EP1390009A1 - Preparations cosmetiques - Google Patents

Preparations cosmetiques

Info

Publication number
EP1390009A1
EP1390009A1 EP02761899A EP02761899A EP1390009A1 EP 1390009 A1 EP1390009 A1 EP 1390009A1 EP 02761899 A EP02761899 A EP 02761899A EP 02761899 A EP02761899 A EP 02761899A EP 1390009 A1 EP1390009 A1 EP 1390009A1
Authority
EP
European Patent Office
Prior art keywords
acid
alcohol
oil
cosmetic preparations
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02761899A
Other languages
German (de)
English (en)
Inventor
Werner Seipel
Dagmar Goebels
Ludwig Schieferstein
Joachim Conradi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cognis IP Management GmbH
Original Assignee
Cognis Deutschland GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Deutschland GmbH and Co KG filed Critical Cognis Deutschland GmbH and Co KG
Publication of EP1390009A1 publication Critical patent/EP1390009A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/87Polyurethanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/12Preparations containing hair conditioners
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/283Compounds containing ether groups, e.g. oxyalkylated monohydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/48Thickener, Thickening system

Definitions

  • the invention is in the field of cosmetics and relates to preparations with polyether urethanes as viscosity and consistency enhancers.
  • Polyether urethanes are polymers that result from the reaction of alcohol ethoxylates with isocyanates or polyisocyanates.
  • the thickeners used in preparations for cosmetics and personal care must meet high requirements. First and foremost, they are well tolerated and, if possible, have biodegradability, so that many substances for use in cosmetics have to be excluded from the outset. Furthermore, they should be universal in aqueous, emulsoid, alcoholic and oil-based bases be usable, easy to process and lead to a rheology which enables easy use of the product, so that the preparations can be removed and distributed under clean and simple conditions.
  • the compatibility with numerous other auxiliaries, in particular with salts and surfactants, and also the incorporability of the thickener itself, and the other auxiliaries, should be present.
  • thickened preparations must have a constant rheology and physical and chemical quality even with long-term storage, temperature and pH changes.
  • these thickeners should still be inexpensive to manufacture and without a noticeable environmental impact. This complex profile of requirements makes it clear that even today there is still a need for new thickeners in the field of cosmetics.
  • the object of the present invention was therefore to provide cosmetic formulations which, after addition of only small amounts of a thickener, enable easy application and a pleasant feeling on the skin. They should be easy to spread on skin and hair without leaving a sticky feeling.
  • the formulations are said to have improved physical and chemical stability and good skin and scalp compatibility.
  • the viscosity and consistency sensor used should also be insensitive to ionic additives, other auxiliary substances, pH and temperature fluctuations.
  • the invention relates to cosmetic preparations which contain polyether urethane thickeners according to formula (I)
  • R 1 and R 2 independently of one another represent linear or branched alkyl and / or alkenyl radicals having 6 to 22 carbon atoms, x for numbers from 1 to 3 and m and n independently of one another for numbers from 10 to 100, and their use in Skin and hair care and cleansing.
  • cosmetic compositions in which polyether urethanes have been used as viscosity and consistency enhancers have an advantageous rheology.
  • the polyether urethanes used result in high thickening performance even in small quantities. It is also possible to thicken systems with low surfactant contents.
  • the rheology of the formulations remains unchanged even after prolonged storage and at changing temperatures.
  • the formulations are well tolerated by the skin and scalp.
  • the small amounts of polymers lead to a pleasant, non-sticky feeling on the skin, so that sticking of hair is also avoided.
  • the preparations show good physical and chemical stability even at high salt concentrations.
  • Polyether urethanes are polymers that result from the reaction of alcohol ethoxylates with isocyanates or polyisocyanates.
  • Alcohol ethoxylates are referred to as fatty alcohol or oxo alcohol ethoxylates for production reasons and preferably follow the formula (II),
  • R 1 is a linear or branched alkyl and / or alkenyl radical having 6 to 22 carbon atoms and n is a number from 1 to 100.
  • Typical examples of the alcohol ethoxylates used in the polyether urethanes according to the invention are the adducts of an average of 10 to 100, preferably 30 to 80 and in particular 40 to 60 moles of ethylene oxide with capron alcohol, caprylic alcohol, 2-ethylhexyl alcohol, capric alcohol, lauryl alcohol, isotridecyl alcohol , Myristyl alcohol, cetyl alcohol, palm oleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol and brassidyl alcohol as well as their technical blends based on, for example, high pressure hydrogenation Fats and oils or alde
  • Aromatic, hydroaromatic or aliphatic mono- or polyisocyanates can be used as isocyanates. Typical examples are toluenedoisocyanate, hexamethylene diisocyanate, 4.4 "triisocyanatotriphenylmethane, 4.4" -
  • diisocyanates such as trimethylhexamethylene diisocyanate, isophorone diisocyanate, methylenebis (4-cyclohexyl) diisocyanate, especially hexamethylene diisocyanate, and multiples of hexamethylene diisocyanate is preferred.
  • a diisocyanate is added in the reflux apparatus at 70 to 90 ° C., preferably 75 to 85 ° C. under a nitrogen atmosphere,
  • the end point should be an NCO value below 0.3% by weight, preferably below 0.1% by weight.
  • the average molecular weight of the polyether urethanes used in the invention is in the range from 4,000 to 20,000, preferably 5,000 to 15,000 and in particular 5,300 to 6,000.
  • the agents according to the invention can contain the polyether urethanes in amounts of 0.1 to 5% by weight, preferably 0.3 to 3 wt .-% and in particular 0.5 to 1 wt .-% - based on the total formulation - contain.
  • the viscosity of the formulation can be set precisely by selecting the polyether urethanes with the appropriate molecular weight using the units of ethylene oxide.
  • viscosities in the range from 100 to 1,000,000 mPa * s, preferably 1,000 to 50,000 mPa * s, particularly preferably 5,000 to 20,000 mPa * s can be set (Brookfield RVT viscometer, 10 rpm, spindle 4, room temperature)
  • Surfactant solutions in particular can be thickened well with the selected polyether urethanes, and the combination with alkyl (en) oligoglycosides and / or with alk (en) yl sulfates has proven particularly useful with regard to the stability and compatibility of the formulations.
  • Alkyl and alkenyl oligoglycosides are known nonionic surfactants which follow the formula (III)
  • R 1 is an alkyl and / or alkenyl radical having 4 to 22 carbon atoms
  • G is a sugar radical having 5 or 6 carbon atoms
  • p is a number from 1 to 10.
  • the alkyl and / or alkenyl oligoglycosides can be derived from aldoses or ketoses with 5 or 6 carbon atoms, preferably glucose.
  • the preferred alkyl and / or alkenyl oligoglycosides are thus alkyl and / or alkenyl oligoglucosides.
  • the index number p in the general formula (III) indicates the degree of oligomerization (DP), ie the distribution of mono- and oligoglycosides, and stands for a number between 1 and 10.
  • Alkyl and / or alkenyl oligoglycosides with an average degree of oligomerization p of 1.1 to 3.0 are preferably used. From an application point of view, preference is given to those alkyl and / or alkenyl oligoglycosides whose degree of oligomerization is less than 1.7 and in particular between 1.2 and 1.4.
  • the alkyl or alkenyl radical R 1 can also be from primary alcohols Derive 12 to 22, preferably 12 to 14 carbon atoms. Typical examples are lauryl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol, brassidyl alcohol, as described above, and their technical mixtures -nen.
  • Alkyl oligoglucosides based on hardened C 2 -C 4 coco alcohol with a DP of 1 to 3 are preferred.
  • the agents according to the invention can contain alkyl and / or alkenyl oligoglycosides in amounts of 0.1 to 30% by weight, preferably 1 to 20% by weight in particular 5 to 10 wt .-% - based on the total formulation - contain.
  • Alkyl and / or alkenyl sulfates which are also often referred to as fatty alcohol sulfates, are to be understood as meaning the sulfation products of primary alcohols which follow the formula (IV)
  • R 1 represents a linear or branched, aliphatic alkyl and / or alkenyl radical having 6 to 22, preferably 12 to 18 carbon atoms and X represents an alkali and / or alkaline earth metal, ammonium, alkylammonium, alkanolammonium or glucammonium.
  • alkyl sulfates which can be used in the context of the invention are the sulfation products of caprone alcohol, caprylic alcohol, capric alcohol, 2-ethylhexyl alcohol, lauryl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, arylselyl alcohol, elaidyl alcohol , Behenyl alcohol and erucyl alcohol and their technical mixtures, which are obtained by high pressure hydrogenation of technical methyl ester fractions or aldehydes from Roelen's oxosynthesis.
  • the sulfation products can preferably be used in the form of their alkali salts and in particular their sodium salts.
  • Alkyl sulfates based on C 6 / i 8 tallow fatty alcohols or vegetable fatty alcohols of comparable carbon chain distribution in the form of their sodium salts are particularly preferred.
  • the agents according to the invention can contain alkyl and / or alkenyl sulfates in amounts of 0.1 to 20% by weight and preferably 1 to 15, based on the total formulation.
  • the cosmetic agents thickened using the polyether urethanes according to the invention are used for the care, protection and cleaning of skin and hair, and therefore represent cosmetic and / or pharmaceutical preparations, such as hair shampoos, hair lotions, foam baths, shower baths, creams, gels, lotions, alcoholic and aqueous / alcoholic solutions, emulsions, wax / fat masses, stick preparations, powders or ointments.
  • cosmetic and / or pharmaceutical preparations such as hair shampoos, hair lotions, foam baths, shower baths, creams, gels, lotions, alcoholic and aqueous / alcoholic solutions, emulsions, wax / fat masses, stick preparations, powders or ointments.
  • agents can also be used as further auxiliaries and additives, mild surfactants, oil bodies, emulsifiers, pearlescent waxes, consistency generators, thickeners, superfatting agents, stabilizers, polymers, silicone compounds, fats, waxes, lecithins, phospholipids, biogenic active substances, UV light protection factors, Contain antioxidants, deodorants, antiperspirants, antidandruff agents, film formers, swelling agents, insect repellents, self-tanning agents, tyrosine inhibitors (depigmentation agents), hydrotropes, solubilizers, preservatives, perfume oils, dyes and the like.
  • mild surfactants oil bodies, emulsifiers, pearlescent waxes, consistency generators, thickeners, superfatting agents, stabilizers, polymers, silicone compounds, fats, waxes, lecithins, phospholipids, biogenic active substances, UV light protection factors, Contain antioxidants, deodorants, antiperspirants,
  • Anionic, nonionic, cationic and / or amphoteric or amphoteric surfactants may be present as surface-active substances, the proportion of which in the compositions is usually about 1 to 70, preferably 5 to 50 and in particular 10 to 30% by weight.
  • anionic surfactants are soaps, alkylbenzenesulfonates, alkanesulfonates, olefin sulfonates, alkyl ether sulfonates, glycerin ether sulfonates, ⁇ -methyl ester sulfonates, sulfofatty acids, fatty alcohol ether sulfates, glycerol ether sulfates, fatty acid ether sulfates, hydroxymixedulfate sulfates, ether (mono) ether sulfate sulfates (ether) sulfate ethersulfate (ether) mono- and dialkyl sulfosuccinates, mono- and Dialkylsulfosuccina- mate, sulfotriglycerides, amide soaps, ether carboxylic acids and salts thereof, Fettklathi- onate acid taurides, N-acyla
  • anionic surfactants contain polyglycol ether chains, they can have a conventional, but preferably a narrow, homolog distribution.
  • Typical examples of nonionic surfactants are fatty alcohol polyglycol ethers, alkylphenol polyglycol ethers, fatty acid polyglycol esters, fatty acid amide polyglycol ethers, fatty amine polyglycol ethers, alkoxylated triglycerides, mixed ethers or mixed formals, optionally partially oxidized alk (en) yl oligoglycosides, or glucoronic acid amide, especially vegetable Wheat-based products), polyol fatty acid esters, sugar esters, sorbitan esters, polysorbates and amine oxides.
  • nonionic surfactants contain polyglycol ether chains, they can have a conventional, but preferably a narrow, homolog distribution.
  • cationic surfactants are quaternary ammonium compounds, such as, for example, dimethyldistearylammonium chloride, and ester quats, in particular quaternized fatty acid trialkanolamine ester salts.
  • amphoteric or zwitterionic surfactants are alkylbetaines, alkylamidobetaines, aminopropionates, aminoglycinates, imidazoliniumbetaines and sulfobetaines. The surfactants mentioned are exclusively known compounds.
  • J.Falbe ed.
  • Typical examples of particularly suitable mild, ie particularly skin-compatible, surfactants are fatty alcohol polyglycol ether sulfates, monoglyceride sulfates, mono- and / or dialkyl sulfosuccinates, glutamate fatty acid taurides, fatty acid, ⁇ -olefinsulfonates, ether carboxylic acids, fatty acid glucamides, alkylamidobetaines, amphoacetals and / or protein fatty acid condensates , the latter preferably based on wheat proteins.
  • esters of linear C 6 -C 22 fatty acids with branched alcohols in particular 2- Ethylhexanol
  • esters of C 18 -C 38 alkylhydroxycarboxylic acids with linear or branched C 6 -C 22 fatty alcohols especially dioctyl malates, esters of linear and / or branched fatty acids with polyhydric alcohols (such as pylene glycol, dimer diol or trimer triol) and / or Guerbet alcohols
  • triglycerides based on C 6 -C ⁇ 0 fatty acids liquid mono- / di- / triglyceride mixtures based on C 6 -C 18 fatty acids
  • esters of C 6 -C 22 fatty alcohols and / or Guerbet alcohols with aromatic carboxylic acids especially benzoic acid, esters of C 2 -C 2 -dicarboxylic acids with linear or branched alcohols with 1 to
  • Finsolv® TN linear or branched, symmetrical or unsymmetrical dialkyl ethers with 6 to 22 carbon atoms per alkyl group, such as dicaprylyl ether (Cetiol® OE), ring opening products of epoxidized fatty acid esters with polyols, silicone oils (cyclomethicones, silicon methicone types, etc.) and / or aliphatic or naphthenic hydrocarbons, such as, for example, squalane, squalene or dialkylcyclohexanes.
  • dicaprylyl ether such as dicaprylyl ether (Cetiol® OE)
  • silicone oils cyclomethicones, silicon methicone types, etc.
  • aliphatic or naphthenic hydrocarbons such as, for example, squalane, squalene or dialkylcyclohexanes.
  • Suitable emulsifiers are nonionic surfactants from at least one of the following groups:
  • Polyethylene glycol (molecular weight 400 to 5000), trimethylolpropane, pentaerythritol, sugar alcohols (e.g. sorbitol), alkyl glucosides (e.g. methyl glucoside, butyl glucoside, lauryl glucoside) and polyglucosides (e.g. cellulose) with saturated and / or unsaturated, linear or branched fatty acids with 12 to 22 Carbon atoms and / or hydroxycarboxylic acids with 3 to 18 carbon atoms and their adducts with 1 to 30 moles of ethylene oxide;
  • Block copolymers e.g. Polyethylene glycol 30 dipolyhydroxystearate;
  • Polymer emulsifiers e.g. Pemulen types (TR-1, TR-2) from Goodrich;
  • Suitable partial glycerides are Hydroxystearin Textremonogly- cerid, hydroxystearic acid diglyceride, isostearic acid, Isostearinklare- diglyceride, oleic acid monoglyceride, oleic acid diglyceride klarediglycerid, Ricinolklaremoglycerid, ricinoleic, Linolklaremonoglycerid, Linolklarediglycerid, LinolenTalkremonogly- cerid, LinolenLiterediglycerid, Erucaklaklamonoglycerid, Erucaklaklarediglycerid, tartaric acid monoglyceride, Weinchurediglycerid, Citronenklamonoglycerid, Citric diglyceride, malic acid monoglyceride, malic acid diglyceride and their technical mixtures, which may still contain small amounts of triglyceride from the manufacturing process. Addition products of 1 to 30,
  • sorbitan sorbitan As sorbitan sorbitan, sorbitan sesquiisostearate, sorbitan diisostearate, sorbitan triisostearate, sorbitan monooleate, sorbitan dioleate, trioleate, Sorbitanmonoerucat, Sorbitansesquierucat, sorbitan come dierucat, Sorbitantrierucat, Sorbitanmonoricinoleat, Sorbitansesquiricinoleat, sorbitan tandiricinoleat, Sorbitantriricinoleat, Sorbitanmonohydroxystearat, sorbitan - sesquihydroxystearate, sorbitan dihydroxystearate, sorbitan trihydroxystearate, sorbitan monotartrate, sorbitan sesqui-tartrate, sorbitan ditartrate, sorbitan tritanartrate, sorbitan monocitrate, sorbitan sesquitrate
  • polyglycerol esters are polyglyceryl-2 dipolyhydroxystearate (Dehymuls® PGPH), polyglycerol-3-diisostearate (Lameform® TGI), polyglyceryl-4 isostearate (Isolan® GI 34), polyglyceryl-3 oleate, diisostearoyl po- lyglyceryl-3 diisostearate (Isolan® PDI), polyglyceryl-3 methylglucose distearate (Tego Care® 450), polyglyceryl-3 beeswax (Cera Bellina®), polyglyceryl-4 caprate (polyglycerol caprate T2010 / 90), polyglyceryl-3 cetyl ether ( Chimexane® NL), Po- lyglyceryl-3 distearate (Cremophor® GS 32) and Polyglyceryl Polyricinoleate (Admul® WOL 1403) Polyglyceryl-2 dipo
  • polystyrene resin examples include the mono-, di- and triesters of trimethylolpropane or pentaerythritol, if appropriate reacted with 1 to 30 mol of ethylene oxide, with lauric acid, coconut fatty acid, tallow fatty acid, palmitic acid, stearic acid, oleic acid, behenic acid and the like.
  • Typical anionic emulsifiers are aliphatic fatty acids with 12 to 22 carbon atoms, such as, for example, palmitic acid, stearic acid or behenic acid, and dicarboxylic acids with 12 to 22 carbon atoms, such as, for example, azelaic acid or sebacic acid.
  • Zwitterionic surfactants can also be used as emulsifiers.
  • Zwitterionic surfactants are surface-active compounds that contain at least one quaternary ammonium group and at least one carboxylate and one sulfonate group in the molecule.
  • Particularly suitable zwitterionic surfactants are the so-called betaines such as the N-alkyl-N, N-dimethylammonium glycinate, for example coconut alkyldimethylammonium glycinate, N-acylaminopropyl-N, N-dimethylammonium glycinate, for example coconutacylaminopropyldimethylammoniumglycinate, and 2 -Alkyl-3-carboxylmethyl-3-hydroxyethylimidazolines each having 8 to 18 carbon atoms in the alkyl or acyl group and the cocoacylaminoethylhydroxyethylcarboxymethylglycinate.
  • betaines such as the N-alkyl-N, N-dimethylammonium glycinate, for example coconut alkyldimethylammonium glycinate, N-acylaminopropyl-N, N-dimethylammonium glycinate, for
  • Suitable emulsifiers are ampholytic surfactants.
  • Ampholytic surfactants are surface-active compounds which, in addition to a C 8 18 -alkyl or acyl group, contain at least one free amino group and at least one -COOH or -S0 3 H group in the molecule and are capable of forming internal salts. Examples of suitable ampholytic surfactants are N-alkylglycine, N-alkylpropionic acid, N-alkylaminobutyric acid, N- alkyliminodipropionic acid, N-hydroxyethyl-N-alkylamidopropylglycine, N-
  • Particularly preferred ampholytic surfactants are N-coconut alkylaminopropionate, coconut acylaminoethylaminopropionate and C 12 18 -acyl sarcosine.
  • cationic surfactants are also suitable as emulsifiers, those of the esterquat type, preferably methyl-quaternized difatty acid triethanolamine ester salts, being particularly preferred.
  • Typical examples of fats are glycerides, i.e. Solid or liquid vegetable or animal products, which consist essentially of mixed glycerol esters of higher fatty acids, come as waxes, among others.
  • natural waxes e.g. Candelilla wax, carnauba wax, japan wax, esparto grass wax, cork wax, guaruma wax, rice germ oil wax, sugar cane wax, ouricury wax, montan wax, beeswax, shellac wax, walnut, lanolin (wool wax), pretzel fat, ceresin, ozokerite (earth wax), petrolatum, paraffin wax; chemically modified waxes (hard waxes), e.g.
  • Examples of natural lecithins are the cephalins, which are also referred to as phosphatidic acids and are derivatives of 1,2-diacyl-sn-glycerol-3-phosphoric acids.
  • phospholipids are usually understood to be mono- and preferably diesters of phosphoric acid with glycerol (glycerol phosphates), which are generally classed as fats.
  • glycerol phosphates glycerol phosphates
  • sphingosines or sphingolipids are also suitable.
  • Pearlescent waxes that can be used are, for example: alkylene glycol esters, especially ethylene glycol distearate; Fatty acid alkanolamides, especially coconut fatty acid diethanolamide; Partial glycerides, especially stearic acid monoglyceride; Esters of polyvalent, optionally hydroxy-substituted carboxylic acids with fatty alcohols having 6 to 22 carbon atoms, especially long chain esters of tartaric acid; Fatty substances, such as, for example, fatty alcohols, fatty ketones, fatty aldehydes, fatty ethers and fatty carbonates, which have a total of at least 24 carbon atoms, especially lauron and distearyl ether; Fatty acids such as stearic acid, hydroxystearic acid or behenic acid, ring opening products of olefin epoxides with 12 to 22 carbon atoms with fatty alcohols with 12 to 22 carbon atoms and / or polyols with 2 to 15 carbon
  • Suitable consistency agents are primarily fatty alcohols or hydroxy fatty alcohols with 12 to 22 and preferably 16 to 18 carbon atoms and, in addition, partial glycerides, fatty acids or hydroxy fatty acids.
  • a combination of these substances with alkyl oligoglucosides and / or fatty acid N-methylglucamides of the same chain length and / or polyglycerol poly-12-hydroxystearates is preferred.
  • Suitable thickeners are, for example, Aerosil types (hydrophilic silicas), polysaccharides, in particular xanthan gum, guar guar, agar agar, alginates and tyloses, carboxymethyl cellulose and hydroxyethyl and hydroxypropyl cellulose, and also higher molecular weight polyethylene glycol mono- and diesters of fatty acids, Polyacrylates, (e.g. Carbopole® and Pemulen types from Goodrich; Synthalene® from Sigma; Keltrol types from Kelco; Sepigel types from Seppic; Salcare types from Allied Colloids), polyacrylamides, polymers, polyvinyl alcohol and polyvinyl pyrrolidone.
  • Aerosil types hydrophilic silicas
  • polysaccharides in particular xanthan gum, guar guar, agar agar, alginates and tyloses, carboxymethyl cellulose and hydroxyethyl and hydroxypropyl
  • Bentonites such as e.g. Bentone® Gel VS-5PC (Rheox), which is a mixture of cyclopentasiloxane, disteardimonium hectorite and propylene carbonate.
  • Surfactants such as ethoxylated fatty acid glycerides, esters of fatty acids with polyols such as pentaerythritol or trimethylolpropane, fatty alcohol ethoxylates with a narrow homolog distribution or alkyl oligoglucosides as well as electrolytes such as table salt and ammonium chloride are also suitable.
  • Substances such as lanolin and lecithin and polyethoxylated or acylated lanolin and lecithin derivatives, polyol fatty acid esters, mo- noglycerides and fatty acid alkanolamides are used, the latter also serving as foam stabilizers.
  • Metal salts of fatty acids such as e.g. Magnesium, aluminum and / or zinc stearate or ricinoleate are used.
  • Suitable cationic polymers are, for example, cationic cellulose derivatives, e.g. a quaternized hydroxyethyl cellulose available under the name Polymer JR 400® from Amerchol, cationic starch, copolymers of diallylammonium salts and acrylamides, quaternized vinylpyrrolidone / vinylimidazole polymers such as e.g.
  • Luviquat® condensation products of polyglycols and amines, quaternized collagen polypeptides, such as, for example, lauryldimonium hydroxypropyl hydrolyzed collagen (Lamequat®L / Grünau), quaternized wheat polypeptides, polyethyleneimine, cationic silicone polymers, such as e.g. Amodimethicones, copolymers of adipic acid and dimethylaminohydroxypropyldiethylenetriamine (Cartaretine® / Sandoz), copolymers of acrylic acid with dimethyldiallylammonium chloride (Merquat® 550 / Chemviron), polyamino polyamides, e.g.
  • cationic chitin derivatives such as quaternized chitosan, optionally microcrystalline, condensation products from dihaloalkylene, such as e.g. Dibromobutane with bisdialkylamines, e.g. Bis-dimethylamino-1,3-propane, cationic guar gum, e.g. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 from Celanes, quaternized ammonium salt polymers, e.g. Mirapol® A-15, Mirapol® AD-1, Mirapol® AZ-1 from Miranol.
  • dihaloalkylene such as e.g. Dibromobutane with bisdialkylamines, e.g. Bis-dimethylamino-1,3-propane
  • cationic guar gum e.g. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 from Celanes
  • quaternized ammonium salt polymers e.g. Mirapol® A
  • Suitable anionic, zwitterionic, amphoteric and nonionic polymers are, for example, vinyl acetate / crotonic acid copolymers, vinylpyrrolidone / vinyl acrylate copolymers, vinyl acetate / butyl maleate / isobornyl acrylate copolymers, methyl vinyl ether / maleic anhydride copolymers and esters thereof, uncrosslinked and polyol-crosslinked polyacrylic acids, acrylamidopropyl / Acrylate copolymers, octylacrylamide / methyl methacrylate / tert-butylaminoethyl methacrylate / 2-hydroxypropyl methacrylate copolymers, polyvinyl pyrrolidone, vinyl pyrrolidone / vinyl acetate copolymers, Vinyl pyrrolidone / dimethylaminoethyl methacrylate / vinyl caprolactam terpolymers as
  • Suitable silicone compounds are, for example, dimethylpolysiloxanes, methylphenylpolysiloxanes, cyclic silicones and amino, fatty acid, alcohol, polyether, epoxy, fluorine, glycoside and / or alkyl-modified silicone compounds which can be both liquid and resinous at room temperature.
  • Simethicones which are mixtures of dimethicones with an average chain length of 200 to 300 dimethylsiloxane units and hydrogenated silicates, are also suitable.
  • a detailed overview of suitable volatile silicones can also be found by Todd et al. in Cosm.Toil. 91, 27 (1976).
  • UV light protection factors are understood to mean, for example, organic substances (light protection filters) which are liquid or crystalline at room temperature and which are able to absorb ultraviolet rays and absorb the energy absorbed in the form of longer-wave radiation, e.g. To give off heat again.
  • UVB filters can be oil-soluble or water-soluble. As oil-soluble substances e.g. to call:
  • 4-aminobenzoic acid derivatives preferably 2-ethyl-hexyl 4- (dimethylamino) benzoate, 2-octyl 4- (dimethylamino) benzoate and amyl 4- (dimethylamino) benzoate;
  • esters of cinnamic acid preferably 2-ethylhexyl 4-methoxycinnamate, propyl 4-methoxycinnamate, isoamyl 4-methoxycinnamate, 2-ethylhexyl 2-cyano-3,3-phenylcinnamate (octocrylene);
  • esters of salicylic acid preferably salicylic acid 2-ethylhexyl ester, salicylic acid 4-iso-propylbenzyl ester, salicylic acid homomethyl ester;
  • benzophenone preferably 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-4 ⁇ -methylbenzophenone, 2,2 x -dihydroxy-4-methoxybenzophenone; > Esters of benzalmalonic acid, preferably 4-methoxybenzmalonic acid di-2-ethylhexyl ester;
  • Triazine derivatives such as 2,4,6-trianilino- (p-carbo-2 , -ethyl- -hexyloxy) -l, 3,5-triazine and octyl triazone, as described in EP 0818450 AI or dioctyl butamido triazone ( Uvasorb® HEB);
  • Typical UV-A filters are, in particular, derivatives of benzoyl methane such as l- (4, -tert.Butylphenyl) -3- (4-methoxyphenyl) propan-l, 3-dione, 4-tert-butyl 4 ⁇ - methoxydibenzoylmethane (Parsol® 1789), l-phenyl-3- (4 ⁇ -isopropylphenyl) propane-l, 3-dione and enamine compounds, as described in DE 19712033 AI (BASF).
  • the UV-A and UV-B filters can of course also be used in mixtures. Particularly favorable combinations consist of the derivatives of benzoylmethane, e.g.
  • water-soluble filters such as, for example, 2-phenylbenzimidazole-5-sulfonic acid and its alkali metal, alkaline earth metal, ammonium, alkylammonium, alkanolammonium and glucammonium salts.
  • insoluble light protection pigments namely finely dispersed metal oxides or salts
  • suitable metal oxides are, in particular, zinc oxide and titanium dioxide and, in addition, oxides of iron, zirconium, silicon, manganese, aluminum and cerium and mixtures thereof.
  • Salts can be silicates (talc), barium sulfate or zinc stearate.
  • the oxides and salts are used in the form of the pigments for skin-care and skin-protecting emulsions and decorative cosmetics.
  • the particles should have an average diameter of less than 100 nm, preferably between 5 and 50 nm and in particular between 15 and 30 nm.
  • the pigments can also be surface-treated, ie hydrophilized or hydrophobicized.
  • Typical examples are coated titanium dioxides, such as titanium dioxide T 805 (Degussa) or Eusolex® T2000 (Merck). Silicones, and in particular trialkoxyoctylsilanes or simethicones, are particularly suitable as hydrophobic coating agents. So-called micro- or nanopigments are preferably used in sunscreens. Micronized zinc oxide is preferably used.
  • Other suitable UV light protection filters can be found in the overview by P.Finkel in S ⁇ FW-Journal 122, 543 (1996) and Parf.Kosm. 3, 11 (1999).
  • secondary light stabilizers of the antioxidant type can also be used, which interrupt the photochemical reaction chain which is triggered when UV radiation penetrates the skin.
  • Typical examples include amino acids (e.g. glycine, histidine, tyrosine, tryptophan) and their derivatives, imidazoles (e.g. urocanic acid) and their derivatives, peptides such as D, L-camosine, D-carnosine, L-carnosine and their derivatives (e.g. anse- rin), carotenoids, carotenes (e.g.
  • ⁇ -carotene, ß-carotene, lycopene) and their derivatives chlorogenic acid and their derivatives, lipoic acid and their derivatives (e.g. dihydroliponic acid), aurothioglucose, propylthiouracil and other thiols (e.g.
  • thioredoxin glutathione, Cysteine, cystine, cystamine and their glycosyl, N-acetyl, methyl, ethyl, propyl, amyl, butyl and lauryl, palmitoyl, oleyl, ⁇ -linoleyl, cholesteryl and glyceryl esters) and their salts, dilauryl thiodipropionate, distearyl thiodipropionate, thiodipropionic acid and their derivatives (esters, ethers, peptides, lipids, nucleotides, nucleosides and salts) as well as suifoximine compounds (eg buthioninsulfoximines, homocysteine sulfoximine, butioninsulfones, penta-, hexa-, himinathion) in very low compatible dosages (e.g.
  • suifoximine compounds eg buthioninsulfoxim
  • (metal) chelators e.g. ⁇ -hydroxy fatty acids, palmitic acid, phytic acid, lactoferrin), ⁇ -hydroxy acids (e.g. citric acid, lactic acid, malic acid), humic acid, bile acid, bile extracts, bilirubin, Biliverdin, EDTA, EGTA and their derivatives, unsaturated fatty acids and their derivatives (e.g. ⁇ -linolenic acid, linoleic acid, oleic acid), folic acid and their derivatives, ubiquinone and ubiquinol and their derivatives, vitamin C and derivatives (e.g.
  • ZnO, ZnS0 4 selenium and its derivatives (e.g. selenium methionine), stilbene and their derivatives (for example stilbene oxide, trans-stilbene oxide) and the derivatives (salts, esters, ethers, sugars, nucleotides, nucleosides, peptides and lipids) of these active substances which are suitable according to the invention.
  • stilbene and their derivatives for example stilbene oxide, trans-stilbene oxide
  • derivatives salts, esters, ethers, sugars, nucleotides, nucleosides, peptides and lipids
  • biogenic active ingredients include tocopherol, tocopherol acetate, tocopherol palmitate, ascorbic acid, (deoxy) ribonucleic acid and its fragmentation products, ⁇ -glucans, retinol, bisabolol, allantoin, phytantriol, panthenol, AHA acids, amino acids, ceramides, essentil oils, pseudoceramides Plant extracts, such as To understand prunus extract, Bambaranus extract and vitamin complexes.
  • Cosmetic deodorants counteract, mask or eliminate body odors.
  • Body odors arise from the action of skin bacteria on apocrine sweat, whereby unpleasant smelling breakdown products are formed. Accordingly, deodorants contain active ingredients which act as germ-inhibiting agents, enzyme inhibitors, odor absorbers or odor maskers.
  • germ-inhibiting agents such as.
  • Esterase inhibitors are suitable as enzyme inhibitors. These are preferably trialkyl citrates such as trimethyl citrate, tripropyl citrate, triisopropyl citrate, tributyl citrate and in particular triethyl citrate (Hydagen® CAT).
  • the substances inhibit enzyme activity and thereby reduce odor.
  • esterase inhibitors include sterolsulfates or phosphates, such as, for example, lanosterol, cholesterol, campesterin, stigmasterol and sitosterol sulfate or phosphate, dicarboxylic acids and their esters, such as, for example, glutaric acid, monoethyl glutarate, Diethyl glutarate, adipic acid, monoethyl adipate, diethyl adipate, malonic acid and diethyl malonate, hydroxycarboxylic acids and their esters such as, for example, citric acid, malic acid, tartaric acid or tartaric acid diethyl ester, and zinc glycineate.
  • sterolsulfates or phosphates such as, for example, lanosterol, cholesterol, campesterin, stigmasterol and sitosterol sulfate or phosphate
  • dicarboxylic acids and their esters such as, for example, glutaric acid, monoeth
  • Suitable odor absorbers are substances that absorb odor-forming compounds and can retain them to a large extent. They lower the partial pressure of the individual components and thus also reduce their speed of propagation. It is important that perfumes must remain unaffected. Odor absorbers are not effective against bacteria. They contain, for example, a complex zinc salt of ricinoleic acid or special, largely odorless fragrances, which are known to the person skilled in the art as "fixators", such as, for example, the main component. B. extracts of Labdanum or Styrax or certain abietic acid derivatives. Fragrance agents or perfume oils act as odor maskers and, in addition to their function as odor maskers, give the deodorants their respective fragrance.
  • Perfume oils are, for example, mixtures of natural and synthetic fragrances. Natural fragrances are extracts of flowers, stems and leaves, fruits, fruit peels, roots, woods, herbs and grasses, needles and branches as well as resins and balms. Animal raw materials are also possible, such as for example civet and castoreum. Typical synthetic fragrance compounds are products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type.
  • Fragrance compounds of the ester type are, for example, benzyl acetate, p-tert.-butylcyclohexyl acetate, linalyl acetate, phenylethyl acetate, linalyl benzoate, benzyl formate, allyl cyclohexyl propionate, styrallyl propionate and benzyl salicyla 18 carbon atoms, citral, citronellal, citronellyloxyacetalde- hyd, cyclamenaldehyde, hydroxycitronellal, lilial and bourgeonal, to the ketones eg the jonones and methyl cedryl ketone, to the alcohols anethole, citronellol, eugenol, isoeugenol, geraniol, linalool and phenylethylol alcohol, phenylethylol alcohol
  • fragrance oils of lower volatility which are mostly used as aroma components, are also suitable as perfume oils, e.g. sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil, labdanum oil and lavandin oil.
  • Antiperspirants reduce sweat formation by influencing the activity of the eccrine sweat glands and thus counteract armpit wetness and body odor.
  • Aqueous or anhydrous formulations of antiperspirants typically contain the following ingredients:
  • non-aqueous solvents such as As ethanol, propylene glycol and / or glycerin.
  • Salts of aluminum, zirconium or zinc are particularly suitable as astringent antiperspirant active ingredients.
  • suitable antiperspirant active ingredients are e.g. Aluminum chloride, aluminum chlorohydrate, aluminum dichlorohydrate, aluminum sesquichlorohydrate and their complex compounds z. B. with propylene glycol-1,2.
  • customary oil-soluble and water-soluble auxiliaries can be present in smaller amounts in antiperspirants.
  • oil soluble aids can e.g. his:
  • water-soluble additives are e.g. Preservatives, water-soluble fragrances, pH adjusters, e.g. Buffer mixtures, water soluble thickeners, e.g. water-soluble natural or synthetic polymers such as e.g. Xanthan gum, hydroxyethyl cellulose, polyvinyl pyrrolidone or high molecular weight polyethylene oxides.
  • Common film formers are, for example, chitosan, microcrystalline chitosan, quaternized chitosan, polyvinylpyrrolidone, vinylpyrrolidone-vinyl acetate copolymers, polymers of the acrylic acid series, quaternary cellulose derivatives, collagen, hyaluronic acid or its salts and similar compounds.
  • Antidandruff agents are, for example, chitosan, microcrystalline chitosan, quaternized chitosan, polyvinylpyrrolidone, vinylpyrrolidone-vinyl acetate copolymers, polymers of the acrylic acid series, quaternary cellulose derivatives, collagen, hyaluronic acid or its salts and similar compounds.
  • Piroctone olamine (1-hydroxy-4-methyl-6- (2,4,4-trimythylpentyl) -2- (1H) -pyridinone monoethanolamine salt
  • Baypival® (climbazole), Keto-conazol®, (4-acetyl -l - ⁇ - 4- [2- (2.4-dichlorophenyl) r-2- (1H-imidazol-l-ylmethyl) -l, 3-dioxylan-c-4-ylmethoxyphenyl ⁇ piperazine, ketoconazole, elubiol, selenium disulfide, sulfur colloidal, sulfur polyethylene glycol sorbitan monooleate, sulfur ricinole polyethylenate, sulfur tar distillates, salicylic acid (or in combination with hexachlorophene), undexylene acid monoethanolamide sulfosuccinate sodium salt, Lamepon® UD (protein undecylenic acid pyrithione,
  • Montmorillonites, clay minerals, pemulene and alkyl-modified carbopol types can serve as swelling agents for aqueous phases. Further suitable polymers or swelling agents can be found in the overview by R. Lochhead in Cosm.Toil. 108, 95 (1993).
  • Possible insect repellents are N, N-diethyl-m-toluamide, 1,2-pentanediol or ethyl butylacetylaminopropionate
  • Dihydroxyacetone is suitable as a self-tanner.
  • Arbutin, ferulic acid, kojic acid, coumaric acid and ascorbic acid (vitamin C) can be used as tyrosine inhibitors, which prevent the formation of melanin and are used in depigmenting agents.
  • Hydrotropes such as, for example, ethanol, isopropyl alcohol or polyols, can also be used to improve the flow behavior.
  • Polyols that come into consideration here preferably have 2 to 15 carbon atoms and at least two hydroxyl groups.
  • the polyols can also contain further functional groups, in particular amino groups, or be modified with nitrogen. Typical examples are
  • Alkylene glycols such as, for example, ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, hexylene glycol and polyethylene glycols with an average molecular weight of 100 to 1,000 daltons;
  • Methyl compounds such as in particular trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol and dipentaerythritol;
  • Dialcohol amines such as diethanolamine or 2-amino-l, 3-propanediol.
  • Suitable preservatives are, for example, phenoxyethanol, formaldehyde solution, parabens, pentanediol or sorbic acid, and the silver complexes known under the name Surfacine® and the other classes of substances listed in Appendix 6, Parts A and B of the Cosmetics Ordinance.
  • Perfume oils and flavors are, for example, phenoxyethanol, formaldehyde solution, parabens, pentanediol or sorbic acid, and the silver complexes known under the name Surfacine® and the other classes of substances listed in Appendix 6, Parts A and B of the Cosmetics Ordinance.
  • Perfume oils include mixtures of natural and synthetic fragrances. Natural fragrances are extracts of flowers (lily, lavender, roses, jasmine, neroli, ylang-ylang), stems and leaves (geranium, patchouli, petitgrain), fruits (anise, coriander, caraway, juniper), fruit peel (bergamot, lemon, Oranges), roots (mace, angelica, celery, cardamom, costus, iris, calmus), woods (pine, sandal, guaiac, cedar, rosewood), herbs and grasses (tarragon, lemongrass, sage, thyme), Needles and twigs (spruce, fir, pine, mountain pine), resins and balms (galbanum, elemi, benzoin, myrrh, olibanum, opoponax).
  • Typical synthetic fragrance compounds are products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type. Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinylacetate, phenylethyl acetate, linalyl benzoate, benzyl formate, ethyl methylphenyl glycinate, allylcyclohexyl benzylatepylpropylate, stylate propionate, stylate propionate.
  • the ethers include, for example, benzylethyl ether
  • the aldehydes include, for example, the linear alkanals having 8 to 18 carbon atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, hydroxycitronellal, lilial and bourgeonal
  • the ketones include, for example, the joonons, ⁇ -isomethylionone and methylcedryl ketone the alcohols anethole, citronellol, eugenol, isoeugenol, geraniol, inalool, phenylethyl alcohol and terpineol
  • the hydrocarbons mainly include the terpenes and balsams.
  • fragrance oils of lower volatility which are mostly used as aroma components, are also suitable as perfume oils, for example sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil, labolanum oil and lavandin oil.
  • the dyes which can be used are those substances which are suitable and approved for cosmetic purposes, as compiled, for example, in the publication "Cosmetic Dyes” by the Dye Commission of the German Research Foundation, Verlag Chemie, Weinheim, 1984, pp. 81-106. Examples are culinary red A (CI 16255), patent blue V (CI42051), indigotine (CI73015), chlorophyllin (CI75810), quinoline yellow (CI47005), titanium dioxide (CI77891), indanthrene blue RS (CI 69800) and madder varnish (CI 58000). Luminol may also be present as the luminescent dye. These dyes are usually used in concentrations of 0.001 to 0.1% by weight, based on the mixture as a whole
  • the total proportion of auxiliaries and additives can be 1 to 99, preferably 5 to 40% by weight, based on the composition.
  • the agents can be produced by customary cold or hot processes; the phase inversion temperature method is preferably used.
  • This product according to the invention is a polyurethane made from stearyl alcohol 55EO (Disponil 055; Cognis) and hexamethylene diisocyanate (Desmodur HMDI; BAYER) in a molar ratio of 2.1: 1
  • Vacuum distillation 4-neck round bottom flask, stirrer, heating source (oil bath), contact thermometer, oil pump, cold trap
  • Stearyl alcohol 55 ethylene oxide (Disponil® 055, Cognis GmbH, Düsseldorf) is heated to 120 ° C. with stirring and nitrogen flushing and then dewatered for 2 hours using an oil pump.
  • Reflux equipment 4-neck round bottom flask, stirrer, heating source (oil bath), contact thermometer, intensive cooler, thermometer
  • Disponil® O 55 (OHZ: 53; MW: 1058; ⁇ 0.16635 mol) additives
  • HMDI hexamethylene diisocyanate
  • the end point of the reaction is determined by hourly NCO titration. After a total reaction time of 4 hours, an NCO value of less than 0.1% is reached. The mixture is heated to 110 ° C. and left to react for a further hour at this temperature.
  • Plantacare 2000UP Decyl Glucoside (Cognis GmbH, Düsseldorf)
  • Texapon NSO Sodium Laureth Sulfate (Cognis GmbH, Düsseldorf)
  • Lamepon S Potassium Cocoyl Hydrolyzed Collagen (Cognis GmbH, Düsseldorf)
  • TexaponASV 50 Sodium Laureth Sulfate and Sodium Laureth 8-Sulfate and Magnesium Laureth Sulfate and Magnesium
  • Arlypon F Laureth-2 (Cognis GmbH, Düsseldorf)
  • Antil 120 polyethylene glycol 120 methyl glucose dioleates (Goldschmidt, Essen)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Dermatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Cosmetics (AREA)
  • Detergent Compositions (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

L'invention concerne des préparations cosmétiques contenant des épaississants polyétheruréthane, de formule (I) dans laquelle R1 et R2 désignent indépendamment l'un de l'autre des restes alkyle et/ou alkényle linéaire ou ramifiés ayant entre 6 et 22 atomes de carbone, x désigne des nombres compris entre 1 et 3 et m et n désignent indépendamment l'un de l'autre des nombres compris entre 10 et 100. L'invention concerne également l'utilisation de ces préparations pour les soins et l'hygiène de la peau et des cheveux.
EP02761899A 2001-04-12 2002-04-03 Preparations cosmetiques Withdrawn EP1390009A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10118268A DE10118268A1 (de) 2001-04-12 2001-04-12 Kosmetische Zubereitungen
DE10118268 2001-04-12
PCT/EP2002/003670 WO2002083093A1 (fr) 2001-04-12 2002-04-03 Preparations cosmetiques

Publications (1)

Publication Number Publication Date
EP1390009A1 true EP1390009A1 (fr) 2004-02-25

Family

ID=7681345

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02761899A Withdrawn EP1390009A1 (fr) 2001-04-12 2002-04-03 Preparations cosmetiques

Country Status (5)

Country Link
US (1) US20040105836A1 (fr)
EP (1) EP1390009A1 (fr)
JP (1) JP2004534747A (fr)
DE (1) DE10118268A1 (fr)
WO (1) WO2002083093A1 (fr)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1531169B1 (fr) * 2003-11-14 2007-06-27 The Procter & Gamble Company Compositions polymériques pour la liberation soutenue des matériaux fugitifs
EP1604690B1 (fr) * 2004-06-08 2014-03-05 The Procter & Gamble Company Composition polymère thermofusible pour la liberation prolongée de matières volatiles
JP4643211B2 (ja) * 2004-09-28 2011-03-02 株式会社資生堂 透明毛髪化粧料
EP1655344A1 (fr) * 2004-11-05 2006-05-10 The Procter & Gamble Company Compositions polymères pour la diffusion prolongée de composés volatiles
JP4904464B2 (ja) * 2005-09-02 2012-03-28 サンノプコ株式会社 粘性改良剤
JP4904463B2 (ja) * 2005-09-02 2012-03-28 サンノプコ株式会社 粘性改良剤
US7867969B2 (en) * 2005-10-28 2011-01-11 L'oreal S.A. Composition for washing keratin materials comprising a magnesium salt anionic surfactant
EP1795556B1 (fr) 2005-12-07 2017-02-15 The Procter and Gamble Company Composition pour la libération prolongée de substances volatiles
EP2114365B1 (fr) * 2007-01-31 2010-09-01 Basf Se Produit de conditionnement cationique
US8414872B2 (en) 2007-09-10 2013-04-09 Liquid Keratin, Inc. Hair straightening formulations, methods and systems
FR2935267B1 (fr) * 2008-08-29 2015-02-27 Oreal Utilisation d'une composition comprenant un polymere associatif pour nettoyer les cheveux humains
CA2801143C (fr) 2009-09-24 2017-09-26 Unilever Plc Agent desinfectant comprenant de l'eugenol, du terpineol et du thymol
WO2012076310A1 (fr) 2010-12-07 2012-06-14 Unilever Nv Composition de soin buccal
EP2773315B1 (fr) 2011-11-03 2015-07-08 Unilever N.V. Composition pour hygiène personnelle
KR102397806B1 (ko) * 2016-08-31 2022-05-12 가부시키가이샤 아데카 수계 겔화제 조성물 및 그것을 사용한 화장료
KR20200051677A (ko) * 2017-09-07 2020-05-13 가부시키가이샤 아데카 수계 겔화제를 포함하는 피부용 또는 모발용 세정제 조성물, 그리고 그 수계 겔화제 및 그 세정제 조성물의 제조 방법
WO2019049722A1 (fr) * 2017-09-07 2019-03-14 株式会社Adeka Composition cosmétique capillaire contenant un agent gélifiant aqueux, et procédés de fabrication d'agent gélifiant aqueux et de composition cosmétique capillaire
JP6876579B2 (ja) * 2017-09-07 2021-05-26 株式会社Adeka 硬質表面用洗浄剤組成物
KR20200051678A (ko) * 2017-09-07 2020-05-13 가부시키가이샤 아데카 수계 겔화제를 포함하는 화장료 조성물, 그리고 그 수계 겔화제 및 그 화장료 조성물의 제조 방법
CN109957091B (zh) * 2017-12-22 2022-07-12 万华化学(宁波)有限公司 一种适用于水性高溶剂体系粘度调节的聚氨酯聚合物及含有其的组合物

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4172887A (en) * 1973-11-30 1979-10-30 L'oreal Hair conditioning compositions containing crosslinked polyaminopolyamides
US4155892A (en) * 1975-10-03 1979-05-22 Rohm And Haas Company Polyurethane thickeners for aqueous compositions
DE3630319A1 (de) * 1986-09-05 1988-03-10 Akzo Gmbh Verdickungsmittel
DE4426215A1 (de) * 1994-07-23 1996-01-25 Merck Patent Gmbh Ketotricyclo [5.2.1.0] decan-Derivate
DE4426216A1 (de) * 1994-07-23 1996-01-25 Merck Patent Gmbh Benzyliden-Norcampher-Derivate
DE19503281A1 (de) * 1995-02-02 1996-08-08 Bayer Ag Als Verdickungsmittel für wäßrige Systeme geeignete Polyurethane
KR100404774B1 (ko) * 1995-09-06 2004-04-01 아사히 덴카 고교 가부시키가이샤 점성조정제
EP1293504A3 (fr) * 1996-07-08 2003-11-05 Ciba SC Holding AG Dérivés de la triazine en tant que UV-filtre dans des compositions cosmétiques
EP0852137B1 (fr) * 1996-11-29 2005-08-10 Basf Aktiengesellschaft Compositions cosmétiques contenant un filtre UV-A photostable

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02083093A1 *

Also Published As

Publication number Publication date
JP2004534747A (ja) 2004-11-18
WO2002083093A1 (fr) 2002-10-24
DE10118268A1 (de) 2002-10-17
US20040105836A1 (en) 2004-06-03

Similar Documents

Publication Publication Date Title
EP1377619A1 (fr) Preparations cosmetiques
EP1390009A1 (fr) Preparations cosmetiques
EP1524029B1 (fr) Compositions auto-emuslifiantes
WO2007124901A1 (fr) Agents épaississants
WO2002043685A2 (fr) Emulsions cosmetiques et/ou pharmaceutiques
EP1330230B1 (fr) Utilisation d'alcools gras comme agents de solubilisation
DE10212528A1 (de) Ölphasen für kosmetische Mittel
EP1395643A1 (fr) Melanges d'agents tensioactifs
EP1286758A2 (fr) Agents emulsifiants
WO2002044236A2 (fr) Epaississant
WO2001072264A2 (fr) Preparations encapsulees dans des proliposomes (iv)
EP1254653B1 (fr) Utilisation de compositions cationiques
WO2001074302A1 (fr) Preparations a encapsulation pro-liposomique
EP1472211B1 (fr) Emollients et compositions cosmetiques
WO2002087535A2 (fr) Utilisation d'esters quaternaires
WO2003043725A1 (fr) Melange emulsifiant
WO2002087537A1 (fr) Utilisation de preparations cationiques
WO2002100522A1 (fr) Utilisation de phosphates d'alkyle(ether) (i)
EP1374845B1 (fr) Préparations cosmétiques
WO2002032380A2 (fr) Emulsions cosmetiques
WO2004000258A1 (fr) Preparations hautement visqueuses contenant de l'huile
WO2002088150A1 (fr) Esters d'acide phosphorique
WO2002043674A1 (fr) Micro-emulsions cosmetiques
WO2002087538A1 (fr) Utilisation de preparations cationiques
WO2001074304A1 (fr) Preparations encapsulees dans des proliposomes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031006

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COGNIS IP MANAGEMENT GMBH

17Q First examination report despatched

Effective date: 20071001

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080212