EP1396681B1 - Regulateur de brûleur et procédé pour ajuster un regulateur de brûleur - Google Patents

Regulateur de brûleur et procédé pour ajuster un regulateur de brûleur Download PDF

Info

Publication number
EP1396681B1
EP1396681B1 EP02019917A EP02019917A EP1396681B1 EP 1396681 B1 EP1396681 B1 EP 1396681B1 EP 02019917 A EP02019917 A EP 02019917A EP 02019917 A EP02019917 A EP 02019917A EP 1396681 B1 EP1396681 B1 EP 1396681B1
Authority
EP
European Patent Office
Prior art keywords
burner
fuel
control element
monitor
energy content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP02019917A
Other languages
German (de)
English (en)
Other versions
EP1396681A1 (fr
Inventor
Rainer Dr. Lochschmied
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Schweiz AG
Original Assignee
Siemens Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=31502723&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1396681(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens Schweiz AG filed Critical Siemens Schweiz AG
Priority to DE50205205T priority Critical patent/DE50205205D1/de
Priority to EP02019917A priority patent/EP1396681B1/fr
Priority to US10/654,152 priority patent/US20050250061A1/en
Publication of EP1396681A1 publication Critical patent/EP1396681A1/fr
Application granted granted Critical
Publication of EP1396681B1 publication Critical patent/EP1396681B1/fr
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods

Definitions

  • the invention relates to a burner controller according to the preamble of Claim 1.
  • a burner controller ensures, among other things, that in a burner the ratio of the amount of air to the amount of fuel, air ratio or lambda, in entire range of services is tuned.
  • lambda should be slightly above the stoichiometric value 1, for example 1.3.
  • the air ratio is regulated, for which it needs a sensor that the Combustion process observed directly or indirectly.
  • This burner controller allows a precise air flow control, which In particular, it can react quickly to dynamic changes.
  • Burner systems usually equipped with an atmospheric burner are the control accuracy by the above problem of Changes in flame shape and size affected.
  • EPC EP 1 293 727 A describes some methods for using such a burner controller calibrate.
  • the calibration causes the burner controller to adjust the setpoint curve of the burner Ionisationssignals to any changed circumstances, such as an unexpected Contamination or bending of the ionisation electrode, adapts.
  • the Adjustment of the setpoint curve over the power range changing size on which size through the burner controller as a function of measurement results is determined.
  • the required function constants are in advance in one Setting procedure has been determined and stored in the burner controller. Thus arises the setpoint curve of the ionization signal new.
  • the invention has for its object to propose a burner controller, which allows a reliable and accurate control of the air ratio.
  • the named The object is achieved by the features of claim 1.
  • the burner controller determines inventively first the current Fuel energy content. For example, this is done with the help of an additional sensor. In an advantageous embodiment of the invention, however, a measure of the momentary Used actuator position, the burner controller comfortable anyway already a controlled variable is known. From a comparison with pre-stored Actuator positions for different fuel energy contents then results approximately the current energy content. By the way, these are stored Actuator settings for the burner type or burner system concerned once in a setting procedure, as already shown in EP-A-1'154'202, in such a way that with the different fuel energy contents in each case the desired air ratio was created.
  • the burner controller determines the then applicable nominal value for the signal of the combustion sensor. This can be done in different ways. For example, the burner controller iteratively adjusts the setpoint in small, predefined steps until an additional combustion sensor returns to the determines optimal air ratio.
  • the burner controller In an advantageous embodiment of the invention, however, are Data about desired signals of the combustion sensor at different Fuel energy content detected in advance and stored in the burner controller Service. In normal operation, the burner controller processes this data, for example in that he keeps running these wanted signals, the current one detected Fuel energy content added accordingly weighted. The result is the Setpoint for the combustion sensor signal.
  • FIG. 1 shows schematically the functional principle of an ionization evaluator 14 in a burner controller according to the invention.
  • a flame 1 is represented by a diode 1 a and a resistor 1 b.
  • an AC voltage of, for example, 230V is applied. If a flame 1 is present, because of the flame diode 1 a flows through a blocking capacitor 3 in the positive half-wave, a larger current than in the negative half-wave.
  • a positive DC voltage U B is formed on the blocking capacitor 3 between L and a resistor 2 mounted for the purpose of contact protection.
  • a direct current flows from N to the blocking capacitor 3.
  • the amount of direct current depends on U B and thus directly from the flame resistance 1 b.
  • the flame resistance 1 b also influences the alternating current through the Entkoppelwiderstand 4, but to varying degrees compared to the direct current.
  • Through the resistor 4 thus flows a direct current and an alternating current as described above.
  • the resistor 4 are now followed by a high pass 5 and a low pass 6.
  • the high-pass 5 the alternating current is filtered out and the DC component blocked.
  • the low-pass filter 6 b dependent on the flame resistance 1 b DC component is filtered out and the AC is blocked substantially.
  • the alternating current flowing from the high-pass filter 5 is amplified and a reference voltage U Ref is added.
  • the direct current flowing from the high-pass filter 6 is amplified with possibly small alternating current components and the reference voltage U Ref is added.
  • a comparator 9 emerging from the amplifier 7 AC voltage and emerging from the amplifier 8 DC voltage compared with each other and generates a pulse width modulated (PWM) signal. change If the amplitude of the mains voltage changes, alternating voltage and DC voltage in the same ratio, the PWM signal does not change.
  • PWM pulse width modulated
  • the monoflop 11 is triggered so that the output from the comparator 10 Pulse train is faster than the pulse duration of the monoflop. Thereby If no flame is present, it will appear constant at the output of the monoflop a 1. If a flame is present, the monoflop will not be triggered and on Output appears permanently a 0.
  • the retriggerable monoflop 11 thus forms a "missing pulse detector", which converts the dynamic on / off signal into a static on / off signal converts.
  • Both signals, the PWM signal and the flame signal can now be separated be further processed or linked by means of an OR gate 12.
  • the output of the OR gate 12 is a PWM signal when the flame is present. whose duty cycle is a measure of the flame resistance 1b.
  • the PWM signal forms an ionisation signal 13, which corresponds to a regulator 26 shown in FIG is supplied. If there is no flame, the output of the OR gate 12 permanently on 1.
  • the lonisationssignal 13 can via a not shown Optocouplers are transmitted to a protective separation between the network side and to reach the protective low voltage side.
  • FIG. 2 shows schematically a block diagram of a burner controller 15 according to the Invention, which largely as a part of the program to run in a microprocessor can be designed.
  • the burner system is a performance requirement 22, which provides a certain Air supply corresponds.
  • the air supply is a measure of the Burner output.
  • To accurately provide this air supply measure a non-illustrated Control circuit with a differential pressure sensor over an air resistance in the exhaust duct the burner system the air volume flow. Due to a resulting Differential pressure signal 20, the control circuit, the engine speed of an air blower 19th Because the differential pressure signal 20 is an accurate measure of the instantaneous air supply It is also used as an input parameter for the airflow control. you also had a controlled speed of the blower motor, a measured Valve position, or choose another controlled variable. Finally, the Supply of a fuel gas to the burner adapted to the current air supply, that the air ratio is correct. For this purpose, the burner controller 15 generates a control signal 18, the directly or indirectly, for example via an engine, a gas valve 17 provides. Usually in the gas supply channel still a mechanical pressure regulator is present.
  • the differential pressure signal 20 is passed through a filter 21 to a control unit 23.
  • control signal 24 and 25 for a lean, or a fat gas.
  • a regulator 26 weighted and adds the two control signals and thus determines the control signal 18. This Processing of the control signals depends on the Ionisationssignal 13, with his the desired air ratio as possible corresponding to the desired value is compared.
  • the ionization signal 13 of an ionization electrode 16 inserted in the flame 1 is generated by the ionization evaluator 14. It will be started by the controller 26 first smoothed by a low-pass filter 27, to glitches and flickering suppress. A comparison unit 28 then subtracts one by one Correction unit 29 delayed setpoint signal 30. In the next step, generate a downstream proportional controller 31 and a parallel integrating unit 32 a internal control value x for the weighting of the two control signals 24 and 25. About the Control signal 18 causes the internal control value x that the difference between Ionisationssignal 13 and its setpoint signal 30 is zeroed out.
  • the control value x also makes a good Measure of the energy content of the currently fed gas there, that of its Composition and pressure depends, with the lean and the fat gas of the two control signals 24 and 25 form the reference.
  • the control unit 23 data about the desired ionisation signals, also in the form of two characteristics as a function of the differential pressure signal 20th
  • the control unit 23 generates the present Differential pressure two reference signals from which the setpoint signal 30 is formed.
  • the Reference signals by a proportional measure of its energy content, namely the Control value x, weighted and added up.
  • the Beeriereregelung contains two feedbacks and must therefore by appropriate choice of the settings of the proportional controller 31 and the Integrating unit 32 have a dynamic damping, thus a oscillation-friendly behavior is avoided.
  • the control value x is also fed to a calibration unit 36.
  • the calibration unit 36 includes a clock that triggers calibrations at regular intervals. When it is again So far, the calibration unit 36 brings first the glossangive 22 and thus the input parameter of the air ratio control to fixed, preset values. Then In a first step, it raises the setpoint signal 30 to put the system in sensitive work area slightly closer to the stochastic combustion point with the Air ratio equal to 1 to bring. Thereafter, the calibration unit 36 detects the value x1 of steady control value x.
  • the calibration unit 36 increases the Reference signal 30 again.
  • the controller 26 regulates the actuating signal 18 Reduce the control value x to a somewhat richer combustion.
  • 16 seconds when the control value x has settled again its new value x2 is recorded.
  • the calibration unit 36 also calculates one Expected value 40 for the new value x2, namely from a polynomial winding third order of the value x1, their constants in a setting method for the Burner type determined and stored as characteristics in the burner controller. Of the Expected value 40 is subtracted from the actually detected value x2.
  • a possible Difference is an indication that the air ratio in normal operation is not theirs desired value and the combustion was too lean or too rich.
  • the Calibration unit 36 indicate an emergency operation, or even the burner operation switch off.
  • the calibration unit 36 also averages by an exponential weighting the difference value with the mean of the difference values from the earlier ones Calibrations, so that the younger weigh heavier than the older. If the newly created average exceeds a low threshold, then the Calibration unit 36, the generation of the reference signals in the control unit 23, in they each with the two characteristic curves over the entire differential pressure range small value is added or subtracted. As a result, the higher shifts Characteristic more than the lower up, or down. After that should the combustion in normal operation a little fatter, or designed leaner be. Repeated calibration causes the air ratio to become iterative during normal operation move to their desired value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Combustion (AREA)

Claims (8)

  1. Régulateur de brûleur (15) qui évalue le signal d'un capteur de combustion et règle un organe de réglage pour l'apport de combustible ou pour l'apport d'air par comparaison du signal avec sa valeur de consigne, le régulateur de brûleur déterminant la valeur de consigne à l'aide d'une mesure pour la puissance momentanée du brûleur,
    caractérisé en ce que
    le régulateur de brûleur (15) détermine la valeur de consigne au moins également à l'aide d'une mesure pour le contenu énergétique momentané du combustible.
  2. Régulateur de brûleur selon la revendication 1,
    caractérisé en ce que
    le régulateur de brûleur (15) détermine la valeur de consigne au moins également par traitement de données sur des signaux souhaités du capteur de combustion pour différents contenus énergétiques du combustible à l'aide de la mesure pour le contenu énergétique momentané du combustible.
  3. Régulateur de brûleur selon l'une des revendications précédentes,
    caractérisé en ce que
    le régulateur de brûleur (15) dérive la mesure pour le contenu énergétique momentané du combustible d'une mesure pour la position momentanée de l'organe de réglage et de données sur des positions souhaitées de l'organe de réglage pour différents contenus énergétiques du combustible.
  4. Régulateur de brûleur selon l'une des revendications précédentes,
    caractérisé en ce que
    le capteur de combustion est une électrode d'ionisation (16) située dans la flamme.
  5. Procédé d'ajustage pour un régulateur de brûleur selon la revendication 2,
    caractérisé en ce que
    l'on équipe un brûleur d'un capteur de combustion, d'un organe de réglage, d'un régulateur de brûleur (15) et d'un capteur de test pour constater la qualité de la combustion,
    l'on fait fonctionner le brûleur avec un premier combustible avec un certain contenu énergétique, respectivement avec différentes positions de l'organe de réglage tout en obtenant, à l'aide des résultats du capteur de test, une valeur de signal du capteur de combustion souhaitée et en constatant des données sur cela,
    l'on fait fonctionner le brûleur avec un deuxième combustible avec un contenu énergétique différent, respectivement avec différentes positions de l'organe de réglage tout en obtenant, à l'aide des résultats du capteur de test, une valeur de signal du capteur de combustion souhaitée et en constatant des données sur cela et
    l'on met les données constatées en mémoire dans un régulateur de brûleur (15).
  6. Procédé d'ajustage selon la revendication 5,
    caractérisé en ce que
    l'on répète les modes de fonctionnements du brûleur au moins partiellement à différentes valeurs de l'apport non influencé par l'organe de réglage.
  7. Procédé d'ajustage selon l'une des revendications 5 et 6,
    caractérisé en ce que
    le contenu énergétique spécifique d'un combustible est d'au moins 7 % supérieur à celui d'un autre combustible.
  8. Procédé d'ajustage selon l'une des revendications 5, 6 et 7,
    caractérisé en ce que
    l'on exécute les modes de fonctionnement du brûleur au moins partiellement de manière telle que l'on obtient également, à l'aide des résultats du capteur de test, une valeur de réglage souhaitée de l'organe de réglage et constate des données sur cela.
EP02019917A 2002-09-04 2002-09-04 Regulateur de brûleur et procédé pour ajuster un regulateur de brûleur Revoked EP1396681B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE50205205T DE50205205D1 (de) 2002-09-04 2002-09-04 Brennerkontroller und Einstellverfahren für einen Brennerkontroller
EP02019917A EP1396681B1 (fr) 2002-09-04 2002-09-04 Regulateur de brûleur et procédé pour ajuster un regulateur de brûleur
US10/654,152 US20050250061A1 (en) 2002-09-04 2003-09-03 Burner controller and adjusting method for a burner controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP02019917A EP1396681B1 (fr) 2002-09-04 2002-09-04 Regulateur de brûleur et procédé pour ajuster un regulateur de brûleur

Publications (2)

Publication Number Publication Date
EP1396681A1 EP1396681A1 (fr) 2004-03-10
EP1396681B1 true EP1396681B1 (fr) 2005-12-07

Family

ID=31502723

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02019917A Revoked EP1396681B1 (fr) 2002-09-04 2002-09-04 Regulateur de brûleur et procédé pour ajuster un regulateur de brûleur

Country Status (3)

Country Link
US (1) US20050250061A1 (fr)
EP (1) EP1396681B1 (fr)
DE (1) DE50205205D1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4435322A1 (fr) 2023-03-24 2024-09-25 Siemens Aktiengesellschaft Régulation d'un dispositif de combustion

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1510758A1 (fr) * 2003-08-29 2005-03-02 Siemens Building Technologies AG Procédé de réglage et/ou commande d'un brûleur
DE10341543A1 (de) * 2003-09-09 2005-04-28 Honeywell Bv Regelungsverfahren für Gasbrenner
DE102005056629B4 (de) * 2005-11-25 2007-08-02 Gvp Gesellschaft Zur Vermarktung Der Porenbrennertechnik Mbh Brenneranordnung
JP5563976B2 (ja) * 2007-05-25 2014-07-30 タイアックス エルエルシー 燃料燃焼システム、燃焼方法及びバーナー
WO2009110015A1 (fr) * 2008-03-07 2009-09-11 Bertelli & Partners S.R.L. Procédé et dispositif perfectionnés pour détecter la flamme dans un brûleur fonctionnant avec un combustible solide, liquide ou gazeux
US20100112500A1 (en) * 2008-11-03 2010-05-06 Maiello Dennis R Apparatus and method for a modulating burner controller
DE102009010611A1 (de) * 2009-02-25 2010-08-26 Siemens Aktiengesellschaft Vorrichtung und Verfahren zur Steuerung einer mit mehreren Brennern ausgestatteten Turbine für flüssige oder gasförmige Brennstoffe
US20110271880A1 (en) * 2010-05-04 2011-11-10 Carrier Corporation Redundant Modulating Furnace Gas Valve Closure System and Method
DE102010055567B4 (de) * 2010-12-21 2012-08-02 Robert Bosch Gmbh Verfahren zur Stabilisierung eines Betriebsverhaltens eines Gasgebläsebrenners
DE102016123041B4 (de) * 2016-11-29 2023-08-10 Webasto SE Brennstoffbetriebenes Fahrzeugheizgerät und Verfahren zum Betreiben eines brennstoffbetriebenen Fahrzeugheizgerätes
EP3814684B1 (fr) 2018-06-28 2024-07-17 ClearSign Technologies Corporation Brûleur comprenant un capteur de flamme de permittivité électrique ou de capacité électrique
US20230062854A1 (en) * 2021-08-25 2023-03-02 Grand Mate Co., Ltd. Gas appliance and a control method thereof
CN114060841A (zh) * 2021-11-02 2022-02-18 中国船舶重工集团公司第七0三研究所 一种锅炉燃油压差控制方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3722811A (en) * 1971-07-13 1973-03-27 Phillips Petroleum Co Method and apparatus for controlling the flow of multiple streams
US4588372A (en) * 1982-09-23 1986-05-13 Honeywell Inc. Flame ionization control of a partially premixed gas burner with regulated secondary air
DE3408397A1 (de) * 1984-03-08 1985-09-19 Ruhrgas Ag, 4300 Essen Verfahren und anordnung zur bestimmung des mischungsverhaeltnisses eines ein sauerstofftraegergas und einen brennstoff enthaltenden gemisches
US4576570A (en) * 1984-06-08 1986-03-18 Republic Steel Corporation Automatic combustion control apparatus and method
CA2072122A1 (fr) * 1989-10-30 1991-05-01 Ulrich Bonne Dispositif de reglage de la combustion, a base de micropont
DE59604283D1 (de) * 1995-10-25 2000-03-02 Stiebel Eltron Gmbh & Co Kg Verfahren und Schaltung zur Regelung eines Gasbrenners
US5993194A (en) * 1996-06-21 1999-11-30 Lemelson; Jerome H. Automatically optimized combustion control
US6289871B1 (en) * 1998-03-06 2001-09-18 Caterpillar Inc. Method for achieving minimum liquid pilot fuel delivery to each cylinder of a dual fuel engine while operating in a dual fuel mode
US6129542A (en) * 1999-05-21 2000-10-10 Gas Research Institute Dual mode pilot burner
DE10025769A1 (de) * 2000-05-12 2001-11-15 Siemens Building Tech Ag Regeleinrichtung für einen Brenner
DE10113468A1 (de) * 2000-09-05 2002-03-14 Siemens Building Tech Ag Regeleinrichtung für einen Luftzahlgeregelten Brenner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4435322A1 (fr) 2023-03-24 2024-09-25 Siemens Aktiengesellschaft Régulation d'un dispositif de combustion

Also Published As

Publication number Publication date
US20050250061A1 (en) 2005-11-10
EP1396681A1 (fr) 2004-03-10
DE50205205D1 (de) 2006-01-12

Similar Documents

Publication Publication Date Title
EP1396681B1 (fr) Regulateur de brûleur et procédé pour ajuster un regulateur de brûleur
EP2466204B1 (fr) Dispositif de réglage pour une installation de brûleur
EP1154202B2 (fr) Dispositif de commmande pour un brûleur
WO2003023283A1 (fr) Systeme de commande de bruleur et procede pour le regler
DE69935369T2 (de) Beatmungsgerät für die Überwachung eines Atmungsventil
DE102016220850B3 (de) Verfahren zum Betreiben einer Antriebseinrichtung sowie entsprechende Antriebseinrichtung
DE3028941C2 (de) Verfahren zur Steuerung einer Brennkraftmaschine mit einem Klopfdetektor
EP2549187B1 (fr) Procédé et dispositif de régulation du facteur d'air d'un brûleur
EP1154203B1 (fr) Dispositif de mesure pour une flamme
EP0770824A2 (fr) Procédé et circuit pour commander un brûleur à gaz
DE102012019907B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine mit einer Abgasreinigungseinrichtung sowie entsprechende Brennkraftmaschine
EP2495496A1 (fr) Installation de brûleur
DE4219339A1 (de) Stoerungssuchsystem fuer abgasrueckfuehrungsregler
DE102012211687A1 (de) Verfahren und Steuereinheit zur Erkennung eines Spannungsoffsets einer Spannungs-Lambda-Kennlinie
EP0287599B2 (fr) Capteur pour commander des clapets de circulation d'air sur des vehicules a moteurs
EP3045816B1 (fr) Dispositif de commande d'une installation de brûleur
DE2208040C3 (de) Regelschaltung für die Prozeßtemperatur einer Gasturbine
DE3840247A1 (de) Messvorrichtung fuer das luft-kraftstoff-mischungsverhaeltnis fuer eine brennkraftmaschine
EP1880096B1 (fr) Procede et dispositif de commande electrique d'une soupape au moyen d'un element de fermeture mecanique
DE19905709A1 (de) Verfahren zum Erkennen eines Lampenausfalls und Lampenausfalldetektionsvorrichtung
EP1342901B1 (fr) Procédé de détection de fuites dans un collecteur d'admission d'un moteur à combustion interne
DE10334922A1 (de) Ungeregeltes Kraftstoffzufuhrsteuergerät
EP1638062A1 (fr) Détecteur de fumée à aspiration et méthode de son fonctionnement
DE19839160A1 (de) Verfahren und Schaltung zur Regelung eines Gasbrenners
EP3767174B1 (fr) Procédé et dispositif d'étalonnage ultérieur d'un système de mesure permettant de réguler un mélange gaz-air de combustion dans un appareil de chauffage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040910

AKX Designation fees paid

Designated state(s): DE FR GB IT NL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS SCHWEIZ AG

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50205205

Country of ref document: DE

Date of ref document: 20060112

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060316

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: STIEBEL ELTRON GMBH & CO.KG

Effective date: 20060906

NLR1 Nl: opposition has been filed with the epo

Opponent name: STIEBEL ELTRON GMBH & CO.KG

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070910

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071122

Year of fee payment: 6

Ref country code: IT

Payment date: 20070925

Year of fee payment: 6

Ref country code: NL

Payment date: 20070913

Year of fee payment: 6

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070918

Year of fee payment: 6

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20080118

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20080118

NLR2 Nl: decision of opposition

Effective date: 20080118