EP1391898B1 - Composant électrique multicouche - Google Patents

Composant électrique multicouche Download PDF

Info

Publication number
EP1391898B1
EP1391898B1 EP20030017396 EP03017396A EP1391898B1 EP 1391898 B1 EP1391898 B1 EP 1391898B1 EP 20030017396 EP20030017396 EP 20030017396 EP 03017396 A EP03017396 A EP 03017396A EP 1391898 B1 EP1391898 B1 EP 1391898B1
Authority
EP
European Patent Office
Prior art keywords
electrodes
multilayer
component according
electrode
inner electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20030017396
Other languages
German (de)
English (en)
Other versions
EP1391898A1 (fr
Inventor
Thomas Feichtinger
Horst Schlick
Markus Ortner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Electronics AG
Original Assignee
Epcos AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epcos AG filed Critical Epcos AG
Publication of EP1391898A1 publication Critical patent/EP1391898A1/fr
Application granted granted Critical
Publication of EP1391898B1 publication Critical patent/EP1391898B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/18Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material comprising a plurality of layers stacked between terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/105Varistor cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the invention relates to an electrical multilayer component with a main body, comprising a stack of superimposed dielectric layers with intermediate electrode layers.
  • the known device has the disadvantage that in a single body only a single electrical function, namely the function of a single varistor is realized.
  • a single electrical function namely the function of a single varistor is realized.
  • it is therefore necessary to use a large number of components which require a correspondingly large space on the circuit board.
  • this increases the assembly effort in a disadvantageous manner.
  • the invention provides an integrated multilayer electrical component in which a plurality of individual components with minimized parasitic capacitance and simultaneously minimized inductance is realized by providing gaps between internal electrodes. By grounded shielding internal electrodes and the crosstalk behavior is improved at high-frequency signals.
  • an electrical multilayer component having a base body.
  • the main body contains a stack of superimposed dielectric layers, between which electrode layers are arranged, wherein the stack comprises at least one electrode layer.
  • the main body has two opposite side surfaces running along the stacking direction.
  • inner electrodes are provided, which are connected to one of the outer electrodes.
  • the inner electrodes are each formed in the same electrode layer with a distance g in pairs opposite one another.
  • Multilayer electrodes are formed from the internal electrodes, which are formed in different electrode layers and connected to the same external electrode. All internal electrodes of a multilayer electrode overlap each other. In the following, only multilayer electrodes will be referred to, even if in the limiting case they comprise only one inner electrode.
  • the multilayer electrodes are formed opposite each other in pairs.
  • Multilayer electrodes, which are connected to different outer electrodes, are offset from each other laterally or in the longitudinal direction (transversely to the stacking direction and transverse to the axis connecting the two mutually associated multilayer electrodes), are spaced apart by a gap and do not overlap.
  • At each side surface at least two outer electrodes are arranged, which are each connected to a multilayer electrode.
  • multilayer component so at least two each two multilayer electrodes comprising individual components are formed.
  • the multilayer component has the advantage that opposing multilayer electrodes do not overlap each other. This makes it possible to form a capacitor from two opposite multilayer electrodes, which has a very low capacitance. Surprisingly, it has also been shown that the multilayer component has a reduced inductance compared to a single component. This is attributed to the reduced length of the non-overlapping internal electrodes.
  • the multilayer component thus forms an array of individual components to be operated independently of one another, between which only slight crosstalk takes place. Capacitive and other couplings between the individual components of the multilayer component according to the invention are minimized.
  • the multilayer component can also be associated with another type of component and can be designed, for example, as a multilayer varistor.
  • the multilayer component further has the advantage that at least four multilayer electrodes are arranged in the base body. This makes it possible to integrate one of a plurality of electrical functions in the multilayer component. Depending on which material is selected for the dielectric layers, for example, the arrangement of at least two multilayer varistors or of at least two multilayer capacitors can be realized with a single multilayer component.
  • a multilayer component is advantageous in which electrically conductive constituents of multilayer electrodes located next to one another are spaced apart from one another by a gap.
  • This gap has the width f.
  • electrically conductive components of opposite multilayer electrodes are spaced apart by a gap of width g.
  • a gap is to be understood as meaning a section in the main body which is free of electrode material, ie of electrically conductive material.
  • the gap is not necessarily filled with air, but may also be filled by material of the dielectric layers.
  • another multilayer electrode may be provided, the inner electrodes of which run in the gap between opposing multilayer electrodes and whose outer electrodes are arranged on the end face of the base body.
  • a feedthrough component can be realized in which, for example, four multilayer electrodes arranged on the side surfaces have a common ground electrode which is led out of the base body at one of the end faces or also at both end faces of the base body.
  • this embodiment provides the advantage that an internal interconnection of a plurality of multilayer electrodes can be realized with the aid of multilayer electrodes brought out of the main body at the end face.
  • the board to be populated later with the multilayer component reduces the wiring and wiring effort, which additionally saves space on the board.
  • a multilayer component is provided, the multilayer electrodes of which have different numbers of electrode layers or internal electrodes. This makes it possible to integrate capacitors or varistors into the multilayer component whose capacitance is different from one another, which increases the range of variation achievable with the multilayer component.
  • multilayer electrodes are provided, the inner electrodes of which have different areas in the multilayer component. This also makes it possible to integrate a large variety of components in the multilayer component.
  • the diversity of the device can be increased by providing electrode layers whose lengths are different from each other.
  • dielectric layers are present in the base body whose dielectric constant is different from one another. This can also increase the component diversity.
  • the dielectric layers contain a ceramic material with a varistor effect.
  • ceramic materials containing ZnO-Bi or ZnO-Pr may be considered.
  • Such dielectric layers have the advantage that, in addition to the capacitor, they integrate a varistor into the multilayer component as a further component.
  • the dielectric layers may contain a barium titanate-based capacitor ceramic.
  • a dielectric layer is for example a so-called “C0G” ceramic into consideration. But it is also a “X7R” ceramic into consideration, for example, doped barium titanate.
  • electrode layers are provided, which are formed on the inner sides concave or convex.
  • internal electrodes are provided which have tips, wherein the tips of mutually associated multilayer electrodes face one another.
  • stacks of superimposed electrode layers are arranged in a gap.
  • the number of gaps between two multilayer electrodes can be increased by inserting further internal electrodes.
  • the capacitance of a multilayer capacitor can be further reduced.
  • the electrode layers of a stack arranged in a gap can be arranged offset relative to the inner electrodes of a multilayer electrode. This succeeds in further reducing the capacity.
  • the base body of the multilayer component may be a base body whose base area is less than 5.2 mm 2 . Then, the multilayer component contains at least four multilayer electrodes.
  • the base of the body in such a way that it is smaller than 8 mm 2 .
  • at least four multilayer electrodes can be contained in the main body.
  • the electrode layers may consist, for example, of silver, palladium, platinum or also of an alloy of silver and platinum or of silver and palladium or contain such metals or alloys.
  • the electrode layers may also consist of copper or nickel or contain copper or nickel.
  • multilayer component inner electrodes are T-shaped.
  • multilayer component inner electrodes are U-shaped.
  • FIG. 1 shows a main body 1 of length 1 and width b.
  • the main body 1 has the shape of a cuboid. He points two opposite side surfaces 41, 42 on. On each side surface 41, 42 two outer electrodes 71, 72, 73, 74 are respectively arranged. On the side surface 41, the outer electrodes 71, 73 are arranged. On the side surface 42, the outer electrodes 72, 74 are arranged. The outer electrodes are applied by screen printing a metal-containing paste.
  • the main body 1 extends with its greatest extent preferably in the longitudinal direction, which is indicated by the arrow.
  • FIG. 2 shows the component from FIG. 1 in a side view. In the direction of the arrow, the length d of the outer electrodes 71, 73 is measured. The height of the component is s.
  • FIG. 3 shows a longitudinal section through the component according to FIG. 2 parallel to the layer plane of an electrode layer. It comprises stacks of internal electrodes 31, 32, 33, 34 which lie one above the other. Each stack of internal electrodes 31, 32, 33, 34 is electrically contacted with a respective common external electrode 71, 72, 73, 74. Each arrangement of inner electrodes 31, 32, 33, 34 together with the corresponding outer electrode 71, 72, 73, 74 forms a multilayer electrode 51, 52, 53, 54.
  • Along each side surface 41, 42 are the outer electrodes of two multilayer electrodes 51, 53, respectively ; 52, 54 arranged. Two multilayer electrodes 51, 52; 53, 54 are opposite each other in the device.
  • Lateral mutually adjacent multilayer electrodes 51, 53 are spaced apart by a gap 83 with respect to all their electrically conductive components, including the outer electrodes 51, 53 and all the electrode layers 31, 33 count.
  • the width of the gap 83 is denoted by f.
  • the multilayer electrodes 51, 53 of different pairs are laterally spaced from each other by the gap 82. Also opposing multilayer electrodes 53, 54 each of a pair are spaced apart by gaps 81, 84.
  • the Columns 81, 84 need not necessarily have the same width g.
  • Figure 3 relates to the spacing of opposing multilayer electrodes 53, 54; 51, 52 at the same time the spacing with respect to their internal electrodes 34, 33; 32, 31.
  • Figure 3 is still a section in the form of a dashed rectangle with B, which is shown in other figures in other variations.
  • FIG. 4 shows a section along the line C-C of Figure 3.
  • the dielectric layers 2 are shown.
  • the dielectric layers are stacked on top of each other.
  • inner electrodes 31, 32 are arranged.
  • the component shown in FIG. 4 can advantageously be produced by laminating a plurality of dielectric layers, for example ceramic green sheets, with internal electrodes 31, 32 applied therebetween by screen printing, and then pressing and sintering the film stack. Subsequently, the outer electrodes 71, 72 are applied to the base body 1.
  • the internal electrodes 31 belonging to the multilayer electrode 51 are shown. They are in the form of a stack 61 on top of each other.
  • the inner electrodes 32, which belong to the multilayer electrode 52 are in the form of a stack 62 one above the other.
  • the inner electrodes 31, 32 are spaced apart by a gap 81 of width g.
  • Figure 5 shows a representation corresponding to Figure 3 with the difference that a further multilayer electrode 59 is provided which comprises a stack of superimposed internal electrodes 39.
  • the inner electrodes 39 extend from one end face 92 to the opposite end face 91 of the main body. They are each electrically connected to common external electrodes 791, 792.
  • the geometry shown in Figure 5 can be realized as a feedthrough component.
  • the internal electrodes 39 may be, for example to a common ground terminal 791, 792 which is common to all four multilayer electrodes 51, 52, 53, 54. It should be noted that the definition of the width g is the same as in FIG. 3.
  • Figure 19 shows a variation of Figure 5, in which the further inner electrode 39 not only in the space between opposed inner electrodes 51, 52; 53, 54 is arranged, but is formed in a cross shape and also in the gap between each other in the longitudinal direction adjacent inner electrodes 51 and 53 or 52 and 54 extends.
  • the further inner electrode 39 can be connected to ground and thus acts as a shield for decoupling and reduces crosstalk.
  • the further inner electrode 39 can each be in the same electrode layer as the remaining inner electrodes 51, 52; 53, 54; 51, 53, 52 and 54 be realized, or even in intermediate levels.
  • FIG. 6 shows a further variation of the illustration from FIG. 3. It can be clearly seen in FIG. 6 that the internal electrodes 32, 34 have different lengths L1, L2. As a result, the capacity of multilayer capacitors can be varied.
  • FIG. 7 shows a further variation of FIG. 3, wherein eight multilayer electrodes are integrated in a basic body.
  • FIG. 7 shows the multilayer electrodes 51, 52, 53, 54, 55, 56, 57, 58. They are formed from external electrodes 71, 72, 73, 74, 75, 76, 77, 78.
  • the external electrodes 71 are located , 73, 75, 77 on one and the same side surface of the main body.
  • the outer electrodes 72, 74, 76, 78 are located on the opposite side surface.
  • Two outer electrodes 71, 72; 73, 74; 75, 76; 77, 78 are arranged opposite one another. In each case, two opposing outer electrodes and the two multilayer electrodes connected to them form, for example, a multilayer capacitor.
  • FIG. 8 shows a further variation of the illustration from FIG. 3, wherein the internal electrodes 31, 32, 33, 34 are L-shaped.
  • the long legs of the L each extend parallel to the axis connecting the two outer electrodes.
  • the internal electrodes 31 and 33 which are shown unshaded, are connected to earth, that is to say they constitute ground electrodes.
  • the ground electrodes are arranged between the hatched potential-carrying internal electrodes 32 and 34 and shield them from each other. This further improves decoupling.
  • Figure 9 shows a variation of the embodiment of Figure 8, wherein not four but eight multilayer electrodes and corresponding internal electrodes 31, 32, 33, 34, 35, 36, 37, 38, which are all L-shaped, are integrated in a base body.
  • FIG. 10 shows a variation with respect to FIG. 9, in which the multilayer electrodes arranged on a side surface of the basic body have internal electrodes 32, 34, 36, 38 in the form of a U and are connected to ground.
  • the arranged on the opposite side surface inner electrodes 31, 33, 35, 37 are T-shaped.
  • the arrangement of the inner electrodes 31, 32, 33, 34, 35, 36, 37, 38 to each other is designed so that the middle leg of the T is disposed between the legs of the U.
  • the potential-carrying internal electrodes 31, 33, 35, 37 are shielded from one another by the ground-connected U-shaped internal electrodes.
  • the definition of the gap width g is again shown in FIG. 10, wherein the gap width 81 between internal electrodes 31, 32 is dimensioned in the longitudinal direction of the base body according to FIG.
  • the T-shaped Internal electrodes 32, 34, 36, 38 may have the same or different lengths as shown in the figure.
  • FIG. 11 shows a variation of the illustration from FIG. 10, wherein the T-shaped inner electrodes 31, 32, 35, 37 are designed with different lengths L1, L2 with respect to the middle section of the T.
  • the length of the legs of the U-shaped internal electrodes 32, 34, 36, 38 remain unchanged, are connected to ground and thus ensure an unchanged good shielding and decoupling of adjacent internal electrodes.
  • FIG. 18 shows a variation of the illustrations from FIGS. 8 and 10, wherein the potential-carrying internal electrodes are combined to form a common internal electrode 33 which almost completely fills the space between opposing internal electrodes.
  • the common inner electrode 33 surrounds the potential-carrying T-shaped inner electrodes 32, 34, 36 in a U-shape and thus ensures good shielding and decoupling of the inner electrodes 32, 34, 36.
  • FIG. 12 shows a variation of the illustration from FIG. 4, wherein the internal electrodes 61, 62 have different lengths L1, L2 from one another.
  • the width of the gap 81 between the multilayer electrodes 51, 52 is determined by those internal electrodes 31, 32 which have the smallest distance from each other.
  • FIG. 13 shows a variation of the illustration of FIG. 12, in which the internal electrodes 31, 32 are greatly shortened, resulting in a very wide gap 81 between opposite multilayer electrodes.
  • the gap 81 further stacks 63, 64, 65 of superimposed internal electrodes 3 are arranged. This creates a series connection of several sub-columns, which make it possible to reduce the capacitance of the capacitors even further.
  • FIG. 14 shows a variation of the illustration from FIG. 13, wherein the inner electrodes 3 of the stacks 63, 64, 65 are offset in height relative to the inner electrodes of the stacks 61, 62, ie are arranged in different layers of the stack. As a result, the capacitance of the capacitor can advantageously be further reduced.
  • FIG. 15 shows a variation of the detail B from FIG. 3, wherein the internal electrodes 31, 32 are concave. They form at their ends in each case two tips 102, 101; 103, 104.
  • FIG. 16 shows a further variation to the detail B in FIG. 3.
  • the internal electrodes 31, 32 are convex.
  • FIG. 17 shows a further variation of the detail B from FIG. 3.
  • the internal electrodes 31, 32 are each provided with a tip 101 or 102 in a middle region.
  • the invention is not limited to capacitors and varistors, but includes multilayer components of all kinds.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Claims (19)

  1. Composant électrique à plusieurs couches
    - comprenant un corps 1 de base monolithique, dans lequel sont disposées en alternance les unes sur les autres des couches (2) de diélectrique et une ou plusieurs couches (3, 31, 32, 33, 34, 35, 36, 37, 38, 39) d'électrodes formées de la même façon ;
    - dans lequel le corps (1) de base a deux surfaces (41, 42) latérales opposées l'une à l'autre s'étendant dans la direction d'empilement ;
    - dans lequel il est prévu au moins quatre électrodes (51, 53 ; 52, 54) extérieures sur chacune des surfaces (41, 42) latérales ;
    - comprenant une pluralité d'électrodes (51, 52, 53, 54, 55, 56, 57, 58) intérieures qui sont constituées dans la couche d'électrodes de manière à être disposées en étant opposées l'une à l'autre par paire à une distance g et qui sont reliées, respectivement, à l'une des électrodes extérieures ;
    - dans lequel toutes les électrodes (3, 31, 32, 33, 34, 35, 36, 37, 38, 39) intérieures disposées dans diverses couches d'électrodes et reliées à la même électrode extérieure se chevauchent et forment ainsi une électrode (51) à plusieurs couches ;
    - dans lequel les électrodes intérieures d'une électrode (51) à plusieurs couches sont à distance des électrodes (32, 33) intérieures des autres électrodes (52, 53) à plusieurs couches par des intervalles (81, 82) de largeur f s'étendant latéralement aux couches (31, 32, 33, 34) ;
    - dans lequel on a : f ≥ 1,3 g.
  2. Composant suivant la revendication 1,
    dans lequel il est prévu une autre électrode (59) à plusieurs couches dont les électrodes (39) intérieures s'étendent dans l'intervalle (81) compris entre des électrodes (31, 32) intérieures opposées et dont les électrodes (791, 792) extérieures sont disposées sur une surface (91, 92) frontale du corps (1) de base.
  3. Composant suivant la revendication 1 ou 2,
    dans lequel il est prévu des électrodes (51, 52, 53, 54, 55, 56, 57, 58) à plusieurs couches ayant un nombre différent de couches (31, 32, 33, 34, 35, 36, 37, 38) d'électrodes.
  4. Composant suivant l'une des revendications 1 à 3,
    dans lequel il est prévu des électrodes (51, 52, 53, 54, 55, 56, 57 ; 58) à plusieurs couches dont les électrodes (31, 32, 33, 34, 35, 36, 37, 38) intérieures ont des surfaces différentes.
  5. Composant suivant l'une des revendications 1 à 4,
    dans lequel il est prévu des électrodes (51, 52, 53, 54, 55, 56, 57, 58) à plusieurs couches dont les électrodes (31, 32, 33, 34, 35, 36, 37, 38) intérieures ont des longueurs (L1, L2) différentes.
  6. Composant suivant l'une des revendications 1 à 5,
    dans lequel il y a des couches (2) de diélectrique ayant des constantes diélectriques différentes.
  7. Composant suivant l'une des revendications 1 à 6,
    dans lequel les couches (2) diélectriques comprennent un matériau céramique à effet de varistance.
  8. Composant suivant la revendication 7,
    dans lequel les couches (2) diélectriques contiennent du ZnO-Bi ou du ZnO-Pr.
  9. Composant suivant l'une des revendications 1 à 8,
    dans lequel les couches (2) diélectriques contiennent une céramique de condensateur à base de titanate de baryum.
  10. Composant suivant l'une des revendications 1 à 9,
    dans lequel les côtés intérieurs des électrodes (31, 32) intérieures sont concaves ou convexes.
  11. Composant suivant l'une des revendications 1 à 10,
    dans lequel des électrodes (31, 32) intérieures ont des pointes (101, 102, 103, 104) sur les côtés intérieurs.
  12. Composant suivant l'une des revendications 1 à 11,
    dans lequel des piles (63, 64, 65) d'électrodes (3) intérieures superposées sont disposées dans un intervalle (81).
  13. Composant suivant la revendication 12,
    dans lequel les couches (3) d'électrodes d'une pile (63, 64, 65) disposée dans un intervalle (81) sont décalées par rapport aux couches (31, 32) d'une électrode (51, 52) à plusieurs couches.
  14. Composant suivant l'une des revendications 1 à 13,
    dans lequel le corps (1) de base a une surface (A) de base qui est plus petite que 5,2 mm2 et qui comporte au moins quatre électrodes (51, 52, 53, 54) à plusieurs couches.
  15. Composant suivant l'une des revendications 1 à 14,
    dans lequel le corps (1) de base a une surface (A) de base qui est plus petite que 8 mm2 et qui comporte au moins quatre électrodes (51 à 54) à plusieurs couches.
  16. Composant suivant l'une des revendications 1 à 15,
    dans lequel les couches (3, 31, 32, 33, 34, 35, 36, 37, 38) d'électrodes contiennent de l'Ag, du Pd, du Pt, du Cu, du Ni ou un alliage d'Ag et de Pd ou d'Ag et de Pt.
  17. Composant suivant l'une des revendications 1 à 16,
    dans lequel des électrodes (31, 32, 33, 34, 35, 36, 37, 38) intérieures sont en forme de L.
  18. Composant suivant l'une des revendications 1 à 17,
    dans lequel des électrodes (31, 32, 33, 34, 35, 36, 37, 38) intérieures sont en forme de T.
  19. Composant suivant l'une des revendications 1 à 18,
    dans lequel des électrodes (31, 32, 33, 34, 35, 36, 37, 38) intérieures sont en forme de U.
EP20030017396 2002-07-31 2003-07-31 Composant électrique multicouche Expired - Lifetime EP1391898B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10235011 2002-07-31
DE2002135011 DE10235011A1 (de) 2002-07-31 2002-07-31 Elektrisches Vielschichtbauelement

Publications (2)

Publication Number Publication Date
EP1391898A1 EP1391898A1 (fr) 2004-02-25
EP1391898B1 true EP1391898B1 (fr) 2006-09-13

Family

ID=30774964

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20030017396 Expired - Lifetime EP1391898B1 (fr) 2002-07-31 2003-07-31 Composant électrique multicouche

Country Status (2)

Country Link
EP (1) EP1391898B1 (fr)
DE (2) DE10235011A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080030922A1 (en) * 2004-09-27 2008-02-07 Matsushita Electric Industrial Co., Ltd. Multi-Layer Capacitor and Mold Capacitor
TWI277988B (en) * 2004-11-18 2007-04-01 Tdk Corp Multilayer capacitor
DE102004058410B4 (de) 2004-12-03 2021-02-18 Tdk Electronics Ag Vielschichtbauelement mit ESD-Schutzelementen
DE102005022142B4 (de) * 2005-05-12 2011-12-15 Epcos Ag Verfahren zur Herstellung eines elektrischen Durchführungsbauelementes
DE102006013227A1 (de) * 2005-11-11 2007-05-16 Epcos Ag Elektrisches Vielschichtbauelement
DE102007007113A1 (de) 2007-02-13 2008-08-28 Epcos Ag Vielschicht-Bauelement
DE102011014965B4 (de) * 2011-03-24 2014-11-13 Epcos Ag Elektrisches Vielschichtbauelement
DE102013102686A1 (de) * 2013-03-15 2014-09-18 Epcos Ag Elektronisches Bauelement

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5153554A (en) * 1990-05-08 1992-10-06 Raychem Corp. Low voltage varistor array
JP2767014B2 (ja) * 1992-04-22 1998-06-18 株式会社村田製作所 ノイズフィルタ
JP2985444B2 (ja) * 1991-10-25 1999-11-29 株式会社村田製作所 積層型バリスタ
JPH07169649A (ja) * 1993-12-16 1995-07-04 Tdk Corp 積層貫通型コンデンサアレイ
JPH08124800A (ja) * 1994-10-27 1996-05-17 Tdk Corp コンデンサアレイ
US5880925A (en) * 1997-06-27 1999-03-09 Avx Corporation Surface mount multilayer capacitor
JPH11204309A (ja) * 1998-01-09 1999-07-30 Tdk Corp 積層型バリスタ
JP2000331805A (ja) * 1999-05-19 2000-11-30 Matsushita Electric Ind Co Ltd 積層型セラミックアレイ
DE19931056B4 (de) * 1999-07-06 2005-05-19 Epcos Ag Vielschichtvaristor niedriger Kapazität
US6515842B1 (en) * 2000-03-30 2003-02-04 Avx Corporation Multiple array and method of making a multiple array
DE10064447C2 (de) * 2000-12-22 2003-01-02 Epcos Ag Elektrisches Vielschichtbauelement und Entstörschaltung mit dem Bauelement
DE10064445A1 (de) * 2000-12-22 2002-07-11 Epcos Ag Elektrisches Vielschichtbauelement und Anordnung mit dem Bauelement

Also Published As

Publication number Publication date
EP1391898A1 (fr) 2004-02-25
DE50305015D1 (de) 2006-10-26
DE10235011A1 (de) 2004-02-26

Similar Documents

Publication Publication Date Title
EP2143117B1 (fr) Composant électrique multicouche comportant une structure de blindage sans contact électrique
DE10139164B4 (de) Monolithische LC-Komponenten
DE4008507C2 (de) Laminiertes LC-Filter
DE19628890B4 (de) LC-Filter
DE4113576C2 (de) Vielschichtkondensator
EP1350257B1 (fr) Composant multicouche electrique et circuit antiparasites pourvu d'un tel composant
EP1606831B1 (fr) Composant multicouche electrique
DE2952441A1 (de) Laminiertes elektronisches bauteil und verfahren zur herstellung solcher bauteile
DE69823637T2 (de) Laminat-Varistor
EP1369880B1 (fr) Composant électrique multicouche et circuit
EP1425762B1 (fr) Composant multicouche electrique
EP1880399B1 (fr) Element de traversee electrique
EP1391898B1 (fr) Composant électrique multicouche
EP1369881B1 (fr) Composant électrique multicouche
EP1537655B1 (fr) Filtre de resonance multiple
DE102004010001A1 (de) Elektrisches Bauelement und schaltungsanordnung mit dem Bauelement
EP1560235B1 (fr) Composant multicouche électrique
EP1538641B1 (fr) Composant électrique et agencement de circuit
DE60036238T2 (de) Vielschicht-Keramikkondensator für dreidimensionale Montage
DE4410753C2 (de) Kondensator-Array
WO2003009311A1 (fr) Composant electroceramique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20040824

AKX Designation fees paid

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50305015

Country of ref document: DE

Date of ref document: 20061026

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20061213

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070614

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130723

Year of fee payment: 11

Ref country code: FR

Payment date: 20130719

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140731

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50305015

Country of ref document: DE

Representative=s name: EPPING HERMANN FISCHER PATENTANWALTSGESELLSCHA, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50305015

Country of ref document: DE

Owner name: TDK ELECTRONICS AG, DE

Free format text: FORMER OWNER: EPCOS AG, 81669 MUENCHEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220725

Year of fee payment: 20

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230521

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50305015

Country of ref document: DE