainte jusqu'à l'application d'une charge nominale de
185 daN, laquelle est exercée pendant une durée de 3 heures.
On relève pendant ces 3 heures l'évolution de l'assiette de l'articulation 2, sous cette charge nominale. Puis, pendant 13 heures, on soumet chaque articulation 2 à des cycles de sollicitations dynamiques qui présentent chacun une durée de 30 minutes, de manière à correspondre à un signal réel mesuré sur route, et qui se terminent par une application de ladite charge nominale pendant 10 minutes pour le fluage. On soumet enfin chaque articulation 2 à ladite charge nominale pendant une durée de 4 heures, suite aux cycles dynamiques précités. Chaque essai réalisé a consisté à mesurer, à partir de la caractéristique graphique de l'assiette (en mm) en fonction du temps t (en secondes), une pente de fluage (en % par décade) pour chaque articulation 2 testée.
D'une manière analogue à celle décrite au paragraphe 1/ précédent pour le calcul de la pente de fluage statique, on obtient, à partir d'un graphique représentatif de l'évolution de l'assiette (mm) en échelle semi-logarithmique, les pentes de fluage statique et de fluage dynamique, cette dernière ayant été mesurée pendant les temps d'arrêt desdites sollicitations dynamiques.
111/ Endurance en torsion :
Toujours en référence à la Fig. 5, on a mesuré l'endurance (c'est-à-dire la durée de vie) de chaque ressort élastomère 14 selon l'invention entre un axe 12' et une bague 13' sur lesquels il est monté par emmanchement, à l'instar des articulations 2 des paragraphes 1/ et 11/ précités. A cet effet, on a réalisé simultanément au moyen du dispositif 30 de la Fig. 5 des essais en torsion sur trois articulations de suspension 2 juxtaposées, comme détaillé au paragraphe II/, de manière à pouvoir suivre l'évolution des paramètres d'effort et de déformation.
Pour chacune des mesures réalisées, on procède à une mise en charge initiale de chaque articulation 2 jusqu'à une position « choc » de déformation maximale, puis à un relâchement de cette contrainte jusqu'à l'obtention d'une assiette dite nominale (cette dernière correspondant à la position géométrique d'un essieu pour une charge de roulage de 185 daN comprenant deux personnes dans le véhicule et le plein de carburant), laquelle assiette est maintenue pendant une durée de 10 secondes où l'on mesure l'effort sur chaque articulation 2.
Les trois cycles de faible débattement qui sont réalisés permettent d'obtenir une caractéristique graphique de raideur (effort/ débattement) pour chaque articulation 2.
On applique mille cycles « choc/ rebond » aux articulations 2 (par « choc », on entend la course maximale de débattement en compression et par « rebond », on entend la course maximale de détente possible pour l'essieu incorporant ces articulations 2), le dernier cycle étant destiné à fournir une mesure de raideur sous un grand débattement.
Puis on soumet les articulations 2 à une temporisation de 10 secondes, jusqu'à leur rupture.
On stoppe les mesures en fonction des valeurs minimales d'effort à atteindre en position « choc ».
On obtient une caractéristique graphique (en échelle semi-logarithmique) de la perte d'effort (daN) en fonction du nombre de cycles « choc/ rebond » et, en procédant à une interpolation linéaire de la partie initiale de cette caractéristique, on considère que les articulations 2 sont en fin de vie lorsque l'écart entre la courbe réelle et la droite d'interpolation est supérieur à 5 %.
rV7 Thermo-élasticité statique :
En référence à la Fig. 4, on a cherché à simuler la variation de l'assiette d'un véhicule qui est induite par un gradient de température en testant, entre 40° C et -20° C et sous une charge statique constante, des ressorts élastomères 14 selon l'invention au sein d'articulations 2 telles que décrites aux paragraphes précédents.
A cet effet, on a réalisé au moyen dudit dispositif 20 de la Fig. 4, qui est en outre pourvu d'une enceinte thermique pour l'établissement d'une température pendant un intervalle de temps donné, des essais en torsion sur chaque articulation de suspension 2 ainsi obtenue (voir paragraphe 1/ pour une description de ce dispositif 20). Pour chacune des mesures réalisées en référence à une valeur de température déterminée, on procède à une mise en charge initiale de chaque articulation 2 jusqu'à une position de déformation maximale, puis à un relâchement de cette contrainte jusqu'à l'obtention d'une assiette correspondant à la charge nominale de 185daN, laquelle assiette est maintenue pendant une durée de 17 heures où l'on mesure l'effort sur chaque articulation 2.
A partir d'une caractéristique graphique de l'assiette (en mm) en fonction de la température établie, on obtient une pente de variation d'assiette entre 40° C et -20° C (calculée en % par décade de ° C par linéarisation de cette caractéristique).
V/ Raideurs :
On détermine une raideur dite « statique » Ks à une déformation relativement élevée allant de 10 à 200 % en cisaillement et à faible fréquence, par une mesure de rigidité dynamique en cisaillement à 15 Hz avec une déformation de crête à crête d'environ 100 %. On détermine une raideur « dynamique » Kd à faible déformation allant de 0,1 à 2 % en cisaillement et à une fréquence de 150 Hz (l'articulation 2 absorbera d'autant mieux les vibrations acoustiques que les valeurs de la raideur Ks et du rapport Kd/ Ks seront plus réduites).
VI/ Propriétés dynamiques :
Les modules de cisaillement G* des ressorts élastomères 14 selon l'invention sont mesurés sur une machine « SCHENCK » selon la norme ASTM D 5992-96, à une température de 23° C et à une fréquence de 10 Hz selon la norme ASTM D 1349-99. On effectue un balayage en amplitude de déformation de 0, 1 à 100 % (cycle « aller »), puis de 100 à 0,1 % (cycle « retour »). Exemples de ressorts élastomères « témoin » et selon l'invention et d'articulations incorporant ces ressorts
On a préparé cinq ressorts élastomères « témoin » RT1 à RT5 et trois ressorts élastomères selon l'invention RIl, RI2 et RI3, respectivement au moyen de compositions de caoutchouc « témoin » Tl à T5 et selon l'invention II, 12 et 13. Les formulations de ces compositions sont les suivantes (pce : parties en poids pour 100 parties d'élastomère(s)):
Composition Tl :
Caoutchouc naturel 100
Noir de carbone N765 11
Anti-oxydant 2
Cire anti-ozone 2
ZnO 6,5
Acide stéarique 2 soufre 2,5 accélérateurs vulcanisation (type 1) 1,5
Composition T2 :
Caoutchouc naturel 100
Noir de carbone N765 45
Anti-oxydant 2
Cire anti-ozone 2
ZnO 6,5
Acide stéarique 2 soufre 2,5 accélérateurs vulcanisation (type 1) 1,5 Composition T3 :
Caoutchouc naturel 70
Polybutadiène 30
Silice « Ultrasil 360 » 25
Agent couplage « Si69 » 2,5
Anti-oxydant 2
Cire anti-ozone 2
ZnO 6,5
Acide stéarique 2 soufre 2,5 accélérateurs vulcanisation (type 1) 2,2
Composition T4 :
Caoutchouc naturel 100
Noir de carbone N330 10
Anti-oxydant 2
Cire anti-ozone 2
ZnO 6,5
Acide stéarique 2 soufre 1,1 accélérateurs vulcanisation (type 1) 3,9 Composition T5 :
Caoutchouc naturel 70
Polybutadiène 30
Silice « Ultrasil 360 » 48
Agent couplage « Si69 » 4
Anti-oxydant 2
Cire anti-ozone 2
ZnO 6,5
Acide stéarique 2 soufre 0,8 accélérateurs vulcanisation (type 1) 2,8
Composition II :
Caoutchouc naturel 100
Noir de carbone N772 19
Anti-oxydant 3
Cire anti-ozone 2
ZnO 10
2-éthylhexanoate de zinc 2 soufre 0,80 accélérateurs vulcanisation (type 2) 2,80 Composition 12 :
Caoutchouc naturel 70
Polyisoprène de synthèse 30
Noir de carbone N765 45
Anti-oxydant 3
Cire anti-ozone 2
ZnO 6,50
2-éthylhexanoate de zinc 2 soufre 1 ,10 accélérateurs vulcanisation (type 2) 3,90
Composition 13 :
Caoutchouc naturel 70
Polybutadiène 30
Silice « Ultrasil 360 » 25
Anti -oxydant 3
Cire anti-ozone 2
ZnO 6,5
2-éthylhexanoate de zinc 2 soufre 0,8 accélérateurs vulcanisation (type 1) 2,8
Avec : anti-oxydant : N-(l,3-diméthyl butyl)-N'-phényl-p-phénylènediamine (6PPD) accélérateurs type 1 : n-oxy-diéthylène-benzothiazyl-2-sulfonamide (NOBS) et
Zinc-dibutylphosphorodithioate « ZBPD » ; accélérateurs type 2 : n-oxy-diéthylène-benzothiazyl-2-sulfonamide (NOBS) et tétrabenzyl thiuramdisulfure (TBZTD). Par ailleurs, les modules dynamiques G* à 100 % de déformation de ces compositions sont les suivants :
On a obtenu chaque articulation comportant le ressort élastomère RT1 à RT5 et RIl, RI2, et RI3 par un mélangeage par travail thermo-mécanique des divers constituants de la composition correspondante dans un mélangeur interne, suivi d'une réticulation de cette composition entre les deux armatures cylindriques 12 et 13 précitées (voir Fig. 3) dans un moule à injection.
- Les dimensions radiales de chaque articulation incorporant le ressort RT1 à RT5 ou RIl, RI2, RI3 correspondant (voir ressort 14 à la Fig. 3) sont les suivantes :
Diamètre armature intérieure 13 : 55 mm
Diamètre intérieur ressort 14: 63 mm
Diamètre extérieur ressort 14 : 109 mm
Diamètre armature extérieure 12 : 114 mm
- Les dimensions axiales des articulations incorporant respectivement les ressorts RT1, RT3, RT4 et RIl sont les suivantes :
Hauteur armature intérieure 13 : 115 mm
Hauteur intérieure ressort 14 : 100 mm
Hauteur extérieure ressort 14 : 75 mm
Hauteur armature extérieure 12 : 92 mm.
- Les dimensions axiales des articulations incorporant respectivement les ressorts RT2, RT5 et RI2, RI3 sont les suivantes (réduites de moitié par rapport aux précédentes) :
Hauteur armature intérieure 13 : 57,5 mm
Hauteur intérieure ressort 14 : 50 mm
Hauteur extérieure ressort 14 : 38,5 mm
Hauteur armature extérieure 12 : 46 mm. Propriétés mécaniques des ressorts « témoin » et selon l'invention précités
Le tableau ci-après rend compte des principaux résultats obtenus pour chacune de ces articulations incorporant les ressorts élastomères RTl à RT5 et RIl à RI3, concernant : le fluage statique mesuré dans ladite configuration d'essai « nominale » et dans ladite configuration d'essai « pré-déformé » (voir paragraphe 1/ ci-dessus) ; le fluage dynamique mesuré dans ladite configuration d'essai « pré-déformé » (voir paragraphe II ci-dessus) ;
- l'endurance (nombre de cycles défini au paragraphe IH/ ci-dessus) ; la thermo-élasticité statique (voir paragraphe TVl ci-dessus) ; et les raideurs statiques et dynamiques Ks et Kd (voir paragraphe V/ ci-dessus).
Ce tableau montre que les ressorts élastomères RIl, RI2 ou RI3 inclus dans les articulations selon l'invention, qui comprennent à titre de charge un noir de carbone non renforçant ou une silice grossière, une quantité de soufre comprise entre 0,7 et 1,2 pce et un rapport massique soufre/ accélérateurs compris entre 0,15 et 2,70, présentent à la fois un fluage dynamique minimisé entre les armatures desdites articulations, ainsi qu'une endurance satisfaisante à la torsion, contrairement aux ressorts « témoin » RTl à RT5.
On notera que l'utilisation du 2-éthylhexanoate de zinc, à titre d'activateur de réticulation, contribue à minimiser le fluage dynamique de ces ressorts élastomères RI 1 , RI2 et RI3 selon l'invention. On notera en outre que la quantité de 45 pce de noir de carbone non renforçant qui est utilisée dans le ressort RI2 selon l'invention confère à l'articulation correspondante une thermo-élasticité satisfaisante, du fait de la variation d'assiette minimisée que ladite articulation présente en fonction des gradients de température appliqués.

Claims

REVENDICATIONS
1) Ressort de suspension élastomère (14) utilisable pour porter la charge d'un véhicule à moteur et constitué d'une composition de caoutchouc réticulée à base :
5 (pce: parties en poids pour cent parties d'élastomère(s) diénique(s))
- de caoutchouc naturel selon une quantité égale ou supérieure à 60 pce,
- d'une charge, et
- d'un système de réticulation au soufre comprenant au moins un accélérateur de réticulation, caractérisé en ce que ladite charge comprend, selon une fraction massique supérieure à 55 % :
10 - un noir de carbone dont le grade varie de 600 à 900, ladite composition comprenant dans ce cas une quantité totale de charge allant de 10 à 60 pce, ou
- une charge blanche inerte, ladite composition comprenant dans ce cas une quantité totale de charge allant de 10 à 30 pce, ledit système de réticulation comprenant de 0,7 à 1 ,2 pce de soufre et étant tel que le rapport i 5 massique soufre/ accélérateur(s) de réticulation varie de 0,15 à 2,70.
2) Ressort de suspension élastomère (14) selon la revendication 1, caractérisé en ce que ledit rapport massique soufre/ accélérateur(s) de réticulation varie de 0,15 à 0,50.
20 3) Ressort de suspension élastomère (14) selon la revendication 1 ou 2, caractérisé en ce que ladite charge comprend, selon une fraction massique supérieure à 70 %, ledit noir de carbone dont le grade varie de 600 à 900 ou ladite charge blanche inerte.
4) Ressort de suspension élastomère (14) selon une des revendications 1 à 3, caractérisé en ce 25 que ladite charge comprend un coupage dudit noir de carbone dont le grade varie de 600 à 900 et de ladite charge blanche inerte.
5) Ressort de suspension élastomère (14) selon une des revendications 1 à 3, caractérisé en ce que ladite charge est constituée dudit noir de carbone dont le grade varie de 600 à 900 ou
50 de ladite charge blanche inerte. 6) Ressort de suspension élastomère (14) selon une des revendications précédentes, caractérisé en ce que ladite charge est présente dans ladite composition selon une quantité totale allant de 40 à 60 pce, lorsqu'elle comprend à titre majoritaire ledit noir de carbone.
7) Ressort de suspension élastomère (14) selon une des revendications précédentes, caractérisé en ce que ledit système de réticulation comprend en outre, à titre d'activateur de réticulation, le 2-éthylhexanoate de zinc.
8) Ressort de suspension élastomère (14) selon une des revendications précédentes, caractérisé en ce que ladite composition comprend :
- du caoutchouc naturel selon une quantité allant de 70 pce à 100 pce, et
- du polyisoprène de synthèse selon une quantité allant de 30 pce à 0 pce.
9) Ressort de suspension élastomère (14) selon la revendication 8, caractérisé en ce que ladite composition comprend du caoutchouc naturel selon une quantité de 100 pce.
10) Ressort de suspension élastomère (14) selon une des revendications précédentes, caractérisé en ce que ladite composition réticulée présente un module dynamique en cisaillement G* à 100 % de déformation, mesuré selon la norme ASTM D 5992-96 à une température de 23° C et à une fréquence de 10 Hz selon la norme ASTM D 1349-99, qui appartient à un domaine allant de 0,5 MPa à 5,5 MPa.
1 1) Articulation de suspension (2, 2') d'un véhicule à moteur, ladite articulation (2, 2') étant destinée à porter la charge dudit véhicule et étant constituée de deux armatures (12, 13) sensiblement cylindriques et concentriques qui sont reliées entre elles par un ressort de suspension élastomère (14), caractérisée en ce que ledit ressort (14) est tel que défini à l'une des revendications précédentes. 12) Procédé pour réduire le fluage d'un ressort de suspension élastomère (14) utilisable pour porter la charge d'un véhicule à moteur, lorsque ledit ressort (14) est monté entre deux armatures coaxiales (12 et 13) en vue de porter la charge d'un véhicule à moteur, ledit ressort (14) étant constitué d'une composition de caoutchouc réticulée, caractérisé en ce qu'il consiste essentiellement à mélanger par travail thermo-mécanique :
- un ou plusieurs élastomères diéniques, qui comprennent du caoutchouc naturel selon une quantité égale ou supérieure à 60 pce (pce: parties en poids pour cent parties d'élastomère(s) diénique(s)),
- une charge qui comprend, selon une fraction massique supérieure à 55 % : un noir de carbone dont le grade varie de 600 à 900, ladite charge étant dans ce cas présente dans la composition selon une quantité allant de 10 à 60 pce, ou une charge blanche inerte, ladite charge étant dans ce cas présente dans ladite composition selon une quantité allant de 10 à 30 pce, et
- un système de réticulation au soufre comprenant au moins un accélérateur de réticulation, ledit système de réticulation comprenant de 0,7 à 1 ,2 pce de soufre et étant tel que le rapport massique soufre/ accélérateur(s) de réticulation varie de 0,15 à 2,70.
EP02747317A 2001-05-22 2002-05-21 Ressort de suspension elastomere pour vehicule a moteur et articulation l'incorporant Withdrawn EP1404758A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0106759 2001-05-22
FR0106759 2001-05-22
PCT/EP2002/005546 WO2002094931A1 (fr) 2001-05-22 2002-05-21 Ressort de suspension elastomere pour vehicule a moteur et articulation l'incorporant

Publications (1)

Publication Number Publication Date
EP1404758A1 true EP1404758A1 (fr) 2004-04-07

Family

ID=8863566

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02747317A Withdrawn EP1404758A1 (fr) 2001-05-22 2002-05-21 Ressort de suspension elastomere pour vehicule a moteur et articulation l'incorporant

Country Status (4)

Country Link
US (1) US7175167B2 (fr)
EP (1) EP1404758A1 (fr)
JP (1) JP4205437B2 (fr)
WO (1) WO2002094931A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2813813B1 (fr) * 2000-09-12 2002-11-15 Michelin & Cie Procede de fixation d'au moins un insert de guidage entre deux tubes coaxiaux, notamment dans un dispositif anti-roulis de vehicule automobile
JP5117035B2 (ja) * 2005-12-01 2013-01-09 住友ゴム工業株式会社 タイヤ用ゴム組成物およびそれを用いたトレッドを有するタイヤ
US8039538B2 (en) * 2005-12-01 2011-10-18 Sumitomo Rubber Industries, Ltd. Rubber composition for a tire and tire having a tread using the same
DE102011101701A1 (de) * 2011-05-17 2012-11-22 Audi Ag Rotationsdämpfer
DE102013012755A1 (de) * 2013-07-31 2015-02-05 Audi Ag Drehfederstabsystem für eine Radaufhängung eines Kraftfahrzeugs
FR3015495B1 (fr) * 2013-12-20 2017-02-17 Michelin & Cie Composition de caoutchouc a base majoritairement de caoutchouc naturel
DE102016217698B4 (de) * 2016-09-15 2021-08-19 Audi Ag Radaufhängung für ein zweispuriges Fahrzeug
CN109575380A (zh) * 2018-12-13 2019-04-05 株洲飞马橡胶实业有限公司 一种高阻尼、高耐磨、低蠕变的异戊橡胶及其制备方法和应用
DE112020000624T5 (de) 2019-01-31 2021-10-28 DRiV Automotive Inc. Monolithisches aufhängungsmodul
CN111333926B (zh) * 2020-04-27 2022-08-16 株洲时代新材料科技股份有限公司 一种耐低温压缩永久变形减振橡胶及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3994842A (en) 1972-10-24 1976-11-30 Bridgestone Tire Company Limited Rubber with organic acid and methoxy methyl nylon, sulfur vulcanized
US5002829A (en) * 1988-04-04 1991-03-26 Tokai Rubber Industries, Ltd. Rubber composition, rubber formed article and rubber vibration isolator
EP0461464A1 (fr) * 1990-05-29 1991-12-18 Bando Chemical Industries, Limited Matériau isolant antivibratoire
DE4340902C2 (de) * 1992-12-05 2001-05-31 Phoenix Ag Verwendung einer Kautschukmischung zur Herstellung von Gummifedern und Gummikupplungen
WO1997047486A1 (fr) * 1996-06-14 1997-12-18 Compagnie Generale Des Etablissements Michelin - Michelin & Cie Essieu souple comportant une traverse et des bras tires
WO1999041302A1 (fr) 1998-02-17 1999-08-19 World Properties, Inc. Element amortisseur en caoutchouc et procede de fabrication dudit element
US6435491B1 (en) * 1999-10-04 2002-08-20 Compagnie Generale Des Etablissements Michelin-Michelin & Cie Flexible joint for a vehicle suspension device and process for stabilizing the mechanical operating characteristics of a flexible joint for a vehicle suspension device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02094931A1 *

Also Published As

Publication number Publication date
WO2002094931A1 (fr) 2002-11-28
JP4205437B2 (ja) 2009-01-07
US7175167B2 (en) 2007-02-13
US20040102567A1 (en) 2004-05-27
JP2004532333A (ja) 2004-10-21

Similar Documents

Publication Publication Date Title
WO2002072688A1 (fr) Composition de caoutchouc pour bande de roulement de pneumatique et pneumatique
EP1379588A1 (fr) Composition de caoutchouc pour bande de roulement de pneumatique et pneumatique
EP1425339B1 (fr) Composition de caoutchouc pour armature de sommet de pneumatique
WO2002094931A1 (fr) Ressort de suspension elastomere pour vehicule a moteur et articulation l'incorporant
WO2004022644A1 (fr) Composition de caoutchouc pour bande de roulement de pneumatique
EP1379586A1 (fr) Composition de caoutchouc pour bande de roulement de pneumatique
EP1116606B1 (fr) Composition de caoutchouc utilisable à l'état vulcanisé comme appui de sécurité pour pneumatique et un tel appui
WO2004013221A1 (fr) Composition de caoutchouc pour bande de roulement de pneumatique
EP3541634B1 (fr) Pneumatique comprenant une bande de roulement comprenant un élastomère thermoplastique et un système de réticulation à base de soufre
EP1527131A1 (fr) Composition de caoutchouc pour bande de roulement de pneumatique
EP1539878A1 (fr) Composition de caoutchouc pour bande de roulement de pneumatique
WO2002053637A1 (fr) Composition de caoutchouc utilisable comme appui de securite pour pneu et cet appui
EP1116607B1 (fr) Composition de caoutchouc utilisable à l'état vulcanisé comme appui de sécurité pour pneumatique et un tel appui
EP1633578A1 (fr) Pneumatique pour engin lourd
AU669532B2 (en) Radial tire
EP4069527B1 (fr) Pneumatique à bande de roulement perfectionnée
WO2015091190A1 (fr) Pneumatique pourvu d'une bande de roulement comprenant un elastomere thermoplastique copolymere a bloc polyester aromatique
EP4178810A1 (fr) Pneumatique presentant des proprietes d'endurance et de resistance au roulement ameliorees
EP4003759A1 (fr) Pneumatique a bande de roulement perfectionnée
FR2807965A1 (fr) Procede de fabrication d'un appui de securite pour pneumatique et appui obtenu par ce procede
JP4810978B2 (ja) タイヤ製造方法
FR2996615A1 (fr) Butee d'attaque pour la suspension d'un vehicule, comportant une premiere raideur lineaire sans hysteresis
CN106146929A (zh) 一种用于汽车减震器衬套的橡胶组合物及其制备方法
EP3380341A1 (fr) Pneumatique pourvu d'une bande de roulement comprenant un elastomere thermoplastique et un elastomere dienique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031222

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PENNEQUIN, PATRICK

Inventor name: YAGUE, YOLANDA

17Q First examination report despatched

Effective date: 20041025

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MICHELIN RECHERCHE ET TECHNIQUE S.A.

Owner name: COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20131203