EP1397673A2 - Verfahren und vorrichtung zur umfassenden charakterisierung und kontrolle des abgases und der regelung von motoren, speziell von verbrennungsmotoren, und von komponenten der abgasnachbehandlung - Google Patents

Verfahren und vorrichtung zur umfassenden charakterisierung und kontrolle des abgases und der regelung von motoren, speziell von verbrennungsmotoren, und von komponenten der abgasnachbehandlung

Info

Publication number
EP1397673A2
EP1397673A2 EP02742965A EP02742965A EP1397673A2 EP 1397673 A2 EP1397673 A2 EP 1397673A2 EP 02742965 A EP02742965 A EP 02742965A EP 02742965 A EP02742965 A EP 02742965A EP 1397673 A2 EP1397673 A2 EP 1397673A2
Authority
EP
European Patent Office
Prior art keywords
exhaust gas
laser
components
methods
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP02742965A
Other languages
English (en)
French (fr)
Inventor
Alfred Leipertz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ESYTEC Energie- und Systemtechnik GmbH
Original Assignee
ESYTEC Energie- und Systemtechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ESYTEC Energie- und Systemtechnik GmbH filed Critical ESYTEC Energie- und Systemtechnik GmbH
Publication of EP1397673A2 publication Critical patent/EP1397673A2/de
Ceased legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1451Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the sensor being an optical sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2247Sampling from a flowing stream of gas
    • G01N1/2252Sampling from a flowing stream of gas in a vehicle exhaust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • G01N15/0211Investigating a scatter or diffraction pattern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/718Laser microanalysis, i.e. with formation of sample plasma
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/04Filtering activity of particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D2041/1468Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an ammonia content or concentration of the exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/286Interface circuits comprising means for signal processing
    • F02D2041/288Interface circuits comprising means for signal processing for performing a transformation into the frequency domain, e.g. Fourier transformation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1466Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a soot concentration or content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0272Investigating particle size or size distribution with screening; with classification by filtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/075Investigating concentration of particle suspensions by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N2001/222Other features
    • G01N2001/2223Other features aerosol sampling devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2247Sampling from a flowing stream of gas
    • G01N2001/2264Sampling from a flowing stream of gas with dilution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N2001/2282Devices for withdrawing samples in the gaseous state with cooling means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0023Investigating dispersion of liquids
    • G01N2015/0026Investigating dispersion of liquids in gas, e.g. fog
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids

Definitions

  • these systems can also be used for isolated or built-in components of the exhaust gas aftertreatment by measurements in front of and / or behind the respective components, e.g. the catalysts for the treatment of the gaseous and / or particulate exhaust gas components or the corresponding filter systems, e.g. also to control and regulate the regeneration process of particle filters.
  • the invention relates to the individual, but also in particular the joint use of different optical, mostly laser, laser diode or diode laser based measurement methods for characterizing the exhaust gas and for characterizing the exhaust gas important individual components and the compilation of devices which target these measurement methods put together.
  • optical, mostly laser, laser diode or diode laser based measurement methods for characterizing the exhaust gas and for characterizing the exhaust gas important individual components and the compilation of devices which target these measurement methods put together.
  • Motor exhaust gases consist of gaseous components (e.g. oxygen, unburned fuel components such as hydrocarbons or hydrogen itself, carbon monoxide and dioxide, nitrogen monoxide, dioxide and N 2 O, sulfur compounds etc.) and particles that are liquid (e.g. as condensates such as water, sulfuric acid etc or water solutions, e.g. urea-water solutions in connection with catalyst systems) or solid (e.g. carbon black, metal compounds, ash, etc.), often also with organic deposits or, for example, deposits of sulfur compounds thereon.
  • gaseous components e.g. oxygen, unburned fuel components such as hydrocarbons or hydrogen itself, carbon monoxide and dioxide, nitrogen monoxide, dioxide and N 2 O, sulfur compounds etc.
  • particles e.g. as condensates such as water, sulfuric acid etc or water solutions, e.g. urea-water solutions in connection with catalyst systems
  • solid e.g. carbon black, metal compounds, ash, etc.
  • Solid particles of the exhaust gas are, on the one hand, soot (pure carbon) which, with the aid of laser-induced annealing technology (also called “laser-induced incandescence” (LII)), is comprehensive (German patent DE 19606005) and also simultaneously (German patent application DE 19904691 AI) with regard to its volume or mass concentration, its primary particle size, its aggregate size and sizes derived therefrom.
  • This method is here used according to the invention for the first time in conjunction with one or more other measuring methods named in this invention.
  • the laser used here for excitation of the thermal particle radiation ( or diode laser) or the laser diode used for this purpose is used simultaneously or in succession as an excitation light source for one or more of the other measurement methods.
  • Excitation beam sources are used.
  • the detection of the LH signal can be offset in time to the measurement signals of individual or all other methods with a partially identical detection beam path, in which, depending on the method, other optical components can be integrated in partial branches of the registration beam path for the other measurement methods, or can also be carried out simultaneously using different detection beam paths, all or some of these detection beam paths can be made in the retroreflective direction relative to the direction of incidence, but can also have any other direction arranged at an angle to the direction of incidence, with a 90- or 180-degree arrangement being advantageous for some methods.
  • wavelength-selective optical components e.g. filters, spectrometers, monochromators, etc.
  • photomultipliers, photodiodes, streak, CCD cameras or similar optoelectronic components that consist of optical measurement signals can generate electrical signals that can be further processed to display the measurement signals, for data processing and / or can also be used directly for control purposes.
  • Figures 1 to 3 three possible arrangements are shown for the device and schematically as an example for three different measuring methods, for a main retroreflective (Fig. 1), a 90-degree (Fig. 2) and a 180-degree arrangement (Fig. 3).
  • the pipe segments described in patent application DE 19904691 AI can advantageously be used for measurements in the exhaust gas, which integrate all the features essential for the Lll sensor there and at the same time also integrate the essential features of the other methods in these inventions.
  • the other measurement methods each individually or also in conjunction with the LII technology or with one another at the same time or in succession, characterize other components of the engine exhaust gas.
  • Solid components of the exhaust gas are furthermore particles of different metals, partly in a largely pure form, as metal oxides or as metal compounds of another kind, silicon compounds and ashes.
  • a characterization, e.g. Identification and concentration of the individual components is possible, for example, using laser-induced ionization spectroscopy (LIS) - often referred to in scientific literature in a special design when using high-temperature plasmas, and is also referred to below in this patent description as laser-induced breakdown spectroscopy (LIBS). in which parts of the particle or the particle is completely evaporated and partially ionized via the laser action.
  • LIS laser-induced ionization spectroscopy
  • LIBS laser-induced breakdown spectroscopy
  • LIBS in particular, this is done by generating a high-temperature microplasma with a high electron density when exposed to an extremely high power density of over 100 MW / cm, at temperatures of many thousands of degrees at which each material is broken, vaporized and ionized.
  • the subsequent radiation is initially broadband (from the X-ray range to the infrared), after a short time delay - with cooled-down plasma with neutral atoms in excited states - species-selective with regard to the atoms present (e.g. for Al, Ba, Ca, Co, Cr, Cu, Eu , Fe, Hg, Mg, Mn, Mo, Na, Ni, Pb, Sb, Si, Sr, Ti, V, W and Zn in A.
  • Al, Ba, Ca, Co, Cr, Cu, Eu , Fe, Hg, Mg, Mn, Mo, Na, Ni, Pb, Sb, Si, Sr, Ti, V, W and Zn in A e.g. for Al, Ba, Ca,
  • the soot can be recorded and measured as a solid particle at the same time as other solid particles or also alone using the LIBS technique.
  • This technique can also be used for the characterization of liquid particles and gaseous components. If the solid, liquid or gaseous components to be detected are present in amounts that are below the LIBS detection limit (approx. 100 ppb), laser atom fluorescence spectroscopy (LAFS), for example, is used as an alternative to LIBS low detection limits are used in engine exhaust gases.
  • LIBS detection limit approximately 100 ppb
  • LAFS laser atom fluorescence spectroscopy
  • Liquid components of the raw exhaust gas behind the engine and / or of the treated exhaust gas after components of the exhaust gas aftertreatment can consist, for example, of water, sulfuric acid, nitric acid or urea-water solutions or be contained therein.
  • laser Raman scattering is used here for the first time in linear (spontaneous) or non-linear form, alone or in conjunction with LII and / or one or more of the other methods.
  • Water can be measured with relatively broad vibration bands, for example with Raman shifts of approx. 675, approx. 1640 and approx. 3400 wave numbers, sulfuric acid among other things via the SO 4 2 vibration at approx. 980 wave numbers and nitric acid for example at 1045 wave numbers.
  • LRS - or non-linear forms of Raman scattering - is used as an alternative to LIBS to investigate the solid particles according to the invention.
  • the gaseous exhaust gas components NO x , NO, NO 2 , N 2 O, CO, HC and also, for example, H 2 O and NH 3 which are limited by international laws or bills, there are commercially available measuring systems (e.g. based on chemical luminescence technology, infrared absorption spectroscopy , preferably in the near infrared range, for example also as Fourier transform infrared (FTIR) analyzers, as flame ionization detectors, etc., but not all of them so far were used directly in the exhaust line - in principle only via sampling procedures - and also not in connection with systems of particle detection as it was first introduced here according to the invention.
  • FTIR Fourier transform infrared
  • the same components in gaseous or vaporous form with the same or different Raman shift are detected and measured here via the Raman scattering (water, for example with a Raman shift of approximately 1595 or approximately 3652 wave numbers or additionally also, for example, NH 3 (for example with a Raman shift of approx. 3334 wavenumbers), SO 2 (for example with a Raman shift of approx. 519 and approx.
  • the determination and measurement of these gaseous components is advantageously carried out in this invention with tunable lasers, laser diodes or diode lasers, which allow multiple components to be examined with only one absorption light source via absorption spectroscopy in the infrared, visible and / or ultraviolet spectral range, or with different, based on the respective components selected absorption light sources (laser (diode) absorption technology - LAT).
  • oxygen is also measured in order, for example, to carry out a motor control in accordance with today's ⁇ probes with a ⁇ probe operating over the entire concentration range, for example in accordance with the invention DE 19541516.
  • a transmitted light arrangement is used for the absorption techniques for spanning the necessary absorption sections, whereby a multipass arrangement that exceeds the measurement volume, for example made up of reflection mirrors, is selected to extend the absorption section or also one outside the main exhaust gas stream (for example in a by-pass arrangement), where alternatively simple measuring cuvettes of corresponding length can also be used.
  • FIGS. 1 to 3 Possible embodiments of devices designed according to the invention are shown by way of example in FIGS. 1 to 3, in which only devices are presented in which several of the above-mentioned methods are used in combination, simultaneously or at different times. Measures that prevent or minimize contamination are advantageous in the devices (e.g. air-flushed, heated etc.) provided optical components of the single-beam and detection beam path in a device comprising the examination volume (e.g. ring or channel segment), for example in accordance with patent application DE 19904691 AI, through which the raw exhaust gas and / or pretreated or post-treated Exhaust gas flows without special dilution and also unconditioned (eg cooled or heated) and can be characterized according to the invention.
  • the examination volume e.g. ring or channel segment
  • devices can also be constructed in which, according to the invention, only the linear Raman scattering (LRS) for characterizing the liquid and / or solid particles and / or gaseous components of the exhaust gas and / or only the laser-induced breakdown spectroscopy (LIBS) for the solid particles and / or only the laser (diode) absorption technology (LAT) using tunable radiation sources can be used to record the gaseous exhaust gas components, alone or in combination with one another or also specifically with the LII technology to record the soot sizes.
  • LRS linear Raman scattering
  • LIBS laser-induced breakdown spectroscopy
  • LAT laser absorption technology
  • Figure 1 shows such a device, in which the detection side is constructed on the same side of the examination area on which the irradiation side is also located (retroreflection arrangement).
  • the excitation light source (1) is a laser, a diode laser or a laser diode which, via an optical beam path (2), transmits its excitation light beam through an optical access (4), which is advantageously provided with a device that prevents or reduces contamination (eg heating or air purge) , radiates into the examination volume, which is located inside a pipe or duct segment (5), which can be installed directly in the exhaust line and can thus measure the raw exhaust gas or the treated exhaust gas directly without conditioning.
  • a device that prevents or reduces contamination eg heating or air purge
  • An optical device (3) in front of the segment access can have a favorable influence on the beam path for the examination area, for example widen or focus.
  • the beam path (2) can also be constructed favorably with the use of optical fibers, completely between the laser (1) and the optical access (4) or only in partial areas thereof.
  • the registration beam path (6) which can also be constructed partially or completely from optical fibers, will leave the examination area (5) on the same side, for example within the circular or tubular segment, on which the irradiation also takes place. This can be done via the same optical access or via one in the immediate vicinity.
  • the measurement signal in the beam path (6) is also fed to a detector unit (8) parallel to the radiation, possibly even using the same beam path (2), or independently of it. If the same beam path (2 and 6) is used, a further optical element (10) is placed in the beam path, which locally separates the signal beam path from the radiation and deflects it in the direction of the detector unit.
  • a different optical unit (7) due to the process, which can consist, for example, of diaphragms, lenses and in particular also different filters (gray, interference and / or edge filters) or in connection with spectrographs or monochromators, with the latter Help the measurement signal is processed in terms of intensity and / or spectral in accordance with the desired signal information.
  • the detector unit (8) for example one or more photomultipliers, one or more photodiodes, one or more CCD or streak cameras or combinations of several such opto-electronic components - processes the optical signal into electrical information that is used in an electronic processing system (9), e.g. a computer, a corrector etc., is further processed and prepared for use e.g. in measuring and control loops within e.g. a test bench periphery, as a control system also e.g. in connection with on-board diagnostics (OBD) in the vehicle itself.
  • an electronic processing system (9) e.g. a computer, a corrector etc.
  • OBD on-board diagnostics
  • optical elements (10, 10A, 10B) that separate and possibly also deflect them must be included in each. Such elements are also used to separate different signal beams if they use the same beam path from the examination object.
  • FIG. 2 shows a device according to the invention in which single-beam and registration beam paths again form a 90-degree arrangement for three different techniques.
  • the description of Figure 1 with all statements and conclusions can be completely transferred to Figure 2, only that due to the device, elements 10A and 10B no longer separate the radiation and the signal beam from one another, but only different signal beam paths according to the different measurement methods.
  • Figure 4 shows schematically a possible application of the invention in the examination and characterization of a raw engine exhaust gas behind the exhaust manifold of an engine (1) and before, for example, a first catalyst (2), for example an oxidation catalyst, at measuring point (5) of the treated exhaust gas behind the catalytic converter (2) at measuring point (6) and at measuring point (7) before, for example, a particle filter (3) - measuring points (6) and (7) could also represent only one measuring point according to the invention - and behind this at measuring point (8), which in turn can be placed simultaneously or separately in several measuring points, for example in front of a second catalytic converter (4), for example an NO ⁇ storage catalytic converter.
  • a first catalyst (2) for example an oxidation catalyst
  • a device with LII, LIBS, LRS and LAT could be attached to the measuring point (5), and one with LAT and / or LRS and LII or also to the measuring points (6) and (7) LIBS, possibly alternative to (5), at measuring point (8) LAT (especially ⁇ ), LII and LrBS (and / or LRS) and at measuring point (9) LAT (including especially NH) and LRS.
  • LAT especially NH
  • LRS LAT
  • Many other combinations and combinations are sensible and specified according to the invention.
  • Some of the measuring points are equipped in connection with a sensor for detecting the exhaust gas temperature, which is already contained in the LH sensor according to the invention (German patent application DE 19904691 AI).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Combustion & Propulsion (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma & Fusion (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

Die modular aufgebaute Vorrichtung gestattet die gleichzeitige oder auch zeitlich versetzte Erfassung und Charakterisierung der festen und flüssigen Partikel und der gasförmigen Komponenten des Abgases an unterschiedlichen Versuchsträgern mit nur geringen oder keinen Modifikationen am Versuchsträger. Das Verfahren beruht auf der einzelnen oder kombinativen Nutzung von Laserinduzierter Raman-Streung, Laserinduzierter Breakdown- Spektroskopie, Laserinduzierter Ionisations-Spektroskopie, Laserinduzierter Atomfloureszenz-Spektroskopie, IR-/VIS-/UV - Laserabsorptions-Spektroskopie und Laserinduzierter Glühtechnik. Die Nutzung einzelner oder mehrerer Vorrichtungen dieser Art gestattet die Untersuchung des Rohabgases, des konditionierten und/oder behandelten Abgases zur Untersuchung und Kontrolle der Arbeitsweise von Motor, von einzelnen Komponenten der Abgasnachbehandlung und/oder des Gesamtsystems auf Prüfständen und am Fahrzeug und kann verwendet werden zur Regelung von Motor und/oder Abgaskomponenten, wie z.B. Katalysatoren und Partikelfilter, auf Prüfständen und im Fahrbetrieb, z.B. in Verbindung mit oder als Teil eines On-Board-Diagnose-Systems.

Description

Beschreibung
Verfahren und Vorrichtung zur umfassenden Charakterisierung und Kontrolle des Abgases und der Regelung von Motoren, speziell von Verbrennungsmotoren, und von Komponenten der Abgasnachbehandlung
Zur Erfüllung zukünftiger Abgasvorschriften werden Meß-, Kontroll- und Regelungssysteme benötigt, die die vorgegebenen Abgasgrößen erfassen und deren Einhaltung kontrollieren sowie auch möglichst das Verbrennungssystem und/oder oftmals nachgeschaltete Komponenten der Abgasnachbehandlung, z.B. Katalysatoroder Filtersysteme, mit diesen Meß- oder Kontrollwerten auf die angestrebten Emissionen hin regeln oder im Regelsystem die entsprechenden Regelgrößen bereitstellen können. Derartige, möglichst das Abgas umfassend charakterisierende, d.h. weitestgehend gleichzeitig alle gasförmigen, flüssigen und festen Bestandteile erfassende Systeme werden zukünftig vermehrt eingesetzt in den Entwicklungslabors und Prüfständen der Automobilindustrie und ihrer Zulieferer, in den Servicezentren (z.B. vergleichbar heutigen Bosch-Untersuchungszentren) und zumindest in Teilbereichen auch im Kraftfahrzeug selbst, z.B. als Teil eines On-Board- Diagnostics (OBD)-Systems. Neben der Überprüfung, Verbesserung und Regelung des Verbrennungsmotors über Messungen im Rohabgas können diese Systeme gleichermaßen auch für isoliert stehende oder eingebaute Komponenten der Abgasnachbehandlung durch Messungen vor und/oder hinter den jeweiligen Komponenten genutzt werden, z.B. den Katalysatoren zur Behandlung der gasförmigen und/oder partikelförmigen Abgaskomponenten oder den entsprechenden Filtersystemen, so z.B. auch zur Kontrolle und Regelung des Regenerationsprozesses von Partikelfiltern.
Gegenstand der Erfindung ist die einzelne, speziell aber auch die gemeinsame Nutzung unterschiedlicher optischer, meist laser-, laserdioden- oder diodenlaserbasierter Meßverfahren zur Charakterisierung des Abgases und für die Charakterisierung des Abgases wichtiger Einzelkomponenten und die Zusammenstellung von Vorrichtungen, die diese Meßverfahren zielgerecht zusammenfügen. Manche der Verfahren sind bereits für die einzelne Aufgabe bekannt oder erprobt, jedoch noch nicht in dieser Kombination mit anderen Verfahren gleichzeitig eingesetzt. Andere Verfahren sind in dem hier vorgegebenen Anwendungsbereich auch einzeln noch nicht genutzt und stellen so auch in der Einzelnutzung bereits eine eigenständige Erfindung dar.
Motorische Abgase bestehen aus gasförmigen Komponenten (z.B. Sauerstoff, unverbrandte Kraftstoffkomponenten wie Kohlenwasserstoffe oder Wasserstoff selbst, Kohlenmonoxid und -dioxid, Stickstoffmonoxid, -dioxid und N2O, Schwefelverbindungen etc.) und Partikeln, die flüssig (z.B. als Kondensate wie Wasser, Schwefelsäure etc. oder Wasserlösungen, z. B. Harnstoff- Wasser-Lösungen in Verbindung mit Katalysatorsystemen) oder fest (z.B. Ruß, Metallverbindungen, Asche etc.), oftmals auch mit organischen Ablagerungen oder z.B. auch Ablagerungen von Schwefelverbindungen darauf, vorliegen können. Für die Erfassung und Charakterisierung dieser unterschiedlichen Komponenten werden in dieser Erfindung unterschiedliche Meßverfahren benannt und zum Teil kombinativ und gleichzeitig eingesetzt.
Feste Partikel des Abgases sind zum einen Ruß (reiner Kohlenstoff), der mit Hilfe der laserinduzierten Glühtechnik (auch „laser-induced incandescence" (LII) genannt) umfassend (Deutsches Patent DE 19606005) und auch gleichzeitig (Deutsche Patentanmeldung DE 19904691 AI) hinsichtlich seiner Volumen- oder Massenkonzentration, seiner Primärteilchengröße, seiner Aggregatgröße und daraus ableitbarer Größen charakterisiert werden kann. Dieses Verfahren wird hier erfindungsgemäß erstmalig in Verbindung mit einzelnen oder auch mehreren anderen in dieser Erfindung benannten Meßverfahren eingesetzt. Der hier zur Anregung der thermischen Teilchenstrahlung eingesetzte Laser (oder Diodenlaser) bzw. die dazu verwendete Laserdiode wird gleichzeitig oder zeitlich hintereinander auch als Anregungslichtquelle für einzelne oder auch mehrere der anderen Meßverfahren genutzt. Alternativ kann parallel dazu mit gleichem Strahlengang in das Meßvolumen oder auch räumlich versetzt dazu in einem oder mehreren anderen Strahlengängen in das Meßvolumen eine oder mehrere andere Anregungsstrahlquellen eingesetzt werden. Die Detektion des LH-Signales kann zeitlich zu den Meßsignalen einzelner oder auch aller anderer Verfahren versetzt mit teilweise gleichem Detektionsstrahlengang, in dem verfahrensbedingt für die anderen Meßverfahren in Teilzweigen des Registrierstrahlenganges andere optische Komponenten eingebunden sein können, oder auch gleichzeitig unter Nutzung verschiedener Detektionsstrahlengänge erfolgen, wobei alle oder auch einzelne dieser Detektionsstrahlengänge in Rückstrahlrichtung relativ zur Einstrahlrichtung ausgeführt sein können, aber auch jede andere zur Einstrahlrichtung winkelig angeordnete Richtung haben können, wobei bei manchen Verfahren systembedingt eine 90- oder 180-Grad- Anordnung vorteilhaft ist. Zur Erfassung der Meßsignale der unterschiedlichen Verfahren in ausgewählten, zum Teil auch unterschiedlichen Spektralbereichen erfolgt über wellenlängenselektive optische Komponenten, z.B. Filter, Spektrometer, Monochromatoren etc., mit Photomultipliern, Fotodioden, Streak-, CCD-Kameras oder ähnlichen optoelektronischen Komponenten, die aus optischen Meßsignalen elektrische Signale erzeugen können, die weiterverarbeitet zur Darstellung der Meßsignale, zur Datenverabeitung und/oder auch direkt für Regelungszwecke genutzt werden können. In den Abbildungen 1 bis 3 sind vorrichtungsgemäß und schematisch beispielhaft für drei unterschiedliche Meßverfahren drei mögliche Anordnungen dargestellt für eine hauptsächliche Rückstrahl- (Abb. 1), eine 90-Grad- (Abb. 2) und eine 180-Grad- Anordnung (Abb. 3). Insbesondere können für Messungen im Abgas vorteilhaft die in der Patentanmeldung DE 19904691 AI beschriebenen Rohrsegmente eingesetzt werden, die dort alle für den Lll-Sensor wesentliche Merkmale integrieren und in dieser Erfindungen gleichzeitig auch die wesentlichen Merkmale der anderen Verfahren mit integrieren.
Die anderen, jeweils einzeln oder auch in Verbindung mit der LII-Technik oder miteinander gleichzeitig oder zeitlich nacheinander einzusetzenden Meßverfahren charakterisieren andere Komponenten des motorischen Abgases.
Feste Komponenten des Abgases sind weiterhin Partikel verschiedener Metalle, teilweise in weitgehendst reiner Form, als Metalloxide oder als Metallverbindungen anderer Art, Siliziumverbindungen und Asche. Eine Charakterisierung, z.B. Identifikation und Konzentration der einzelnen Bestandteile, ist z.B. über die laserinduzierte Ionisations-Spektroskopie (LIS) - in der wissenschaftlichen Fachliteratur in spezieller Ausgestaltung bei Nutzung hochtemperierter Plasmen oftmals und so auch nachfolgend in dieser Patentbeschreibung mit Laserinduzierte Breakdown- Spektroskopie (LIBS) bezeichnet - möglich, bei der über die Lasereinwirkung Teile des Partikels oder das Partikel vollständig verdampft und teilweise ionisiert wird. Im speziellen geschieht dies bei LIBS dadurch, daß bei Einstrahlung einer extrem hohen Leistungsdichte von über hundert MW/cm ein Hochtemperatur-Mikroplasma hoher Elektronendichte erzeugt wird mit Temperaturen von vielen tausend Grad, bei denen jedes Material zerbrochen, verdampft und ionisiert wird. Die nachfolgende Strahlung ist zunächst breitbandig (vom Röntgenbereich bis zum Infraroten), nach einem kurzen Zeitversatz - bei heruntergekühltem Plasma mit neutralen Atomen in angeregten Zuständen - speziesselektiv bezüglich der vorhandenen Atome (z.B. für AI, Ba, Ca, Co, Cr, Cu, Eu, Fe, Hg, Mg, Mn, Mo, Na, Ni, Pb, Sb, Si, Sr, Ti, V, W und Zn in A. Ciucci u.a., Appl. Phys. B 63 (1996) 185-190) und kann z.B. über Vergleiche mit aus der Literatur bekannten Spektren und/oder über Eich- bzw. Labormessungen verschiedenen atomaren Komponenten zugeordnet werden. Auf diese Weise können auch Asche bzw. solche Ablagerungen (D.K.Ottesen, Proc. 24th Combustion Symposium, 1992, S. 1579-1585) oder Ablagerungen auf den festen Partikeln identifiziert und ausgemessen werden. Die Laserinduzierte Breakdown- Spektroskopie (LIBS) wird hier erfindungsgemäß erstmalig zur Untersuchung des Abgases motorischer Verbrennungsprozesse bzw. des mittels Katalysatoren oder Filtern behandelten Abgases eingesetzt, was alleinig oder auch in Verbindung mit anderen Verfahren umgesetzt werden kann. Diese Technik stellt somit beispielhaft in gleichzeitiger Nutzung mit LII eines der Verfahren in den Abbildungen 1 bis 3 dar.
Der Ruß kann als festes Partikel gleichzeitig mit anderen festen Partikeln oder auch alleinig ebenfalls mittels der LIBS-Technik aufgenommen und ausgemessen werden. Diese Technik ist ebenfalls für die Charakterisierung flüssiger Partikel und gasförmiger Komponenten nutzbar. Liegen die nachzuweisenden festen, flüssigen oder gasförmigen Komponenten in Mengen vor, die unterhalb der LIBS-Nachweisgrenze (ca. 100 ppb) angesiedelt sind, wird alternativ zu LIBS z.B. die Laser-Atomfloureszenz-Spektroskopie (LAFS) genutzt, die erfindungsgemäß also entsprechend für derartig niedrige Nachweisgrenzen in motorischen Abgasen eingesetzt wird.
Flüssige Komponenten des Rohabgases hinter dem Motor und/oder des behandelten Abgases nach Komponenten der Abgasnachbehandlung können beispielsweise aus Wasser, Schwefelsäure, Salpetersäure oder Harnstoff-Wasser-Lösungen bestehen oder darin enthalten sein. Zur Untersuchung und Charakterisierung solcher Abgaskomponenten wird hier erfindungsgemäß erstmals die Laser-Raman-Streuung (LRS) in linearer (spontaner) bzw. auch nichtlinearer Form eingesetzt, alleinig oder in Verbindung mit LII und/oder eines oder mehrerer der anderen Verfahren. Sie wird angeregt über Laser (auch Diodenlaser) oder Laserdioden, wozu eine für dieses Verfahren eigene Anregungslichtquelle oder die Anregungslichtquelle der LII- Technik oder die eines anderen Verfahrens eingesetzt werden kann, wobei verfahrensspezifisch günstig möglichst kurze Anregungswellenlängen gewählt werden, die z.B. auch durch eine Frequenzvervielfachung der Ausgangsstrahlung eines für ein anderes Verfahren ebenfalls eingesetzten Lasers realisiert werden kann. Das aufgrund der Wechselwirkung Licht-Molekül molekülspezifisch entsprechend der Raman-Verschiebung (G. Herzberg, Molecular Spectra and Molecular Structure, Band I bis III, Krieger Publ. Company, Malabar, FL, 1989 bzw. 1991; Band IV mit G. Huber, Van Nostrand, Princeton-New York, 1979; P.W.B. Pearse und A.G. Gaydon, The Identification of Molecular Spectra, Chapman and Hall, London 1976; B. Schrader,Hrsg., Infrared and Raman Spectroscopy, VCH Verlagsgesellschaft, Weinheim 1995) spektralverschobene Raman-Streulicht wird nach spektraler Selektion mittels z.B. Interferenzfiltern oder Spektrometern bzw. Monochromatoren Detektoren der oben genannten Art zugeführt, wobei sich günstig auswirkt, daß der für Gase relativ kleine Streuquerschnitt für Flüssigkeiten deutlich größer ist (A. Weber (Hrsg.), Raman Spectroscopy of Gases and Liquids, Springer- Verlag, Berlin 1979, und darin speziell H.W. Schrötter und H.W. Klöckner, Raman scattering cross sections in gases and liquids, s. 123 - 166) und diese Technik so erfindungsgemäß auch in meßtechnisch schwieriger Umgebung, wie es das motorische Abgas darstellt, eingesetzt werden kann. Dies kann einzeln oder in Verbindung mit anderen Techniken mit z.B. einem der in Abbildungen 1 bis 3 schematisch dargestellten Vorrichtungen geschehen, speziell günstig in einer Rechtwinkelanordnung (Abb. 2) zwischen Einstrahl- und Detektionsrichtung. Die Spektrenauswertung und Ergebnisgewinnung erfolgt auf grundsätzlich gleichen Wegen, wie dies für die Gasphasen-Raman-Spektroskopie gegeben und beschrieben ist z.B. in A. Leipertz, Dissertation, Ruhr-Universität Bochum, 1979; A. Leipertz, Habilitationsschrift, Ruhr-Universität Bochum, 1984 (S. 380 - 382 hinsichtlich einer Konzentrationsmessung), in der Erfindung DE 19827533 zur Bestimmung der Dampfphasenzusammensetzung in verdampfenden Einspritzsprays oder in der Patentanmeldung DE 19702006 AI zur Bestimmung des Heizwertes mittels Raman- Streuung. Wasser kann mit relativ breiten Vibrationsbanden so beispielsweise mit Raman- Verschiebungen um ca. 675, um ca. 1640 und um ca. 3400 Wellenzahlen ausgemessen werden, Schwefelsäure unter anderem über die SO4 2— Schwingung bei ca. 980 Wellenzahlen und Salpetersäure beispielsweise bei 1045 Wellenzahlen. Für diese Komponenten und auch andere von Interesse gibt es eine Vielzahl anderer, ebenfalls und/oder alternativ nutzbarer Raman-Verschiebungen, die in ihrer Anzahl mit zunehmender Komplexität des Moleküls entsprechend der zunehmenden Zahl möglicher Schwingungszustände zunehmen und die vielen Publikationen zur Raman- Spektroskopie und z.B. auch den oben genannten Büchern und Veröffentlichungen entnommen werden können.
Da Materie auch in fester Aggregatform und somit auch die festen Partikel des motorischen Abgases ramanaktiv sind, wird alternativ zu LIBS auch LRS - bzw. auch nichtlineare Formen der Raman-Streuung - zur Untersuchung der festen Partikel erfindungsgemäß eingesetzt.
Für die über internationale Gesetze oder Gesetzesvorlagen limitierten gasförmigen Abgaskomponenten NOx, NO, NO2, N2O, CO, HC und auch z.B. H2O und NH3 gibt es kommerziell erhältliche Meßsysteme (z.B. auf Basis der Chemielumineszenztechnik, der Infrarot-Absorptionsspektroskopie, bevorzugt im nahen Infrarotbereich, z.B. auch als Fourier-Transformations-Infrarot (FTIR)- Analysatoren, als Flammenionisationsdetektoren etc,), die alle jedoch bisher nicht direkt im Abgasstrang - also im Grundsatz nur über Probenahmeprozeduren - und auch nicht in Verbindung mit Systemen der Partikeldetektion, wie es hier erfindungsgemäß erstmals eingeführt wird, eingesetzt wurden. Über die Raman- Streuung werden neben der Flüssigkeitsphase erfindungsgemäß hier auch die gleichen Komponenten gas- bzw. dampfförmig mit gleicher oder unterschiedlicher Raman- Verschiebung erfaßt und ausgemessen (Wasser z.B. mit einer Raman- Verschiebung von ca. 1595 oder ca. 3652 Wellenzahlen bzw. zusätzlich auch z.B. NH3 (z.B. mit einer Raman-Verschiebung von ca. 3334 Wellenzahlen) , SO2 (z.B. mit einer Raman-Verschiebung von ca. 519 und ca. 1151 Wellenzahlen) etc., und speziell die mit hohen Konzentrationen auftretende Komponenten. Alternativ dazu bzw. auch ergänzend wird in dieser Erfindung die Bestimmung und Ausmessung dieser gasförmigen Komponenten vorteilhaft mit durchstimmbaren Lasern, Laserdioden oder Diodenlasern durchgeführt, die über die Absorptionsspektroskopie im infraroten, sichtbaren und/oder ultravioletten Spektralbereich mehrere Komponenten mit nur einer Absorptionslichtquelle zu untersuchen erlauben, oder mit unterschiedlichen, auf die jeweiligen Komponenten ausgewählten Absorptionslichtquellen (Laser(dioden)-Absorptionstechnik - LAT). Zusätzlich wird auch Sauerstoff ausgemessen, um so z.B. eine Motorregelung entsprechend heutiger λ-Sonden mit einer über den ganzen Konzentrationsbereich arbeitenden λ-Sonde, z.B. entsprechend der Erfindung DE 19541516, durchzuführen. Unabhängig von einer Vorrichtung nach Abbildung 1-3 oder auch in Verbindung mit einer solchen wird bei den Absorptionstechniken eine Durchlichtanordnung zum Aufspannen der notwendigen Absorptionsstrecken eingesetzt, wobei zur Verlängerung der Absoprtionsstrecke eine das Meßvolumen überstreichende , z.B. aus Reflexionsspiegeln aufgebaute, Multipass-Anordnung gewählt wird oder auch eine solche außerhalb des Abgas-Hauptstromes (z.B. in einer By-pass- Anordnung), wo alternativ auch einfache Meßküvetten entsprechender Länge Anwendung finden.
Mögliche Ausführungen erfindungsgemäß konzipierter Vorrichtungen sind beispielhaft in den Abbildungen 1 bis 3 dargestellt, in denen nur Vorrichtungen vorgestellt sind, in denen kombinativ gleichzeitig oder zeitlich zueinander versetzt mehrerer der oben genannten Verfahren eingesetzt werden. Vorteilhaft sind in den Vorrichtungen mit Verschmutzungsvermeidende oder -minimierende Maßnahmen (z.B. luftgespülten , beheizten etc.) versehene optische Komponenten des Einstrahl- und Detektionsstrahlenganges in eine das Untersuchungsvolumen umfassende Vorrichtung (z.B. Ring- oder Kanalsegment), z.B entsprechend Patentanmeldung DE 19904691 AI, aufgenommen, durch die das Rohabgas und/oder vor- oder nachbehandelte Abgas ohne spezielle Verdünnung und auch unkonditioniert (z.B. gekühlt oder beheizt) strömen und dabei erfindungsgemäß charakterisiert werden kann. Alternativ dazu können auch Vorrichtungen aufgebaut sein, in denen erfindungsgemäß nur die lineare Raman-Streuung (LRS) zur Charakterisierung der flüssigen und/oder festen Partikel und/oder gasförmigen Komponenten des Abgases und/oder nur die Laserinduzierte Breakdown-Spektroskopie (LIBS) für die festen Partikel und/oder nur die Laser(dioden)-Absorptionstechnik (LAT) unter Nutzung durchstimmbarer Strahlungsquellen zur Erfassung der gasförmigen Abgaskomponenten eingesetzt werden, alleinig oder auch in Verbindung miteinander oder auch speziell mit der LII-Technik zur Erfassung der Rußgrößen.
Abbildung 1 stellt eine solche Vorrichtung dar, bei der die Detektionsseite auf der gleichen Seite des Untersuchungsbereiches aufgebaut ist, auf der sich auch die Einstrahlseite befindet (Rückstrahlanordnung). Eine solche Anordnung hat den Vorteil, nur einen optischen Zugang zum Untersuchungsbereich zu benötigen. Als Anregungslichtquelle (1) dient ein Laser, ein Diodenlaser oder eine Laserdiode, der über einen optischen Strahlengang (2) seinen Anregungslichtstrahl durch einen optischen Zugang (4),der vorteilhaft mit einer Verschmutzungsvermeidenden oder - vermindernden Vorrichtung versehen ist (z.B. Beheizung oder Luftspülung), in das Untersuchungsvolumen einstrahlt, das sich im Innern eines Rohr- oder Kanalsegmentes (5) befindet, das direkt in den Abgasstrang eingebaut werden kann und so ohne Konditionierung das Rohabgas bzw. das behandelte Abgas direkt ausmessen kann. Eine optische Einrichtung (3) vor dem Segmentzugang , z.B. eine Linse oder eine Kombination mehrerer Linsen, eine oder mehrere Lochblenden etc., kann den Strahlengang für den Untersuchungabereich günstig beeinflussen, z.B. aufweiten oder fokussieren. Der Strahlengang (2) kann günstig auch mit Nutzung von Lichtleitfasern aufgebaut sein, vollständig zwischen Laser (1) und optischen Zugang (4) oder auch nur in Teilbereichen davon. Bei der Rückstrahlanordnung in Abbildung 1 wird der Registrierstrahlengang (6), der ebenfalls teilweise oder vollständig aus Lichtleitfasern aufgebaut sein kann, auf gleicher Seite den Untersuchungsbereich (5), z.B. innerhalb des Kreis- oder Rohrsegmentes, verlassen, auf der auch die Einstrahlung erfolgt. Dies kann über den gleichen optischen Zugang erfolgen oder über einen solchen in direkter Nachbarschaft. Auch wird das Meßsignal im Strahlengang (6) parallel zur Einstrahlung, gegebenenfalls sogar unter Nutzung des gleichen Strahlenganges (2), einer Detektoreinheit (8) zugeführt oder auch unabhängig davon. Bei Nutzung des gleichen Strahlenganges (2 und 6) wird ein weiteres optisches Element (10) in den Strahlengang plaziert, das den Signalstrahlengang von der Einstrahlung örtlich trennt und in Richtung auf die Detektoreinheit hin umlenkt. Vor dem Detektor befindet sich eine verfahrensbedingt unterschiedliche optische Einheit (7), die z.B. bestehen kann aus Blenden, Linsen und speziell auch unterschiedlichen Filtern (Grau-, Interferenz- und /oder Kantenfilter) bzw. auch in Verbindung mit Spektrographen oder Monochromatoren, mit dessen Hilfe das Meßsignal entsprechend der angestrebten Signalinformation intensitätsmäßig und/oder spektral aufbereitet wird. Die Detektoreinheit (8) - z.B. ein oder mehrere Fotomultiplier, eine oder mehrere Fotodioden, eine oder mehrere CCD- oder Streak-Kameras oder auch Kombinationen mehrerer solcher opto-elektronischer Komponenten - verarbeitet das optische Signal zu einer elektrischen Information, die in einem elektronischen Verarbeitungssystem (9), z.B. einem Computer, einem Korrektor etc., weiterverarbeitet und aufbereitet wird zur Nutzung z.B. in Meß- und Regelkreisen innerhalb z.B. einer Prüfstandsperipherie, als Regelsystem auch z.B. in Verbindung mit einer On-Board-Diagnostics (OBD) im Fahrzeug selbst.
In Abbildung 1 sind beispielhaft drei unterschiedliche Meßverfahren vorrichtungsgemäß in einer Anordnung verknüpft, wobei erfindungsgemäß die oben genannten Techniken LIBS, LAF und LRS mit der LII-Technik verknüpft sein können bzw. anstelle von LIBS, LAF oder LRS auch LAT, sofern sich der Ausgang einer verwendeten Multi-pass-Einrichtung auf der Einstrahlseite befindet (für LAT benötigt man im allgemeinen zumindest eine Durchstrahlrichtung nach Abbildung 3). Bei geeigneter Wahl der Einstrahllichtquelle (1) können alle Meßverfahren von nur einer Lichtquelle bedient werden oder alternativ auch mit unterschiedlichen, für das jeweilige Verfahren speziell optimierten Einstrahllichtquellen (1A und 1B zusätzlich). Gleiches gilt für die genutzten Einstrahl- (2, 2A, 2B) und Registrierstrahlengänge (6, 6A, 6B), die Detektoreinheiten (8, 8A, 8B) sowie die davor plazierten optischen Elemente (7, 7A, 7B). Werden alle drei Verfahren mit eigenen Strahlengängen versehen und können für Einstrahlung und Signaldetektion die gleichen Strahlengänge genutzt werden, sind in jedem einzelnen davon trennende und gegebenenfalls auch umlenkende optische Elemente (10, 10A, 10B) aufzunehmen. Solche Elemente werden auch verwendet zur Trennung unterschiedlicher Signalstrahlen, wenn diese den gleichen Strahlengang vom Untersuchungsobj ekt her verwenden .
Abbildung 2 zeigt alternativ zu Abbildung 1 eine erfindungsgemäße Vorrichtung, in der hier beispielhaft wieder für drei unterschiedliche Techniken Einstrahl- und Registriestrahlengang eine 90-Grad-Anordnung bilden. Die Beschreibung von Abbildung 1 ist mit allen Aussagen und Folgerungen vollständig auf Abbildung 2 übertragbar, nur daß hier vorrichtungsbedingt die Elemente 10A und 10B nicht mehr Einstrahlung und Signalstrahl voneinander trennen, sondern hier nur unterschiedliche Signalstrahlengänge entsprechend den unterschiedlichen Meßverfahren.
Gleiches gilt für Abbildung 3, wo eine erfmdungsgemäße Vorrichtung schematisch dargestellt ist, in der der Signalstrahlengang hinter dem Untersuchungsvolumen, also der Einstrahlseite gegenüber, aufgebaut ist (also als 180-Grad- oder Durchstrahlanordnung). Eine solche Anordnung bietet die einfachste Möglichkeit zur kombinativen Einbeziehung des LAT- Verfahrens.
Erfindungsgemäß sind neben den in den Abbildungen 1-3 schematisch dargestellten Vorrichtungen auch alle möglichen Kombinationsformen hinsichtlich der Lage von Einstrahl- und Registrierstrahlengang relativ zum Untersuchungebereich und zueinander für alle benannten Meßverfahren getrennt ausführbar, wobei für einzelne und/oder alle benannten Meßverfahren auch andere Winkelanordnungen, außer 0-, 90- und 180-Grad, wählbar sind. Abbildung 4 zeigt schematisch eine mögliche Anwendung der Erfindung bei der Untersuchung und Charakterisierung eines motorischen Abgases im Rohzustand hinter dem Abgaskrümmer eines Motors (1) und vor z.B. einem ersten Katalysator (2), z.B. einem Oxidationskatalysator, an Meßstelle (5), des behandelten Abgases hinter dem Katalysator (2) an Meßstelle (6) und an Meßstelle (7) vor z.B. einem Partikelfilter (3) - Meßstellen (6) und (7) könnten erfindungsgemäß auch nur eine Meßstelle darstellen - und hinter diesem an Meßstelle (8), die wiederum gleichzeitig oder getrennt in mehrere Meßstellen auch z.B. vor einem zweiten Katalysator (4), z.B. einem NOχ-Speicherkatalysator plaziert sein kann. Hinter diesem Katalysator (4) befindet sich dann z.B. eine weitere Meßstelle (9), von der - wie von allen anderen Meßstellen auch - die Meßinformation der Prüfstandsperipherie oder der Zentraleinheit eines OBD-Systems (10) weitergegeben wird, die dann z.B. im letzteren Falle auch aktiv auf den Motorbetrieb bzw. die einzelnen Komponenten der Abgasnachbehandlung Einfluß nehmen kann. Diese Grundsätze sind auf jedes andere Abgassystem, unabhängig von seiner jeweiligen Zusammensetzung und unterschiedlich für otto- und dieselmotorische Anwendungen, übertragbar. In diesem Falle könnte z.B. an der Meßstelle (5) eine Vorrichtung mit LII, LIBS, LRS und LAT (speziell λ) angebracht sein, an den Meßstellen (6) und (7) solche mit LAT und/oder LRS und LII bzw. auch LIBS, eventuell alternativ zu (5), an Meßstelle (8) LAT (speziell λ), LII und LrBS(und/oder LRS) und an Meßstelle (9) LAT (unter anderem speziell auch NH ) und LRS. Viele andere Zusammenstellungen und Kombinationen sind sinnvoll und erfindungsgemäß vorgegeben. Manche der Meßstellen werden in Verbindung mit einem Sensor zur Erfassung der Abgastemperatur ausgestattet, welcher im LH-Sensor erfindungsgemäß bereits enthalten ist (Deutsche Patentanmeldung DE 19904691 AI).

Claims

Patentansprüche
1. Verfahren zur Bestimmung von Eigenschaften der flüssigen Partikel motorischer Abgase im Rohzustand oder im konditionierten und/oder verdünnten Abgas oder hinter Komponenten der Abgasnachbehandlung, dadurch gekennzeichnet, daß die durch Anregung mit einem Laser, einer Laserdiode oder einem
Diodenlaser im Untersuchungsbereich erzeugte Raman-Streuung detektiert und verwendet wird, um die Art und Zusammensetzung und/oder die Konzentrationen (Anzahl-, Massen- und/oder Volumenkonzentration), z.B. über die Partialdichten, der einzelnen Komponenten der flüssigen Partikel des Abgases zu bestimmen.
2. Verfahren zur Bestimmung von Eigenschaften der festen Partikel motorischer Abgase im Rohzustand oder im konditionierten und/oder verdünnten Abgas oder hinter Komponenten der Abgasnachbehandlung, dadurch gekennzeichnet, daß die durch Anregung mit einem Laser, einer Laserdiode oder einem Diodenlaser im Untersuchungsbereich erzeugte Raman-Streuung detektiert und verwendet wird, um die Art und Zusammensetzung und/oder die Konzentrationen (Anzahl-, Volumen- und/oder Massenkonzentration) der einzelnen Bestandteile der festen Partikel des Abgases zu bestimmen.
3. Verfahren zur Bestimmung der Anzahl-, Massen- oder Volumenkonzentration der gasförmigen Komponenten motorischer Abgase im Rohzustand oder im konditionierten und/oder verdünnten Abgas oder hinter Komponenten der Abgasnachbehandlung, dadurch gekennzeichnet, daß die durch Anregung mit einem Laser, einer Laserdiode oder einem Diodenlaser im Untersuchungsbereich erzeugte Raman-Streuung detektiert und verwendet wird, um die Art und Konzentration (Anzahl-, Massen- und/oder Volumenkonzentration), z.B. über die Partialdichten, der einzelnen gasförmigen Komponenten des Abgases zu bestimmen.
4. Verfahren zur Bestimmung von Eigenschaften der festen Partikel motorischer Abgase im Rohzustand oder im konditionierten und/oder verdünnten Abgas oder hinter Komponenten der Abgasnachbehandlung, dadurch gekennzeichnet, daß die nach Einstrahlung eines Lasers, einer Laserdiode oder eines Diodenlasers im Untersuchungsbereich erzeugte Strahlung in Form der
Laserindizierten Breakdown Spektroskopie (LIBS) detektiert und verwendet wird, um die Art und Zusammensetzung der festen Partikel des Abgases zu bestimmen.
5. Verfahren zur Bestimmung von Eigenschaften der festen Partikel motorischer
Abgase im Rohzustand oder im konditionierten und/oder verdünnten Abgas oder hinter Komponenten der Abgasnachbehandlung, dadurch gekennzeichnet, daß die nach Einstrahlung eines Lasers, einer Laserdiode oder eines Diodenlasers im Untersuchungsbereich erzeugte Strahlung nach Verdampfung und Ionisation der Partikel oder von Teilen davon detektiert und verwendet wird, um die Art und Zusammensetzung der festen Partikel des Abgases zu bestimmen.
6. Verfahren zur Bestimmung von Eigenschaften der flüssigen Partikel motorischer
Abgase im Rohzustand oder im konditionierten und/oder verdünnten Abgas oder hinter Komponenten der Abgasnachbehandlung, dadurch gekennzeichnet, daß die nach Einstrahlung eines Lasers, einer Laserdiode oder eines Diodenlasers im Untersuchungsbereich erzeugte Strahlung nach Verdampfung und Ionisation der Partikel oder von Teilen davon detektiert und verwendet wird, um die Art und Zusammensetzung der flüssigen Partikel des Abgases zu bestimmen.
7. Verfahren zur Bestimmung von Eigenschaften der flüssigen Partikel motorischer Abgase im Rohzustand oder im konditionierten und/oder verdünnten Abgas oder hinter Komponenten der Abgasnachbehandlung, dadurch gekennzeichnet, daß die nach Einstrahlung eines Lasers, einer Laserdiode oder eines Diodenlasers im Untersuchungsbereich erzeugte Strahlung in Form der Laserindizierten Breakdown Spektroskopie (LIBS) detektiert und verwendet wird, um die Art und Zusammensetzung der flüssigen Partikel des Abgases zu bestimmen.
8. Verfahren zur Bestimmung der Konzentrationen der gasförmigen Komponenten motorischer Abgase im Rohzustand oder im konditionierten und/oder verdünnten Abgas oder hinter Komponenten der Abgasnachbehandlung, dadurch gekennzeichnet, daß die nach Einstrahlung eines Lasers, einer Laserdiode oder eines Diodenlasers im Untersuchungsbereich erzeugte Strahlung in Form der Laserindizierten Breakdown Spektroskopie (LIBS) detektiert und verwendet wird, um die Art und Konzentrationen (Anzahl-, Volumen- oder Massenkonzentrationen) der einzelnen gasförmigen Komponenten des Abgases zu bestimmen.
9. Verfahren zur Bestimmung von Eigenschaften der flüssigen und/oder festen Partikel motorischer Abgase im Rohzustand oder im konditionierten und/oder verdünnten Abgas oder hinter Komponenten der Abgasnachbehandlung, dadurch gekennzeichnet, daß die durch Anregung mit einem Laser, einer Laserdiode oder einem Diodenlaser im Untersuchungsbereich erzeugte Atomfluoreszenzstrahlung detektiert und verwendet wird, um die Art und Zusammensetzung der flüssigen und/oder festen Partikel des Abgases und die Konzentrationen der einzelnen
Komponenten zu bestimmen.
10. Verfahren nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, daß mittels des nach der Ionisation auftretendes Meßsignales und/oder
Atomfloureszenz-Meßsignales der jeweiligen festen Komponente die Konzentration dieser Komponente (Anzahlkonzentration) und/oder die Massenbzw. Volumenkonzentration dieser Komponente im Abgas berechnet wird.
11. Verfahren zur Bestimmung der Konzentrationen der gasförmigen Komponenten motorischer Abgase im Rohzustand oder im konditionierten und/oder verdünnten Abgas oder hinter Komponenten der Abgasnachbehandlung, dadurch gekennzeichnet, daß die nach Einstrahlung eines durchstimmbaren Lasers, einer durchstimmbaren Laserdiode oder eines durchstimmbaren Diodenlasers im
Untersuchungsbereich im infraroten und/oder sichtbaren und/oder ultravioletten Spektrlbereich absorbierten Anteile der Laserstrahlung detektiert und verwendet wird, um die Art und Konzentrationen (Anzahl-, Volumen- oder Massenkonzentrationen) der einzelnen gasförmigen Komponenten des Abgases zu bestimmen.
12. Anwendung eines oder mehrerer Verfahren nach den Ansprüchen 1, 6, 7, 9 und 10 auf die Untersuchung der Tröpfchen des Abgases, die aus den Komponente Wasser, Schwefelsäure oder Salpetersäure in reiner Form oder aus Mischungen daraus oder auch mit anderen Komponenten bestehen und/oder Wasserlösungen, wie z.B. Harnstoff- Wasser-Lösungen.
13. Anwendung eines oder mehrerer der Verfahren nach den Ansprüchen 2, 4, 5, 9 und 10 auf die Untersuchung der festen Partikel des Abgases, die beispielsweise aus Ruß, Metallen, Metalloxiden und anderen Metallverbindungen,
Siliziumverbindungen und Asche bestehen.
14. Anwendung eines oder mehrerer der Verfahren nach den Ansprüchen 3, 8 und 11 auf die Untersuchung der gasförmigen Komponenten des Abgases und hier speziell auch der Abgaskomponenten NOx, NO, NO2, N2O, CO, HC, O2, H2O und NH3.
15. Vorrichtung zur Charakterisierung und Kontrolle des Abgases und der Regelung von Motoren, speziell von Verbrennungsmotoren, und von Komponenten der Abgasnachbehandlung, dadurch gekennzeichnet, daß in ihnen eines oder mehrere der Verfahren nach einem der Ansprüche 1 bis
11 einzeln oder in Kombination mit anderen Verfahren, im speziellen auch in Kombination mit der Laserinduzierten Glühtechnik (LII), zum Einsatz kommen und Anwendung nach einem der Ansprüche 12 bis 15 finden und im speziellen auch in Verbindung mit einer Charakterisierung des Rußes durch LII angewandt werden.
16. Vorrichtung zur Charakterisierung und Kontrolle des Abgases und der Regelung von Motoren, speziell von Verbrennungsmotoren, und von Komponenten der Abgasnachbehandlung nach Anspruch 15, dadurch gekennzeichnet, daß mehrere der kombinativ genutzten Verfahren gleichzeitig oder zeitlich zueinander versetzt eingesetzt werden.
17. Vorrichtung zur Charakterisierung und Kontrolle des Abgases und der Regelung von Motoren, speziell von Verbrennungsmotoren, und von Komponenten der
Abgasnachbehandlung nach einem der Ansprüche 15 oder 16, dadurch gekennzeichnet, daß bei einzelnen der Verfahren bei alleiniger Nutzung oder bei einzelnen oder mehreren der Verfahren bei kombinativer Nutzung die das Meßsignal enthaltende Strahlung unter der entgegengesetzt gleichen Richtung von der Detektoreinheit erfaßt wird, unter die Anregung erfolgt (Rückstrahlanordnung), wobei eine spektral selektive und/oder räumliche Trennung für einzelne Verfahren getrennt und/oder für mehrere Verfahren mit gleichem Strahlengang und gleich oder unterschiedlichen optischen Komponenten erfolgt.
18. Vorrichtung zur Charakterisierung und Kontrolle des Abgases und der Regelung von Motoren, speziell von Verbrennungsmotoren, und von Komponenten der
Abgasnachbehandlung nach einem der Ansprüche 15 oder 16, dadurch gekennzeichnet, daß bei einzelnen der Verfahren bei alleiniger Nutzung oder bei einzelnen oder mehreren der Verfahren bei kombinativer Nutzung die das Meßsignal enthaltende Strahlung unter einem rechten Winkel reletiv zur Einstrahlrichtung von der
Detektoreinheit erfaßt wird (Rechtwinkelanordnung), wobei eine spektral selektive und/oder räumliche Trennung für einzelne Verfahren getrennt und/oder für mehrere Verfahren mit gleichem Strahlengang und gleich oder unterschiedlichen optischen Komponenten erfolgt.
19. Vorrichtung zur Charakterisierung und Kontrolle des Abgases und der Regelung von Motoren, speziell von Verbrennungsmotoren, und von Komponenten der Abgasnachbehandlung nach einem der Ansprüche 15 oder 16, dadurch gekennzeichnet, daß bei einzelnen der Verfahren bei alleiniger Nutzung oder bei einzelnen oder mehreren der Verfahren bei kombinativer Nutzung die das Meßsignal enthaltende Strahlung unter der gleichen Richtung von der Detektoreinheit erfaßt wird, unter die Anregung erfolgt (Durchstrahlanordnung), wobei eine spektral selektive und/oder räumliche Trennung für einzelne Verfahren getrennt und/oder für mehrere Verfahren mit gleichem Strahlengang und gleich oder unterschiedlichen optischen Komponenten erfolgt.
20. Vorrichtung zur Charakterisierung und Kontrolle des Abgases und der Regelung von Motoren, speziell von Verbrennungsmotoren, und von Komponenten der Abgasnachbehandlung nach einem der Ansprüche 15 oder 16, dadurch gekennzeichnet, daß bei einzelnen der Verfahren bei alleiniger Nutzung oder bei einzelnen oder mehreren der Verfahren bei kombinativer Nutzung die das Meßsignal enthaltende Strahlung unter jedem für das jeweilige Verfahren sinnvollen Winkel relativ zur Einstrahlrichtung, also für unterschiedliche Verfahren auch mit unterschiedlichen Winkeln von der Detektoreinheit erfaßt wird, wobei eine spektral selektive und/oder räumliche Trennung für einzelne Verfahren getrennt und/oder für mehrere Verfahren mit gleichem Strahlengang und gleich oder unterschiedlichen optischen Komponenten erfolgt.
21. Vorrichtung zur Charakterisierung und Kontrolle des Abgases und der Regelung von Motoren, speziell von Verbrennungsmotoren, und von Komponenten der Abgasnachbehandlung nach einem der Ansprüche 15 bis 20, dadurch gekennzeichnet, daß der Untersuchungsbereich innerhalb einer das Abgas umschließenden, im Querschnitt angepaßten oder variablen Vorrichtung, z.B. eines Rohr- oder Kanalsegmentes, plaziert ist, die nur unbedeutende oder auch keinerlei weitere Modifikation des Abgasstranges erfordert und die optischen Zugänge, die alle oder auch nur einzelne davon mit einer verschmutzungvermeindenden oder verschmutzungsmindernden Vorrichtung, z.B. einer Beheizung oder Luftspülung, versehen sind, beeinhaltet.
22. Vorrichtung zur Charakterisierung und Kontrolle des Abgases und der Regelung von Motoren, speziell von Verbrennungsmotoren, und von Komponenten der Abgasnachbehandlung nach einem der Ansprüche 15 bis 21, dadurch gekennzeichnet, daß bei einzelnen der Verfahren bei alleiniger Nutzung oder bei einzelnen oder mehreren der Verfahren bei kombinativer Nutzung der Strahlengang zwischen
Laser, Laserdiode und/oder Diodenlaser und optischem Zugang zum Untersuchungsbereich (in umschließende Vorrichtung integrierter optischer Zugang bzw. Einstrahllinse bzw. Linsenkombination) und/oder der Strahlengang zwischen dem optischen Zugang auf der Registrierseite des Untersuchungsvolumens und der Detektoreinheit ganz oder in Teilen mit
Lichtleitfasern aufgebaut ist und die Einstrahlung und/oder die das Meßsignal enthaltende Strahlung durch diese Lichtleitfasern geleitet werden.
23. Nutzung einer oder mehrerer Vorrichtungen nach einem der Ansprüche 15 bis 22 zur Untersuchung des Rohabgases und/oder des konditionierten und/oder des durch Komponenten der Abgasnachbehandlung, z.B. Katalysatoren und/oder Filtern unterschiedlichster Art, behandelten Abgases von Motoren und speziell von Verbrennungsmotoren.
24. Nutzung einer oder mehrerer Vorrichtungen nach einem der Ansprüche 15 bis 22 zur Untersuchung, Kontrolle und/oder Regelung der Arbeitsweise von Komponenten der Abgasnachbehandlung, z.B. von Katalysatoren und/oder Filtern unterschiedlichster Art, auf Prüfständen oder im bzw. am Fahrzeug.
25. Nutzung einer oder mehrerer Vorrichtungen nach einem der Ansprüche 15 bis 22 zur Kontrolle und /oder Regelung des aus Motor und Abgasnachbehandlung bestehenden Gesamtsystems auf Prüfständen oder im Fahrbetrieb, z.B. in Verbindung mit oder als Teil einer On-Board-Diagnostik.
EP02742965A 2001-05-18 2002-05-08 Verfahren und vorrichtung zur umfassenden charakterisierung und kontrolle des abgases und der regelung von motoren, speziell von verbrennungsmotoren, und von komponenten der abgasnachbehandlung Ceased EP1397673A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10124235 2001-05-18
DE10124235A DE10124235B4 (de) 2001-05-18 2001-05-18 Verfahren und Vorrichtung zur umfassenden Charakterisierung und Kontrolle des Abgases und der Regelung von Motoren, speziell von Verbrennungsmotoren, und von Komponenten der Abgasnachbehandlung
PCT/EP2002/005042 WO2002095376A2 (de) 2001-05-18 2002-05-08 Verfahren und vorrichtung zur umfassenden charakterisierung und kontrolle des abgases und der regelung von motoren, speziell von verbrennungsmotoren, und von komponenten der abgasnachbehandlung

Publications (1)

Publication Number Publication Date
EP1397673A2 true EP1397673A2 (de) 2004-03-17

Family

ID=7685257

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02742965A Ceased EP1397673A2 (de) 2001-05-18 2002-05-08 Verfahren und vorrichtung zur umfassenden charakterisierung und kontrolle des abgases und der regelung von motoren, speziell von verbrennungsmotoren, und von komponenten der abgasnachbehandlung

Country Status (4)

Country Link
US (2) US7084963B2 (de)
EP (1) EP1397673A2 (de)
DE (1) DE10124235B4 (de)
WO (1) WO2002095376A2 (de)

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7738095B2 (en) 2003-07-18 2010-06-15 Chemimage Corporation Method and apparatus for compact spectrometer for detecting hazardous agents
CN100437020C (zh) * 2003-07-18 2008-11-26 凯米映像公司 多波长成像光谱仪的方法和装置
US7548310B2 (en) 2003-07-18 2009-06-16 Chemimage Corporation Method and apparatus for compact spectrometer for multipoint sampling of an object
US7440096B2 (en) 2003-07-18 2008-10-21 Chemimage Corporation Method and apparatus for compact spectrometer for fiber array spectral translator
ITTO20030982A1 (it) 2003-12-05 2005-06-06 Fiat Ricerche Sistema di controllo delle emissioni nocive nei gas di scarico di un motore a combustione interna di autoveicolo, mediante spettrometria ir a bordo veicolo.
WO2005081981A2 (en) * 2004-02-20 2005-09-09 Systems Planning And Analysis, Inc. Libs system and method for engine exhaust monitoring
JP2005273613A (ja) * 2004-03-26 2005-10-06 Hino Motors Ltd 排気ガスのobd用センシング方法
US7564541B2 (en) * 2004-06-30 2009-07-21 Chemimage Corp System for obtaining images in bright field and crossed polarization modes and chemical images in raman, luminescence and absorption modes
FR2876185B1 (fr) 2004-10-01 2008-01-11 Centre Nat Rech Scient Cnrse Detection des emissions de fluorescence induite par un laser
AT413887B (de) * 2004-11-25 2006-07-15 Avl List Gmbh Verfahren zum ermitteln der partikelemissionen
US7474953B2 (en) 2004-11-25 2009-01-06 Avl List Gmbh Process for determining particle emission in the exhaust fume stream from an internal combustion engine
DE102005009582A1 (de) * 2005-02-28 2006-08-31 Konstantinos Nalpantidis Verfahren zur Bestimmung der Art, Größe und/oder Konzentration von Bestandteilen in Fluidströmen
US20060262304A1 (en) * 2005-04-22 2006-11-23 Keith Carron Apparatus for automated real-time material identification
KR20080013949A (ko) * 2005-04-28 2008-02-13 도요다 지도샤 가부시끼가이샤 배기가스 분석장치
US7728253B2 (en) * 2005-06-29 2010-06-01 Northeastern University Nano-particle trap using a microplasma
EP1902301A4 (de) * 2005-07-14 2010-09-22 Chemimage Corp Zeit- und flächendeckend gelöster lidar-ferndetektor von ied-sprengstoffen
US8582089B2 (en) 2006-06-09 2013-11-12 Chemimage Corporation System and method for combined raman, SWIR and LIBS detection
DE102005036525B3 (de) * 2005-08-03 2006-11-09 Siemens Ag Anordnung zur Bestimmung der Gastemperatur eines Gases sowie Verwendung der Anordnung zur Bestimmung der Gastemperatur eines Gases
US7705312B2 (en) * 2005-12-08 2010-04-27 The Vision Group, Inc. Multi-gas sensor
US8235627B2 (en) * 2005-12-08 2012-08-07 Ellis Mark T System and method for detecting and remediating contamination
WO2007087315A2 (en) * 2006-01-23 2007-08-02 Chemimage Corporation Method and system for combined raman and libs detection
JP4594277B2 (ja) * 2006-05-31 2010-12-08 トヨタ自動車株式会社 排ガス分析装置におけるセンサユニット
US20110237446A1 (en) * 2006-06-09 2011-09-29 Chemlmage Corporation Detection of Pathogenic Microorganisms Using Fused Raman, SWIR and LIBS Sensor Data
JP4732277B2 (ja) * 2006-08-23 2011-07-27 トヨタ自動車株式会社 ガス分析装置及びガス分析方法
WO2008034266A1 (en) * 2006-09-19 2008-03-27 Abb Research Ltd Flame detector for monitoring a flame during a combustion process
ES2426107T5 (es) 2007-02-26 2017-12-20 Yokogawa Corporation Of America Análisis de gases de combustión
FR2917651B1 (fr) * 2007-06-20 2010-09-17 Rexam Dispensing Sys Pompe pour la distribution d'un produit liquide a amorcage ameliore
US7675616B1 (en) 2007-09-19 2010-03-09 The United States Of America As Represented By The Secretary Of The Navy Combustion plume absorption gauge
US8379193B2 (en) 2008-08-27 2013-02-19 Chemimage Corporation SWIR targeted agile raman (STAR) system for on-the-move detection of emplace explosives
US20100112191A1 (en) * 2008-10-30 2010-05-06 Micron Technology, Inc. Systems and associated methods for depositing materials
US9194273B2 (en) 2008-10-31 2015-11-24 Cummins Inc. Apparatus, system, and method for aftertreatment control and diagnostics
US8223337B2 (en) * 2008-10-31 2012-07-17 Cummins Inc. Apparatus, system, and method for aftertreatment control and diagnostics
US8648322B2 (en) * 2008-10-31 2014-02-11 Cummins Inc. Optical sensing in an adverse environment
US8149401B2 (en) * 2009-02-13 2012-04-03 Velcon Filters, Llc System and method for distinguishing particles in a transient fluid
US9103714B2 (en) 2009-10-06 2015-08-11 Chemimage Corporation System and methods for explosives detection using SWIR
ITRM20090617A1 (it) 2009-11-25 2011-05-26 Consiglio Nazionale Ricerche Metodo ed apparato per misure di radiazione luminosa isotropica ottenuta da tecniche di spettroscopia laser, in particolare per misure di particolato submicronico.
US8505303B2 (en) * 2009-12-11 2013-08-13 General Electric Company Impurity detection in combustor systems
US8424292B2 (en) * 2009-12-31 2013-04-23 General Electric Company Systems and apparatus relating to the monitoring and/or controlling of selective catalytic reduction processes
US20110228257A1 (en) * 2010-03-17 2011-09-22 The Board Of Trustees Of The University Of Alabama Hollow core fiber laser induced incandescence
WO2011143304A2 (en) * 2010-05-11 2011-11-17 Sensors, Inc. Sensitivity augmentation of opacity based particulate matter measurement system
US8218147B2 (en) 2010-06-18 2012-07-10 Cummins Inc. Apparatus, system, and method for detecting engine fluid constituents
CN101915753B (zh) * 2010-07-30 2013-05-29 浙江师范大学 基于遗传神经网络的激光诱导击穿光谱定量分析方法
US8004695B1 (en) 2010-08-16 2011-08-23 Paccar Inc. Measurement of film thickness in motor exhaust systems
US8994934B1 (en) 2010-11-10 2015-03-31 Chemimage Corporation System and method for eye safe detection of unknown targets
US8743358B2 (en) 2011-11-10 2014-06-03 Chemimage Corporation System and method for safer detection of unknown materials using dual polarized hyperspectral imaging and Raman spectroscopy
EP2799846A4 (de) * 2011-12-28 2015-09-02 Imagineering Inc Vorrichtung zur schätzung einer gaskonzentration
US9285272B2 (en) * 2012-07-17 2016-03-15 Sciaps, Inc. Dual source system and method
US9970876B2 (en) * 2012-07-17 2018-05-15 Sciaps, Inc. Dual source analyzer with single detector
US9052290B2 (en) 2012-10-15 2015-06-09 Chemimage Corporation SWIR targeted agile raman system for detection of unknown materials using dual polarization
CN102914522B (zh) * 2012-11-13 2014-07-30 西北师范大学 气、液联用激光诱导击穿光谱检测装置及检测方法
US9140648B2 (en) 2013-03-12 2015-09-22 Ecolab Usa Inc. Fluorometer with multiple detection channels
US20160202186A1 (en) * 2013-08-16 2016-07-14 Board Of Regents, The University Of Texas System Gas Sensor to Enhance Implementation of a Process-Based Leakage Monitoring Method
WO2015138035A1 (en) * 2013-12-19 2015-09-17 Rutgers, The State University Of New Jersey Methods for excitation-intensity-dependent phase-selective laser-induced breakdown spectroscopy of nanoparticles and applications thereof
US10012603B2 (en) 2014-06-25 2018-07-03 Sciaps, Inc. Combined handheld XRF and OES systems and methods
CN104237178B (zh) * 2014-10-09 2017-11-03 重庆邮电大学 直流放电汽化辅助激光诱导击穿光谱检测水体中痕量金属元素的方法和装置
CN105673147B (zh) * 2016-01-22 2018-08-31 潍柴动力股份有限公司 一种scr系统的建压方法及装置
DE202016101510U1 (de) 2016-03-18 2017-06-26 Sick Engineering Gmbh Verbrennungsmotor
DE102016105095B4 (de) 2016-03-18 2020-07-30 Sick Engineering Gmbh Verbrennungsmotor
US9933335B2 (en) * 2016-06-17 2018-04-03 Wisconsin Alumni Research Foundation Combustion gas sensor assembly for engine control
US10067049B1 (en) * 2016-08-17 2018-09-04 National Technology & Engineering Solutions Of Sandia, Llc Method and system for multi-pass laser-induced incandescence
DE102017207402A1 (de) 2017-05-03 2018-11-08 Robert Bosch Gmbh Optischer Rußpartikelsensor für Kraftfahrzeuge
DE102017211220A1 (de) * 2017-05-24 2018-11-29 Robert Bosch Gmbh Verfahren zur Diagnose einer Brennkraftmaschine eines Kraftfahrzeuges, sowie der mit der Brennkraftmaschine verbundenen Vorrichtungen, sowie ein System zur Durchführung des Verfahrens
CN108279214B (zh) * 2017-12-22 2020-06-02 天津师范大学 一种元素形成挥发物时效率增强的方法
CN108885174A (zh) * 2018-05-24 2018-11-23 深圳达闼科技控股有限公司 一种物质检测方法、装置及电子设备
DE102018218734A1 (de) * 2018-10-31 2020-04-30 Robert Bosch Gmbh Optischer Partikelsensor, insbesondere Abgassensor
DE102018218912A1 (de) * 2018-11-06 2020-05-07 Robert Bosch Gmbh Partikelsensor zur Detektion von Partikeln oder Aerosol in einem strömenden Fluid unter Verwendung des Prinzips der laserinduzierten Inkandeszenz
CN109557057B (zh) * 2018-11-19 2020-03-17 西安交通大学 一种用于核电站主管道内的光纤libs探测装置及方法
CN110632036A (zh) * 2019-08-22 2019-12-31 江苏大学 一种基于光学发动机联合测量碳烟前驱物和碳烟的装置及方法
DE102019133726A1 (de) * 2019-12-10 2021-06-10 Friedrich Boysen Gmbh & Co. Kg Sensoreinheit zur Anordnung an einem Fahrzeug mit einem Brennstoffenergiewandler
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
CN112345684B (zh) * 2020-10-31 2022-06-14 西北工业大学 燃烧气氛可调燃烧器及实验方法
JP7455485B2 (ja) 2020-11-01 2024-03-26 ダイハツ工業株式会社 均質混合気供給装置
US11774351B2 (en) 2021-08-06 2023-10-03 Southwest Research Institute Method and apparatus for measuring engine oil consumption using laser induced breakdown spectroscopy
DE102022208770A1 (de) 2022-08-24 2024-02-29 Hochschule Reutlingen, Körperschaft des öffentlichen Rechts Vorrichtung zum Erfassen von mindestens einer gasförmigen Komponente in einem Gas

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3625613A (en) * 1968-06-28 1971-12-07 Avco Corp Apparatus for remote sensing and analyzing of gaseous materials using raman radiation
US4127329A (en) * 1976-12-21 1978-11-28 Northeast Utilities Service Company Raman scattering system and method for aerosol monitoring
US4990780A (en) * 1989-06-19 1991-02-05 General Motors Corporation Method for determining fuel and engine oil comsumption using tunable diode laser spectroscopy
DE4003176A1 (de) 1990-02-03 1991-08-08 Bosch Gmbh Robert Vorrichtung zum messen der zusammensetzung von fluiden, insbesondere der bestandteile von abgasen von brennkraftmaschinen
US5252828A (en) * 1992-04-07 1993-10-12 Hughes Aircraft Company Mobile exhaust tracking system
DE4235225C2 (de) * 1992-10-13 1994-11-10 Iris Gmbh Infrared & Intellige Sensoranordnung und Verfahren zur Überwachung der Konvertierungsrate eines Abgaskatalysators
DE4320943C2 (de) * 1993-06-24 2001-02-15 Lavision Gmbh Verfahren zur Charakterisierung der Arbeitsweise von Verbrennungsmotoren durch Messen der Gaszusammensetzung im Brennraum durch Raman-Spektroskopie
DE4343897A1 (de) * 1993-12-22 1995-06-29 Bosch Gmbh Robert Vorrichtung zur Dichte- und Konzentrationsbestimmung von sichtbaren Bestandteilen in Fluiden
US5709082A (en) * 1994-06-27 1998-01-20 General Motors Corporation Modulation schemes for on-board diagnostic exhaust system
US5490490A (en) * 1995-04-27 1996-02-13 Ford Motor Company On-board gas composition sensor for internal combustion engine exhaust gases
US5715053A (en) * 1995-10-23 1998-02-03 Loge; Gary W. Method for determining the concentration of atomic species in gases and solids
DE19541516C2 (de) * 1995-11-08 2000-03-30 Alfred Leipertz Vorrichtung zur optischen Bestimmung der Sauerstoffkonzentration und deren Änderung im Abgas eines Verbrennungssystems zur Kontrolle und/oder Regelung des Verbrennungsprozesses
DE19606005C1 (de) * 1996-02-17 1997-04-03 Alfred Prof Dr Ing Leipertz Verfahren zur In-situ-Bestimmung von Primärteilchengrößen
US5847825A (en) * 1996-09-25 1998-12-08 Board Of Regents University Of Nebraska Lincoln Apparatus and method for detection and concentration measurement of trace metals using laser induced breakdown spectroscopy
DE19702006A1 (de) * 1997-01-22 1998-07-23 Alfred Prof Dr Ing Leipertz Laserdiodenbasierter Heizwertzähler
DE19710206A1 (de) * 1997-03-12 1998-09-17 Siemens Ag Verfahren und Vorrichtung zur Verbrennungsanalyse sowie Flammenüberwachung in einem Verbrennungsraum
DE19724863C2 (de) * 1997-06-12 2000-01-13 Lavision Gmbh Meßsystem zum ortsaufgelösten Nachweis von OH-Radikalen, Temperaturfeldern und der Gaszusammensetzung von Majoritätenspezies in einem Verbrennungsprozeß
DE19753006C2 (de) * 1997-11-30 2001-01-18 Wwu Wissenschaftliche Werkstat Verfahren zur Beurteilung von Abgasgrenzwertverletzungen und zur Beurteilung der Güte abgasrelevanter Bauteile bei niedrig emittierenden Kraftfahrzeugen während der Fahrt
DE19809792C2 (de) * 1998-03-09 2000-03-30 Fraunhofer Ges Forschung Vorrichtung zur Messung der Emission und/oder Absorption eines heißen Gases oder Plasmas
AT2623U1 (de) * 1998-03-24 1999-01-25 Avl List Gmbh Brennkraftmaschine mit fremdzündung
DE19827533C2 (de) * 1998-06-20 2001-09-06 Alfred Leipertz Verfahren zur Bestimmung der Dampfphasenzusammensetzung und der Temperatur mittels linearer Raman-Streuung in Gegenwart von Phasengrenzflächen, insbesondere von Tröpfchen, insbesondere bei motorischen Einspritzprozessen
DE19904691C2 (de) * 1999-02-05 2003-05-28 Esytec En U Systemtechnik Gmbh Vorrichtung und Verfahren zur simultanen In-situ-Bestimmung der Teilchengröße und Massenkonzentration von fluidgetragenen Partikeln
DE19925583C2 (de) * 1999-06-04 2002-06-13 Lavision Gmbh Verfahren zur Bestimmung der räumlichen Konzentration der einzelnen Komponenten eines Gemisches, insbes. eines Gasgemisches in einem Brennraum, insbes. eines Motors sowie eine Anordnung zur Durchführung des Verfahrens
DE19944006B4 (de) * 1999-09-14 2007-09-27 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zum Analysieren und ständigen Überwachen von Abgasparametern in Triebwerken von Flugzeugen während des Flugs

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02095376A2 *

Also Published As

Publication number Publication date
WO2002095376A3 (de) 2003-10-16
DE10124235B4 (de) 2004-08-12
DE10124235A1 (de) 2002-12-05
US20040237505A1 (en) 2004-12-02
US7084963B2 (en) 2006-08-01
WO2002095376A2 (de) 2002-11-28
US7480044B2 (en) 2009-01-20
US20060256330A1 (en) 2006-11-16

Similar Documents

Publication Publication Date Title
DE10124235B4 (de) Verfahren und Vorrichtung zur umfassenden Charakterisierung und Kontrolle des Abgases und der Regelung von Motoren, speziell von Verbrennungsmotoren, und von Komponenten der Abgasnachbehandlung
Maricq Examining the relationship between black carbon and soot in flames and engine exhaust
Überall et al. A literature research about particle emissions from engines with direct gasoline injection and the potential to reduce these emissions
Suarez-Bertoa et al. Intercomparison of real-time tailpipe ammonia measurements from vehicles tested over the new world-harmonized light-duty vehicle test cycle (WLTC)
EP2531835A1 (de) Optischer gassensor
Leidenberger et al. Experimental studies on the influence of diesel engine operating parameters on properties of emitted soot particles
EP2287591A2 (de) Verfahren und Vorrichtung zur Bestimmung der Konzentration von NO2 in Gasgemischen
DE4320943C2 (de) Verfahren zur Charakterisierung der Arbeitsweise von Verbrennungsmotoren durch Messen der Gaszusammensetzung im Brennraum durch Raman-Spektroskopie
Merkisz et al. Road Test Emissions Using On-board Measuring Method for Light Duty Diesel Vehicles.
EP3762704A1 (de) Mit laser induzierter inkandeszenz arbeitender partikelsensor mit einer konfokalen anordnung eines laserspots und eines temperaturstrahlungsspots
DE102006010100B4 (de) Vorrichtung und Verfahren zur spektroskopischen Messung
De Filippo Particle size and number emissions from modern light-duty diesel vehicles
Migliorini et al. Environmental application of pulsed laser-induced incandescence
Liu et al. A source dilution sampling system for characterization of engine emissions under transient or steady-state operation
Momenimovahed et al. Comparison of black carbon measurement techniques for marine engine emissions using three marine fuel types
DE19815273B4 (de) Verfahren und Vorrichtung zum Untersuchen von Kraftfahrzeug-Abgasen
DE4130639A1 (de) Verfahren zur quantitativen und qualitativen erfassung von kohlenwasserstoffhaltigen russschwebeteilchen in gasen
Merkisz et al. Gaseous and particle emissions results from light duty vehicle with diesel particle filter
EP3894824A1 (de) Verfahren zur detektion von partikeln oder aerosol in einem strömenden fluid, computerprogramm sowie elektrisches speichermedium
DE102009054594A1 (de) Vorrichtung und Verfahren zum Ermitteln der Partikelgröße und/oder der Partikelkonzentration eines strömenden, Partikel mitführenden Gases
EP1923694B1 (de) Verfahren und Vorrichtung zum Bestimmen einer Ölmenge in einer Gasströmung
DE102018220154A1 (de) Verfahren zum Betreiben eines Partikelsensors
WO2004008113A1 (de) Absorptionsspektrometer und entsprechendes messverfahren
WO2004008112A1 (de) Hochauflösendes absorptionsspektrometer und entsprechendes messverfahren
DE102009025183B4 (de) Verfahren und Vorrichtung zur Bestimmung der Staub- und Rußpartikelkonzentration

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17P Request for examination filed

Effective date: 20040416

17Q First examination report despatched

Effective date: 20040603

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20051212

R18R Application refused (corrected)

Effective date: 20080712