EP1386000A2 - Verfahren und vorrichtung zur bestimmung und selektion von molekül-molekül-wechselwirkungen - Google Patents

Verfahren und vorrichtung zur bestimmung und selektion von molekül-molekül-wechselwirkungen

Info

Publication number
EP1386000A2
EP1386000A2 EP02735242A EP02735242A EP1386000A2 EP 1386000 A2 EP1386000 A2 EP 1386000A2 EP 02735242 A EP02735242 A EP 02735242A EP 02735242 A EP02735242 A EP 02735242A EP 1386000 A2 EP1386000 A2 EP 1386000A2
Authority
EP
European Patent Office
Prior art keywords
molecule
library
molecules
immobilized
coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02735242A
Other languages
English (en)
French (fr)
Inventor
Arnold Gillner
Elke Bremus-Köbberling
Stefan Barth
Rainer Fischer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority to EP02735242A priority Critical patent/EP1386000A2/de
Publication of EP1386000A2 publication Critical patent/EP1386000A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B30/00Methods of screening libraries
    • C40B30/04Methods of screening libraries by measuring the ability to specifically bind a target molecule, e.g. antibody-antigen binding, receptor-ligand binding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B80/00Linkers or spacers specially adapted for combinatorial chemistry or libraries, e.g. traceless linkers or safety-catch linkers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6845Methods of identifying protein-protein interactions in protein mixtures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00527Sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00585Parallel processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00596Solid-phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/0061The surface being organic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00612Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports the surface being inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00623Immobilisation or binding
    • B01J2219/00626Covalent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00632Introduction of reactive groups to the surface
    • B01J2219/00637Introduction of reactive groups to the surface by coating it with another layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00659Two-dimensional arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/0068Means for controlling the apparatus of the process
    • B01J2219/00702Processes involving means for analysing and characterising the products
    • B01J2219/00707Processes involving means for analysing and characterising the products separated from the reactor apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00722Nucleotides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/11Compounds covalently bound to a solid support
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/06Libraries containing nucleotides or polynucleotides, or derivatives thereof

Definitions

  • the present invention relates to biochips for the documentation of specific molecule-molecule interactions or cell-molecule interactions, in particular of unknown, singular protein interactions, and corresponding methods for the selection and characterization of molecules, in particular polypeptides and their complementary binding molecules.
  • the interactions between proteins can currently be represented by various techniques. Techniques have recently been developed which enable the selection of protein libraries from immobilized libraries. The genetic information of the enriched proteins is immediately available, especially by coupling DNA / RNA to be expressed to the protein they express in bacteriophages ("phage display") or by "ribosome display” or profusion technology.
  • phage display bacteriophages
  • ribosome display or profusion technology.
  • the current screening methods are characterized by the fact that the information about the individual members of the immobilized libraries is known and is localized at predefined locations on the chips.
  • one or more clones from the soluble protein library are enriched in higher copy numbers.
  • Singular unknown clones in the sense of a single molecule
  • Selected bacteriophages usually have to be multiplied before a detailed analysis can be carried out.
  • unknown members of a protein library were immobilized, a direct analysis of the immobilized binding molecule detected by protein interaction would also not be possible at the moment.
  • the present invention thus relates
  • step (d) analyzing the material detached in step (c);
  • a biochip for the selection of unknown single molecules comprising a support as defined in (1), on which a combinatorial molecule library can be immobilized or immobilized, whereby it is ensured that exactly one molecule per coupling area can be taken up on the support or is recorded;
  • FIG. 1 shows the general structure of a microchip of the invention.
  • FIG. 2 shows how the position of the attached molecule or an attached cell can be determined.
  • FIG. 3 shows the schematic structure of particle A of the example system of the invention.
  • FIG. 4 shows the schematic structure of particle B of the example system of the invention.
  • FIG. 5 shows the schematic structure of the interacting particles A & B.
  • Carrier in the sense of the present invention includes carrier structures with different dimensions including microstructures (chips), but also larger structures such as slides and plates in the decimal range.
  • Suitable carrier materials are signal-transmitting materials, in particular materials that transmit light, heat and / or magnetic fields, and particularly preferably light-transmitting materials (i.e. carriers made of glass, silicone, translucent PVC, etc.).
  • the carriers according to the invention are composed of arrays of individual molecules from combinatorial libraries (for example proteins, peptides, etc.).
  • the size of the areas on which the molecules are fixed (hereinafter also referred to as “areas") and the spacing of these areas from one another must be selected so that it is ensured that the individual bones can be identified.
  • the distance and size of the areas therefore depends, among other things, on the size of the molecules.
  • the distance between the areas is preferably in the range from 10 nm to 100 ⁇ m, preferably 100 nm to 5.0 ⁇ m and particularly preferably 100 nm to 1,500 nm.
  • the size of the areas is preferably less than 50 nm x 50 nm, particularly preferably 5 x 5 nm to 20 x 20 nm (or corresponding areas with a different geometry).
  • a light (magnetic or heat) reactive anchor group e.g. o-nitrobenzyl ester, pivaloyl or triazene compound
  • molecules e.g. polypeptides
  • a method for the selection of interacting molecules comprises the following steps: a) Creation of a first combinatorial library, in particular a cDNA expression library for binding proteins (for example antibodies), alternatively a cDNA expression library of a cell, or a synthetic peptide or Molecular library, if necessary by direct synthesis on the chips, b) coupling the library via a light (heat or magnetic) activatable anchor group (e.g.
  • a second combinatorial library in particular a cDNA expression library of a cell, alternatively a cDNA expression library for binding proteins, or a synthetic peptide or molecule library
  • the first library eg a cDNA expression library
  • the second library can, for example, in particular be a subtractive cDNA expression library.
  • Complementary binding molecules are, in particular, polypeptides which specifically interact with defined molecules.
  • a specific effect means a dissociation constant K ⁇ 1 . 0 "6 mol / l, preferably ⁇ 10 " 8 mol / l.
  • a “cDNA expression library for binding peptides” denotes a multiplicity of substances in which the coding region of a nucleic acid is specifically linked in a single component with the associated expressed binding-active polypeptide.
  • Typical examples of this are libraries of complementary binding peptides in transformed cells (preferably bacteria and yeasts, particularly preferably bacteriophages), in which the incorporated nucleic acid is functionally translated and the protein is expressed cytosolically, or in particular is anchored to the surface of the cell as a fusion protein.
  • an analysis of its binding function with the membrane-associated polypeptide can thus be carried out according to the current state of the art and at the same time the nucleic acid correlating with it can be clearly assigned.
  • cDNA expression libraries for complementary binding peptides in bacteriophages is described, for example, in US Pat. No. 5,969,108, for display on ribosomes in US Pat. No. 5,643,768.
  • the "cDNA expression libraries of a cell” refer to a large number of unknown, peptide individual molecules, in which the coding region of an mRNA converted into a cDNA is specifically linked in a single component with the associated expressed polypeptide. Typical examples of this are cDNA expression libraries e.g. B.
  • cDNA expression libraries thus contain the image of the expressed proteins of a cell, so that, starting from the properties of interacting polypeptides, by combination with the corresponding complementary binding peptide by means of the “two (or more) coordinate” laser technology according to the invention, molecule-molecule-
  • Synthetic peptide or molecule library refers to a variety of peptides or molecules that have been assembled via combinatorial synthesis, which ideally makes all theoretically combinable molecular compositions available.
  • Immobilization means that the members of one library are bound to a solid matrix (e.g. immobilization by means of anchor groups such as o-nitrobenzyl esters, pivaloyl or triazene compounds), which after documentation of the interaction with the second peptide, particularly easily by light - (Heat, or magnet) reaction can be separated.
  • anchor groups such as o-nitrobenzyl esters, pivaloyl or triazene compounds
  • Suitable anchor groups for immobilization are in particular the following compounds mentioned in WO 95/31429 and WO 99/67619: o- Nitrobenzyl ester-based photo linker (Linker I):
  • Gap 365 nm
  • the general structure of the biochips is shown in Fig. 1.
  • the biochips are based on a quartz or glass plate, alternatively a plastic carrier can also be used, but this must be signal-transmissive (for light, heat, magnetic fields).
  • An adhesive layer e.g. made of polylysine derivatives
  • an immobilization layer are applied to this support, which adheres on the one hand to the support and on the other hand, on the side facing the protein, with the individual molecules to be immobilized from the combinatorial libraries a solid (covalent ) Binding.
  • the immobilization layer consists either of chemical molecules or compounds that are chemically split by light excitation or molecules or compounds that are separated by thermal action.
  • the coupling-active areas ie the desired structures
  • the photolinker layer can also be applied after setting the structure of the adhesive layer.
  • This immobilization layer is loaded with individual molecules from a combinatorial library in such a way that it is ensured that a molecule binds to one, but not to two adjacent locations. This is achieved by allowing a distance of 10 nm to 1000 ⁇ m (preferably 100 nm to 5,000 nm or 100 nm to 1,500 nm) depending on the maximum individual molecule size between the arrays, ie the molecules are separated according to a fixed spatial grid ,
  • the biochips prepared in this way can be exposed in this form to a second combinatorial library. Certain molecules from the soluble library attach themselves to individual molecules in the immobilized library of the biochip. Using a suitable measurement technique, the position of the attached molecule or also an attached cell on the respective protein is now determined with high spatial resolution (FIG. 2). The following methods can be used as measurement techniques:
  • Fluorescence measurements on a molecule previously provided with a fluorescence marker (peptide, protein, conjugated ribosome, conjugated bacteriophage, liposome, labeled particles and cells), simulated Raman emissions from the attached molecule (peptide, protein, conjugated ribosome, conjugated bacteriophage, liposome, and labeled particles ), magnetic detection of the attachment site via a magnetic bead-coupled molecule (peptide, protein, conjugated ribosome, conjugated bacteriophage, liposome, labeled particles and cells), atomic force microscopy, with which a local enrichment of a molecule (peptide, protein, conjugated Ribosome, conjugated bacteriophage, liposome, labeled particles and cells) can be determined with high spatial resolution, whereby the measurement method must be designed so that a spatial resolution ⁇ 100 nm can be achieved if necessary.
  • a fluorescence marker peptide, protein, conjugated ribosome, conjugated bacteri
  • the actual measurement of the molecule interaction takes place at the attachment site (via the X and Y axes).
  • a laser beam is directed through the biochip, ie through the carrier, from below (axis Z) onto the immobilization layer (e.g. from the o-nitrobenzyl ester, pivaloyl or triazene compounds as defined above) using a second scanning system.
  • the position of this exposure corresponds to the previously determined position of the attached molecule.
  • the chemical bonds of the photolabile linker or anchor group of the immobilization layer are subsequently cleaved or the immobilization layer is thermally dissolved by brief exposure to the immobilization layer.
  • Step 1 synthesis of the microchips
  • Step 2 Generation of immobilized molecule libraries 2.1 Synthesis of a combinatorial molecule library (using the example of an scFv bacteriophage library): According to GE Stoica et al., J. Biol. Chem. (2001) a combinatorial scFv bacteriophage library (here: with reactivity against pancreatic carcinoma) for immobilization on the microchips, the individual components (particles A) of which are characterized as follows (FIG. 3):
  • Protein A (here: an unknown scFv or Fab of the library to be immobilized) is located at one end of the particle and is covalently and functionally coupled to a surface protein of particle A (here protein III (pIII) of a filamentous bacteriophage).
  • a surface protein of particle A here protein III (pIII) of a filamentous bacteriophage.
  • the opposite end of the same particle is modified so that a directed coupling of particle A to a coupling area of the microchip is ensured by the activity of link A (in this case: Streptavidin or a modified streptavidin binding component or an anti-biotin scFv).
  • link A in this case: Streptavidin or a modified streptavidin binding component or an anti-biotin scFv.
  • Particle A carries a phagmid with the genetic information for the expression of protein A as a fusion protein with a surface protein (here gene A fused with gene III controlled by the regulator).
  • a surface protein here gene A fused with gene III controlled by the regulator.
  • the attachment sites (Consensus AI and A2) for the specific primers AI and A2 are located on the phagmid.
  • step 2.1 Linking a library: The library constructed according to step 2.1 is applied to the prepared microchips; the individual components bind to the coupling areas through the interaction between the particle A-reactive ligand and the linkage A (here: biotin / streptavidin or biotin / anti-biotin scFv). This ensures that there is a high probability that a different, unknown particle is located on each coupling area.
  • the particle A-reactive ligand here: biotin / streptavidin or biotin / anti-biotin scFv.
  • Step 3 Generation of the soluble molecule libraries (using the example of a cDNA expression library from primary tumor material according to X. Cai et al., Proc. Natl. Acad. Sci. USA 92 (14): 6531-41 (1995) a soluble cDNA- Expression library (here: cDNA generated from the mRNA of primary pancreatic carcinoma cells), the individual components (particle B) of which are characterized as follows (FIG. 4):
  • Protein B (here: an unknown translation product from the primary pancreatic cancer cells) is located at one end of the particle and is covalently and functionally coupled to a surface protein of particle B (here protein III (pIII) of a filamentous bacteriophage).
  • pIII protein III
  • Particle B carries a phagmid with the genetic information for the expression of protein B as a fusion protein with a surface protein (here gene B fused with gene III controlled by the regulator).
  • the attachment sites (Consensus Bl and B2) for the specific primers Bl and B2 are located on the phagmid.
  • Particle B can optionally also be provided with GFP fusions on, for example, surface protein VIII, in order to enable detection using fluorescence techniques.
  • Step 4 Detection of the individual interactions
  • the soluble protein library is added to the immobilized protein library and several washing steps eliminate non-specific binding activities between the libraries.
  • the sorting particle here: magnetic particle with binding activity for the poly-histidine tag, for example Ni 2+ -NTA or "high graft"
  • the correspondingly interacting particles are measured using, for example, SNOM or 2-D scanning fluorescence technology (FIG. 2). This results in an assignment of the detected interaction to the coordinates X and Y.
  • Step 5 Specific solving of the interacting molecules
  • the coordinates of the detected interaction are compared with the coordinates of the coupling areas (internal control).
  • the detachment laser (SNOM, alternatively: CW-UV sources) is adjusted to these coordinates and acts via the Z axis on the photolinker layer applied to the microchip (FIG. 2), which leads to a directed detachment of the interacting particles.
  • Step 6 first proof-of-principle
  • a cDNA mini expression library consisting of CD30 and CEA antigen for immobilization on the microchips is created, the individual components of which are characterized as described in FIG. 3.
  • the individual components of which are characterized as described in FIG. 3.
  • the antigens which are covalently and functionally linked to the protein III (pIII) filamentous bacteriophage.
  • the opposite end of the same particle is modified so that a directed coupling of the particle A to a biotin coupling area of the microchip is possible by means of antibiotic binding ligands.
  • the two different particles A each carry a phagmid with the genetic information for the expression of the different antigens as a fusion with gene III controlled by the regulator.
  • the mini library is placed on the prepared microchips; the individual components bind to the coupling areas through the interaction between biotin / anti-biotin ligands.
  • the distribution of the antigen-bearing bacteriophage particles on the coupling areas correlates directly with the percentage of the particles in the mini library.
  • a soluble scFv bacteriophage mini library consisting of anti-CD30, anti-CEA and anti-MUC-1 is created, the individual components (particle B) of which are characterized as follows (FIG. 4): At each end of the particles are the scFv which are covalently and functionally linked to the protein III (pIII) of the filamentous bacteriophages. The opposite end of the same particle is modified in such a way that a directional coupling of particle B via the poly-histidine label to a Ni 2+ -NTA-coupled sorting particle is ensured.
  • the particles B each carry a phagmid with the genetic information for the expression of the scFv as a fusion with gene III controlled by the regulator.
  • Step 7 trapping the interacting molecules
  • the coupled particles A & B are discharged through the sorting particles (here: magnetic particles with binding activity for the poly-histidine tag, for example through metal chelates or "high graft”) through microfluidic systems into the final microreaction vessels.
  • sorting particles here: magnetic particles with binding activity for the poly-histidine tag, for example through metal chelates or "high graft”
  • microfluidic systems into the final microreaction vessels.
  • Step 8 analysis of the interacting molecules
  • the coding regions of the sorted particles A & B are simultaneously amplified by using the specific primers A1 / A2 and B1 / B2 by polymerase chain reaction. Aliquots of this reaction batch can be analyzed by parallel sequencing batches and thereby simultaneously determine the sequences of genes A & B and the encoded protein sequences can be derived therefrom using standard methods.
  • the activity of the available translation products is characterized after expression in known systems in vitro and in vivo.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Hematology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Wood Science & Technology (AREA)
  • Cell Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

Verfahren und Vorrichtung zur Bestimmung und Selektion von Molekül-Molekül-Wechselwirkungen. Die vorliegende Erfindung betrifft Biochips zur Dokumentation spezifischer Molekül-Molekül-Wechselwirkungen bzw. Zell-Molekül-Wechselwirkungen, insbesondere von unbekannten, singulären Protein-Interaktionen und entsprechende Verfahren zur Selektion und Charakterisierung von Molekülen, insbesondere Polypeptiden und ihren komplementären Bindungsmolekülen.

Description

Verfahren und Vorrichtung zur Bestimmung und Selektion von Molekül-Molekül-Wechselwirkungen
Die vorliegende Erfindung betrifft Biochips zur Dokumentation spezifischer Molekül-Molekül- Wechselwirkungen bzw. Zell-Molekül-Wechselwirkungen, insbesondere von unbekannten, singulären Protein-Interaktionen und entsprechende Verfahren zur Selektion und Charakterisierung von Molekülen, insbesondere Polypeptiden und ihren komplementären Bindungsmolekülen.
Hintergrund der Erfindung
Die Wechselwirkungen zwischen Proteinen können derzeit durch verschiedene Techniken dargestellt werden. In neuester Zeit sind dabei Techniken entwickelt worden, die eine Selektion von Proteinbibliotheken auf immobilisierten Bibliotheken ermöglichen. Vor allem durch Kopplung von zu exprimierender DNA/RNA an das von ihr exprimierte Protein in Bakteriophagen ("Phage Display") oder durch "Ribosome Display" bzw. Profusion-Technologie, steht die genetische Information der angereicherten Proteine unmittelbar zur Verfügung. Die derzeitigen Screeningverfahren zeichnen sich dadurch aus, dass die Informationen zu den einzelnen Mitgliedern der immobilisierten Bibliotheken bekannt sind und an vordefinierten Orten auf den Chips lokalisiert sind.
Üblicherweise kommt es im Rahmen der gängigen Systeme zu einer Anreicherung eines oder mehrerer Klone aus der löslichen Proteinbibliothek in höheren Kopienzahlen. Singuläre unbekannte Klone (im Sinne eines einzigen Moleküls) können derzeit nicht unmittelbar untersucht werden; selektionierte Bakteriophagen müssen üblicherweise vermehrt werden, bevor eine detaillierte Analyse erfolgen kann. Würden unbekannte Mitglieder einer Proteinbibliothek immobilisiert, wäre eine unmittelbare Analyse des immobilisierten, durch Proteininteraktion detektierten Bindungsmoleküls derzeit ebenfalls nicht möglich. Diese Probleme werden durch die hier eingesetzten Biochips gelöst und erlauben dadurch einen Einsatz von Verfahren zur Hochdurchsatzanalyse von Molekül-Molekül-Wechselwirkungen insbesondere von Proteinen auf Einzelmolekülebene.
Kurzbeschreibung der Erfindung
Die vorliegende Erfindung betrifft somit
(1) ein Verfahren zur Selektion unbekannter Moleküle, umfassend die folgenden Schritte:
(a) Immobilisieren von Molekülen einer kombinatorischen Molekülbibliothek auf einem Träger,
(b) Anlagern von komplementären, singulären Bindungsmolekülen oder Zellen an ein bestimmtes immobilisiertes Molekül,
(c) selektives Ablösen der miteinander interagierenden, singulären Moleküle von dem Träger und
(d) Analysieren des in Schritt (c) abgelösten Materials;
(2) einen Biochip zur Selektion unbekannter Einzelmoleküle, umfassend einen Träger wie in (1) definiert, auf dem eine kombinatorische Molekülbibliothek immobilisiert werden kann oder eine solche immobilisiert ist, wobei gewährleistet ist, dass pro Kopplungsareal auf den Träger genau ein Molekül aufgenommen werden kann oder aufgenommen ist;
(3) ein Verfahren zur Herstellung eines Biochips, wie in (2) definiert, umfassend
(i) Erzeugung von Kopplungsarealen auf einem Träger, die geeignet sind, genau ein Molekül aufzunehmen, und/oder
(ii) Immobilisieren von Molekülen einer kombinatorischen Molekülbibliothek auf einem Träger; und
(4) eine Vorrichtung zur automatischen Messung der Molekül- oder Zellwechselwirkungen und deren koordinativen Zuordnung mit einer Ortsauflösung < 100 nm, insbesondere zur Verwendung in einem Verfahren, wie in (1) definiert und/oder zum Auslesen eines Biochips, wie in (2) definiert. Figurenbeschreibung
- Figur 1 zeigt den generellen Aufbau eines Mikrochips der Erfindung.
Figur 2 zeigt wie die Position des angelagerten Moleküls bzw. einer angelagerten Zelle bestimmt werden kann.
Figur 3 zeigt den schematischen Aufbau des Partikels A des Beispielsystems der Erfindung.
Figur 4 zeigt den schematischen Aufbau des Partikels B des Beispielsystems der Erfindung.
Figur 5 zeigt den schematischen Aufbau der interagierenden Partikel A & B.
Detaillierte Beschreibung der Erfindung
"Träger" im Sinne der vorliegenden Erfindung umfasst Trägerstrukturen mit unterschiedlichen Dimensionen einschließlich MikroStrukturen (Chips), aber auch größere Strukturen wie Objektträger und Platten im Dezimalbereich. Geeignete Trägermaterialien sind signaltransmittive Materialien, insbesondere für Licht, Wärme und/oder magnetische Felder transmittive Materialien, und besonders bevorzugt lichttransmittive Materialien (d.h. Träger aus Glas, Silikon, lichtdurchlässigem PVC usw.).
Die erfindungsgemäßen Träger (nachfolgend auch kurz "Biochips") setzen sich zusammen aus Arrays vereinzelter Moleküle aus kombinatorischen Bibliotheken (z.B. Proteine, Peptide usw.). Die Größe der Bereiche auf denen die Moleküle fixiert sind (nachfolgend auch "Areale") und der Abstand dieser Areale zueinander muß dabei so gewählt werden, dass gewährleistet wird, dass die Einzelmöleküle identifiziert werden können. Der Abstand und die Größe der Areale ist daher u. a. abhängig von der Größe der Moleküle. Der Abstand zwischen den Arealen liegt vorzugsweise im Bereich von 10 nm bis 100 μm, vorzugsweise 100 nm bis 5,0 μm und besonders bevorzugt 100 nm bis 1.500 nm. Die Größe der Areale ist vorzugsweise kleiner 50 nm x 50 nm, besonders bevorzugt 5 x 5 nm bis 20 x 20 nm (bzw. entsprechende Areale mit anderer Geometrie). Dies wird ermöglicht a) durch Kopplung einer licht- (magnetisch- oder wärme-)reaktiven Ankergruppe (z. B. o-Nitrobenzylester, Pivaloyl- oder Triazenverbindung) für Moleküle (z. B. Polypeptide) auf den Chip b) zur Vorbereitung der Molekülkopplung, der Einstellung von kopplungsreaktiven quadratischen (jedoch auch rechtwinkligen, runden etc.) Arealen mit einer Größe und einem Abstand zwischen den Arealen, wie vorstehend erwähnt. c) durch Kopplung jeweils eines Einzelmoleküls an die kopplungsreaktiven Areale.
Ein erfindungsgemäßes Verfahren zur Selektion interagierender Moleküle (Zwei- und Mehrkomponentensysteme) umfasst folgende Schritte: a) Erstellung einer ersten kombinatorischen Bibliothek insbesondere einer cDNA-Expressionsbibliothek für Bindungsproteine (beispielsweise Antikörper), alternativ einer cDNA- Expressionsbibliothek einer Zelle, oder einer synthetischen Peptid- oder Molekülbibliothek, gegebenenfalls durch direkte Synthese auf den Chips, b) Kopplung der Bibliothek über eine licht- (wärme-, oder magnetisch)-aktivierbare Ankergruppe (z. B. die nachfolgend näher definierten photoaktiven o-Nitrobenzylester, Pivaloyllinker oder Triazenverbindung) an die erfindungsgemäßen Biochips, c) Erstellung einer zweiten kombinatorischen Bibliothek, insbesondere einer cDNA-Expressionsbibliothek einer Zelle, alternativ einer cDNA-Expressionsbibliothek für Bindungsproteine, oder einer synthetischen Peptid- oder Molekülbibliothek, d) Screening einzelner Interaktionen zwischen der immobilisierten Bibliothek und der löslichen Bibliothek durch "Zwei(oder mehr)- Koordinaten"-Lasermessechnik (über die Achsen X und Y), oder alternative Messtechniken, e) gezielte, lichtabhängige Ablösung der wechselwirkenden Moleküle von dem Biochip über die dritte Achse Z (siehe auch Fig. 1 und 2), wobei die erste Bibliothek (z.B. eine cDNA-Expressionsbibliothek) auf komplementäre Bindungsmoleküle nach beschriebenen Verfahren angereichert und die zweite Bibliothek z. B. insbesondere eine subtraktive cDNA- Expressionsbibliothek sein kann.
"Komplementäre Bindungsmoleküle" sind insbesondere Polypeptide, die spezifisch mit definierten Molekülen in Wechselwirkung treten. Eine spezifische Wirkung bedeutet eine Dissoziationskonstante K < 1.0"6 mol/l, bevorzugt < 10"8 mol/l.
Eine "cDNA-Expressionsbibliothek für Bindungspeptide" bezeichnet eine Vielzahl von Substanzen, bei denen in spezifischer Weise in einer Einzelkomponente die kodierende Region einer Nukleinsäure mit dem dazugehörenden exprimierten bindungsaktiven Polypeptid verknüpft ist. Typische Beispiele hierfür sind Bibliotheken komplementärer Bindungspeptide in transformierten Zellen (bevorzugt Bakterien und Hefen, besonders bevorzugt Bakteriophagen), bei denen die eingebaute Nukleinsäure funktioneil translatiert wird und das Protein zytosolisch exprimiert wird, oder insbesondere als Fusionsprotein an der Oberfläche der Zelle verankert ist. Dadurch kann, ausgehend von den Eigenschaften des Bindungspeptids, eine Analyse seiner Bindungsfunktion mit dem membranassoziierten Polypeptid nach derzeitigem Stand der Technik durchgeführt und gleichzeitig die damit korrelierende Nukleinsäure eindeutig zugeordnet werden. Ähnliches gilt für das "Ribosome Display" oder Liposomendisplay oder die Profusion-Technologie.
Die Erstellung von cDNA-Expressionsbibliotheken für komplementäre Bindungspeptide in Bakteriophagen ist beispielsweise beschrieben im US Patent 5.969.108, für Display auf Ribosömen im US Patent 5.643.768. Die "cDNA-Expressionsbibliotheken einer Zelle" bezeichnen eine Vielzahl unbekannter, peptidischer Einzelmöleküle, bei denen in spezifischer Weise in einer Einzelkomponente die zu einer cDNA umgewandelte kodierende Region einer mRNA mit dem dazugehörenden exprimierten Polypeptid verknüpft ist. Typisches Beispiel hierfür sind cDNA-Expressionsbibliotheken z. B. in λ-Phagen oder anderen filamentösen Bakteriophagen, die gewährleisten, dass die eingebauten Nukleinsäuren funktioneil in Bakterien translatiert werden und nach Lyse der Bakterien das exprimierte Protein in entsprechenden Plaques exponiert ist, oder an der Oberfläche von Kompartimenten (Liposomen, Zellen, Bakterien, Bakteriophagen), die gewährleisten, dass die Translationsprodukte der eingebauten Nukleinsäuren funktionell an der Außenseite der Kompartimente exponiert sind. Diese cDNA-Expressionsbibliotheken beinhalten somit das Abbild der exprimierten Proteine einer Zelle, so dass ausgehend von den Eigenschaften interagierender Polypeptide durch Kombination mit dem entsprechenden komplementären Bindungspeptid durch die erfindungsgemäße "Zwei-(oder mehr) Koordinaten"-Lasertechnik Molekül-Molekül-
Wechselwirkungen dokumentiert werden können.
"Synthetische Peptid- oder Molekülbibliothek" bezeichnet eine Vielzahl von Peptiden oder Molekülen, die über kombinatorische Synthese, wodurch im Idealfall alle theoretisch kombinierbaren Molekülzusammensetzungen verfügbar werden, zusammengesetzt worden ist.
"Immobilisierung" bedeutet, dass die Mitglieder der einen Bibliothek an einer festen Matrix gebunden werden (z. B. Immobilisierung mittels Ankergruppen wie o-Nitrobenzylester, Pivaloyl- oder Triazenverbindungen), die nach Dokumentation der Wechselwirkung mit dem zweiten Peptid, besonders leicht durch Licht-(Wärme-, oder Magnet-)Reaktion getrennt werden können. Geeignete Ankergruppen für die Immobilisierung sind insbesondere die folgenden in WO 95/31429 und WO 99/67619 genannten Verbindungen : o- Nitrobenzylester-basierte Fotolinker (Linker I):
-Spalt = 365 nm
Pivaloyl-Linker (Linker II) : • λSpa„ « 280 bis 340 nm
tBu
und Triazenverbindungen.
Der generelle Aufbau der Biochips ist in Fig. 1 dargestellt. Basis der Biochips bildet eine Quarz- bzw. Glasplatte, alternativ kann auch ein Kunststoffträger dienen, der jedoch signaltransmittiv (für Licht, Wärme, magnetische Felder) sein muss. Auf diesem Träger wird zunächst eine Haftschicht (z. B. aus Polylysinderivaten) und dann eine Immobilisierungsschicht aufgetragen, die einerseits an dem Träger haftet und andererseits, auf der dem Protein zugewandten Seite, mit den zu immobilisierenden Einzelmolekülen aus den kombinatorischen Bibliotheken eine feste (kovalente) Bindung eingeht. Die Immobilisierungsschicht besteht entweder aus chemischen Molekülen oder Verbindungen, die durch Lichtanregung chemisch gespalten werden bzw. Molekülen oder Verbindungen, die durch thermische Einwirkung getrennt werden.
Nach dem Beladen mit Haftschicht und Fotolinkerschicht werden die kopplungsaktiven Areale, d. h., die gewünschten Strukturen auf dem Träger erzeugt. Alternativ kann auch die Fotolinkerschicht nach Einstellung der Struktur der Haftschicht aufgebracht werden. Diese Immobilisierungsschicht wird mit Einzelmolekülen einer kombinatorischen Bibliothek so beladen, dass gewährleistet ist, dass ein Molekül an einem, nicht aber an zwei benachbarten Orten bindet. Dies wird dadurch erzielt, dass ein Abstand von 10 nm bis 1000 μm (vorzugsweise 100 nm bis 5.000 nm bzw. 100 nm bis 1.500 nm) in Abhängigkeit von der maximalen Einzelmolekülgröße zwischen den Arrays gewährt wird, d.h. die Moleküle werden nach einem festgelegten Ortsraster vereinzelt.
Die so vorbereiteten Biochips können in dieser Form einer zweiten kombinatorischen Bibliothek ausgesetzt werden. Dabei lagern sich bestimmte Moleküle aus der löslichen Bibliothek an einzelne Moleküle der immobilisierten Bibliothek des Biochips an. Mittels einer geeigneten Messtechnik wird nun die Position des angelagerten Moleküls bzw. auch einer angelagerten Zelle an dem jeweiligen Protein mit hoher Ortsauflösung bestimmt (Fig. 2). Als Messtechniken können dabei folgende Verfahren eingesetzt werden:
Fluoreszenzmessungen an zuvor mit einem Fluoreszenzmarker versehenen Molekül (Peptid, Protein, konjugiertes Ribosom, konjugierter Bakteriophage, Liposom, markierte Partikel und Zellen), simulierte Ramanemissionen aus dem angelagerten Molekül (Peptid, Protein, konjugiertes Ribosom, konjugierter Bakteriophage, Liposom, markierte Partikel und Zellen), magnetische Detektion des Anlagerungsortes über ein Magnetbead- gekoppeltes Molekül (Peptid, Protein, konjugiertes Ribosom, konjugierter Bakteriophage, Liposom, markierte Partikel und Zellen), Atomic-Force-Mikroskopie, mit der eine lokale Anreicherung eines Moleküls (Peptid, Protein, konjugiertes Ribosom, konjugierter Bakteriophage, Liposom, markierte Partikel und Zellen) mit hoher Ortsauflösung bestimmt werden kann, wobei die Meßmethode so ausgelegt sein muss, dass gegebenenfalls eine Ortsauflösung < 100 nm erzielt werden kann. Nach Waschen des Biochips und Entfernung sämtlicher nicht angelagerter Bestandteile und Restmoleküle erfolgt die eigentliche Messung der Molekül- Interaktion am Anlagerungsort (über die Achsen X und Y). Nach Bestimmung des Anlagerungsortes wird mittels eines zweiten Scanningsystems ein Laserstrahl durch den Biochip, d.h. durch den Träger von unten (Achse Z) auf die Immobilisierungsschicht (z. B. aus den o-Nitrobenzylester, Pivaloyl- oder Triazenverbindungen, wie vorstehend definiert) gerichtet. Die Position dieser Belichtung entspricht dabei der zuvor bestimmten Position des angelagerten Moleküls. Durch kurzzeitige Bestrahlung der Immobilisierungsschicht werden anschließend die chemischen Bindungen der photolabilen Linker- oder Ankergruppe der Immobilisierungsschicht gespalten, bzw. die Immobilisierungsschicht thermisch aufgelöst. Dadurch können die an diesem Ort interagierenden Moleküle wieder spezifisch abgelöst werden. Dies bedeutet, dass sowohl das zuvor immobilisierte Molekül (Peptid, Protein, konjugiertes Ribosom, konjugierter Bakteriophage, Liposom, markiertes Partikel), als auch das damit verbundene lösliche Molekül (Peptid, Protein, konjugiertes Ribosom, konjugierter Bakteriophage) für die nachfolgende Analyse zur Verfügung stehen.
Über die nachgeschaltete Analyse der so selektionierten, interagierenden Moleküle, z.B. über 'matrix associated laser desorption/ionization' (MALDI) oder 'electrospray ionization' (ESI) mit anschließender Massenanalyse im Flugzeit- (TOF oder oTOF), Quadrupol- (Q), Ionenfallen- (IT), Fourier- Tranform- (FTMS oder FT-ICR) Massenspektrometer, 'post-source decay' PSD, 'in source decay' (ISD), 'surface plasmon resonance' (SPR), Multispektralanalyse, Fluoreszenz-Korrelations-Spektroskopie (FCS), oder Polymerasekettenreaktion (PCR) läßt sich die Struktur des Proteins und seiner DNA ableiten und gegebenenfalls seine DNA vervielfältigen.
Ungeachtet der obengenannten Analyse und Ablösemechanismen können auch andere ortsauflösende Detektionsmethoden und Aktivierungstechnologien verwendet werden. Beispielsystem
Schritt 1 : Synthese der Mikrochips
Auf Quarz- oder Glassubstrat wird zunächst eine Haftschicht aus Polylysinderivaten aufgebracht, dann die Fotolinkerschicht aus Linker I (mit X = 0) und ein Partikel A-reaktiver Ligand (hier: Biotin) daran gekoppelt. Durch Lasertechnik werden als Strukturierung Areale mit <50 nm Durchmesser in einem Abstand von 1.2 μm generiert. Da in dem hier vorgestellten Beispielsystem die Länge der zu immobilisierenden Partikel (Partikel A) ~ 1 μm beträgt und verhindert werden soll, dass ein Partikel A an zwei Kopplungsareale bindet, muss dieser Mindestabstand zwischen den Kopplungsarealen gewährleistet sein.
Schritt 2: Generierunq immobilisierter Molekülbibliotheken 2.1 Synthese einer kombinatorischen Molekülbibliothek (am Beispiel einer scFv-Bakteriophaqenbibliothek) : Gemäß G. E. Stoica et al., J. Biol. Chem. (2001) wird eine kombinatorische scFv-Bakteriophagenbibliothek (hier: mit Reaktivität gegen Pankreaskarzinom) zur Immobilisierung auf den Mikrochips erstellt, deren Einzelkomponenten (Partikel A) folgendermaßen charakterisiert sind (Fig. 3):
An einem Ende des Partikels befindet sich das Protein A (hier: ein unbekanntes scFv oder Fab der zu immobilisierenden Bibliothek) das kovalent und funktionell an ein Oberflächenprotein des Partikels A (hier Protein III (pIII) eines filamentösen Bakteriophagen) gekoppelt ist.
Das gegenüberliegende Ende desselben Partikels ist so modifiziert, dass eine gerichtete Kopplung des Partikels A an ein Kopplungsareal des Mikrochips durch die Aktivität der Verknüpfung A gewährleistet ist (in diesem Fall: Streptavidin oder eine modifizierte Streptavidinbindungskomponente oder ein anti-Biotin scFv).
Partikel A trägt ein Phagmid mit der genetischen Information zur Expression des Proteins A als Fusionsprotein mit einem Oberflächenprotein (hier Gen A fusioniert mit Gen III gesteuert durch den Regulator). Zusätzlich befinden sich auf dem Phagmid die Anlagerungsstellen (Consensus AI und A2) für die spezifischen Primer AI und A2.
2.2 Kopplung einer Bibliothek: Die nach Schritt 2.1 konstruierte Bibliothek wird auf die vorbereiteten Mikrochips aufgebracht; es kommt zu einer Bindung der Einzelkomponenten an die Kopplungsareale durch die Interaktion zwischen dem Partikel A-reaktiven Liganden und der Verknüpfung A (hier: Biotin/Streptavidin oder Biotin/anti-Biotin scFv). Hierdurch wird gewährleistet, dass mit hoher Wahrscheinlichkeit an jedem Kopplungsareal ein anderer, unbekannter Partikel sitzt.
Schritt 3: Generierunq der löslichen Molekülbibliotheken (am Beispiel einer cDNA-Expressionsbibliothek aus primärem Tumormateriaπ Nach X. Cai et al., Proc. Natl. Acad. Sei. USA 92(14):6531-41 (1995) wird eine lösliche cDNA-Expressionsbibliothek (hier: cDNA generiert aus der mRNA primärer Pankreaskarzinomzellen) erstellt, deren Einzelkomponenten (Partikel B) folgendermaßen charakterisiert sind (Fig. 4):
An einem Ende des Partikels befindet sich das Protein B (hier: ein unbekanntes Translationsprodukt aus den primären Pankreaskarzinomzellen) das kovalent und funktioneil an ein Oberflächenprotein des Partikels B (hier Protein III (pIII) eines filamentösen Bakteriophagen) gekoppelt ist.
Das gegenüberliegende Ende desselben Partikels ist so modifiziert, dass eine gerichtete Kopplung des Partikels B über die Verknüpfung B an ein Sortierungspartikel gewährleistet ist (in diesem Fall: poly-Histidin-Markierung). Partikel B trägt ein Phagmid mit der genetischen Information zur Expression des Proteins B als Fusionsprotein mit einem Oberflächenprotein (hier Gen B fusioniert mit Gen III gesteuert durch den Regulator). Zusätzlich befinden sich auf dem Phagmid die Anlagerungsstellen (Consensus Bl und B2) für die spezifischen Primer Bl und B2.
Optional kann Partikel B zusätzlich mit GFP-Fusionen an bspw. Oberflächenprotein VIII versehen sein, um eine Detektion über Fluoreszenztechniken zu ermöglichen.
Schritt 4: Detektion der einzelnen Interaktionen
Die lösliche Proteinbibliothek wird auf die immobilisierte Proteinbibliothek gegeben, und durch mehrere Waschschritte werden unspezifische Bindungsaktivitäten zwischen den Bibliotheken eliminiert. Nach Kopplung an das Sortierungspartikel (hier: magnetisches Partikel mit Bindungsaktivität für den poly-Histidin-Tag, bspw. Ni2+-NTA oder "high graft") - es besteht optional die Möglichkeit ein magnetisches Feld anzulegen und so eine vektorielle Ausrichtung der interagierenden Partikel A & B zu erhalten (s. Fig. 5) - erfolgt die Messung der entsprechend-interagierenden Partikel über bspw. SNOM, oder 2-D-Scanning-Fluoreszenztechnik (Fig. 2). Hieraus ergibt sich eine Zuordnung der detektierten Interaktion zu den Koordinaten X und Y.
Schritt 5: Spezifisches Lösen der interagierenden Moleküle Die Koordinaten der detektierten Interaktion werden mit den Koordinaten der Kopplungsareale abgeglichen (interne Kontrolle). Der Ablöselaser (SNOM, alternativ: CW-UV-Quellen) wird auf diese Koordinaten justiert und wirkt über die Achse Z auf die auf dem Mikrochip aufgebrachte Fotolinkerschicht (Fig. 2), wodurch es zu einem gerichteten Ablösen der interagierenden Partikel kommt. Schritt 6: Erstes Proof-of-Principle
Nach X. Cai et al., Proc. Natl. Acad. Sei. USA 92(14):6531-41 (1995) wird eine cDNA-Miniexpressionsbibliothek bestehend aus CD30- und CEA-Antigen zur Immobilisierung auf den Mikrochips erstellt, deren Einzelkomponenten wie in Fig. 3 beschrieben charakterisiert sind. An einem Ende des Partikels befinden sich die benannten Antigene die kovalent und funktionell an das Protein III (pIII) filamentöser Bakteriophagen gekoppelt sind. Das gegenüberliegende Ende desselben Partikels ist so modifiziert, dass eine gerichtete Kopplung des Partikels A an ein Biotin-Kopplungsareal des Mikrochips durch Antibiotin- Bindungsliganden möglich ist. Die beiden verschiedenen Partikel A tragen jeweils ein Phagmid mit der genetischen Information zur Expression der verschiedenen Antigene als Fusion mit Gen III gesteuert durch den Regulator. Die Minibibliothek wird auf die vorbereiteten Mikrochips aufgebracht; es kommt zu einer Bindung der Einzelkomponenten an die Kopplungsareale durch die Interaktion zwischen Biotin/anti-Biotin Liganden. Die Verteilung der antigen- tragenden Bakteriophagenpartikel an den Kopplungsarealen korreliert direkt mit den prozentualen Anteilen der Partikel in der Minibibliothek.
Nach X. Cai et al., Proc. Natl. Acad. Sei. USA 92(14):6531-41 (1995) wird eine lösliche scFv-Bakteriophagenminibibliothek bestehend aus anti-CD30, anti-CEA und anti-MUC-1 erstellt, deren Einzelkomponenten (Partikel B) folgendermaßen charakterisiert sind (Fig. 4): An jeweils einem Ende der Partikel befinden sich die scFv die kovalent und funktionell an das Protein III (pIII) der filamentösen Bakteriophagen gekoppelt sind. Das gegenüberliegende Ende derselben Partikel ist so modifiziert, daß eine gerichtete Kopplung der Partikel B über die poly-Histidin-Markierung an ein Ni2+-NTA-gekoppeltes Sortierungspartikel gewährleistet ist. Die Partikel B tragen jeweils ein Phagmid mit der genetischen Information zur Expression der scFv als Fusion mit Gen III gesteuert durch den Regulator.
Nach Einstellung verschiedener Verdünnungen sowohl von CD30 und CEA für die immobilisierte als auch von anti-CD30, anti-CEA und anti-Muc-l für die lösliche Minibibliothek, werden miteinander wechselwirkende Partikel detektiert, über den Ablöselaser von dem Träger gelöst, gesammelt und über das gekoppelte magnetische Sortierungspartikel an entsprechende Säulen gebunden. Nach intensivem Waschen werden die magnetisch gebundenen Partikel eluiert und durch Polymerasekettenreaktion analysiert bzw. durch in- w'tro-Bindungsstudien (ELISA, Durchflusszytometrie) der scFv-tragenden Bakteriophagen, die Bindung an CD30- und CEA-positive Zellen- und Membranfraktionen bestätigt.
Schritt 7: Auffangen der interagierenden Moleküle
Die aneinandergekoppelten Partikel A & B werden über den Sortierungspartikel (hier: magnetisches Partikel mit Bindungsaktivität für das poly-Histidin-Tag, bspw. durch Metall-Chelate oder "high graft") durch Mikrofluidsysteme in die finalen Mikroreaktionsgefäße abgeleitet.
Schritt 8: Analyse der interagierenden Moleküle
In den Mikroreaktionsgefäßen werden die kodierenden Regionen der sortierten Partikel A & B gleichzeitig durch Einsatz der spezifischen Primer A1/A2 und B1/B2 durch Polymerasekettenreaktion amplifiziert. Aliquots dieses Reaktionsansatzes können durch parallele Sequenzierungsansätze analysiert und dadurch gleichzeitig die Sequenzen der Gene A & B ermittelt und daraus mit Standardmethoden die kodierten Proteinsequenzen abgeleitet werden.
Die Aktivität der verfügbaren Translationsprodukte wird nach Expression in bekannten Systemen in vitro und in vivo charakterisiert.

Claims

Patentansprüche
1. Verfahren zur Selektion unbekannter Moleküle, umfassend die folgenden Schritte:
(a) Immobilisieren von Molekülen einer kombinatorischen Molekülbibliothek auf einem Träger, wobei jeweils ein Einzelmolekül in einem kopplungsreaktiven Areal mit einer Abmessung von kleiner 50 nm x 50 nm immobilisiert wird,
(b) Anlagern von komplementären, singulären Bindungsmolekülen oder Zellen an ein bestimmtes immobilisiertes Molekül,
(c) selektives Ablösen der miteinander interagierenden, singulären Moleküle von dem Träger, ohne dass die Bindung zwischen den Molekülen der kombinatorischen Molekülbibliothek und den komplementären, singulären Bindungsmolekülen oder Zellen gebrochen wird, und
(d) Analysieren des in Schritt (c) abgelösten Materials.
2. Verfahren nach Anspruch 1, wobei der Träger aus signaltransmittivem Material, insbesondere für Licht, Wärme und/oder magnetische Felder transmittivem Material, und besonders bevorzugt aus lichttransmittivem Material besteht.
3. Verfahren nach Anspruch 1 oder 2, wobei wobei jeweils ein Einzelmolekül in einem kopplungsreaktiven Areal mit einer Abmessung von kleiner 10 nm x 10 nm immobilisiert ist und/oder der Abstand zwischen den kopplungsreaktiven Arealen 100 nm bis 100 μm beträgt.
4. Verfahren nach Anspruch 3, wobei Schritt (a) das Aufbringen einer licht-, wärme- oder magnetisch-reaktiven Ankergruppe, insbesondere photolabile Linker wie o-Nitrobenzylester, Pivaloyl- oder Triazenverbindungen oder ein thermisch-empfindliches Polymer auf den Träger und das Einstellen der kopplungsreaktiven Areale umfasst.
5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, wobei die lösliche Molekülbibliothek eine cDNA-Expressionsbibliothek für Bindungsproteine, eine cDNA-Expressionsbibliothek einer Zelle oder eine synthetische Peptid- oder Molekülbibliothek ist und insbesondere die Moleküle Peptide, Proteine, konjugierte Ribosomen oder konjugierte Bakteriophagen sind.
6. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, wobei die komplementäre Molekülbibliothek ausgewählt ist aus Peptiden, Proteinen, konjugierten Ribosomen, konjugierten Bakteriophagen, Liposomen, markierten Partikeln.
7. Verfahren nach einem oder mehreren der Ansprüche 1 bis 6, wobei nach Schritt (b) ein oder mehrere Waschschritte erfolgen.
8. Verfahren nach einem oder mehreren der Ansprüche 1 bis 7, bei dem die Analyse des Ortes der Molekül-, Zeil- oder Molekül-Zell-Interaktion durch ein optisches, magnetisches oder profilometrisches Messverfahren erfolgt.
9. Verfahren nach einem oder mehreren der Ansprüche 1 bis 8, wobei eine kombinatorische Bibliothek auf einem transparenten Träger immobilisiert ist und diese Immobilisierungsschicht selektiv durch photonische oder thermische Wechselwirkung aufgelöst werden kann.
10. Verfahren nach einem oder mehreren der Ansprüche 1 bis 9, wobei Schritt (d) durch MALDI ("matrix associated laser desorption/ionization") oder ESI ("electrospray ionization") mit anschließender Massenanalyse, SPR ("surface plasmon resonance"), Multispektralanalyse, Fluoreszenz-Korrelations- Spektroskopie (FCS), oder Polymerasekettenreaktion (PCR) erfolgt.
11. Biochip zur Selektion unbekannter Einzelmöleküle, umfassend einen Träger wie in Ansprüchen 1 bis 4 definiert, der zur Immobilisierung einer kombinatorischen Molekülbibliothek geeignet ist oder mit einer solchen immobilisiert ist, auf den eine wie in Anspruch 4 definierte Ankergruppe aufgebracht ist und auf dem eine kombinatorische Molekülbibliothek immobilisiert werden kann oder eine solche immobilisiert ist, wobei gewährleistet ist, dass pro Kopplungsareal auf den Träger genau ein Molekül aufgenommen werden kann oder aufgenommen ist.
12. Verfahren zur Herstellung eines Biochips gemäß Anspruch 11, umfassend (i) Erzeugung von Kopplungsarealen auf einem Träger, die geeignet sind, genau ein Molekül aufzunehmen, und/oder
(ii) Immobilisieren von Molekülen einer kombinatorischen Molekülbibliothek auf einem Träger.
13. Vorrichtung zur automatischen Messung der Molekül- oder Zellwechselwirkungen und deren koordinativen Zuordnung mit einer Ortsauflösung < 100 nm, insbesondere zur Verwendung in einem Verfahren gemäß Ansprüchen 1 bis 10 und/oder zum Auslesen eines Biochips gemäß Anspruch 11.
14. Vorrichtung nach Anspruch 13, die zur Sortierung der interagierenden Moleküle geeignet ist.
15. Vorrichtung nach Anspruch 13, die zur Analyse der interagierenden Moleküle geeignet ist und vorzugsweise das detektierte Molekül mittels MALDI ("matrix associated laser desorption/ionization") oder ESI ("electrospray ionization"), SPR, Multispektralanalyse, FCS, oder PCR identifiziert.
EP02735242A 2001-04-10 2002-04-10 Verfahren und vorrichtung zur bestimmung und selektion von molekül-molekül-wechselwirkungen Withdrawn EP1386000A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP02735242A EP1386000A2 (de) 2001-04-10 2002-04-10 Verfahren und vorrichtung zur bestimmung und selektion von molekül-molekül-wechselwirkungen

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP01108919A EP1249499A1 (de) 2001-04-10 2001-04-10 Verfahren und Vorrichtung zur Bestimmung und Selektion von Molekül-Molekül-Wechselwirkungen
EP01108919 2001-04-10
EP02735242A EP1386000A2 (de) 2001-04-10 2002-04-10 Verfahren und vorrichtung zur bestimmung und selektion von molekül-molekül-wechselwirkungen
PCT/EP2002/003983 WO2002083942A2 (de) 2001-04-10 2002-04-10 Verfahren und vorrichtung zur bestimmung und selektion von molekül-molekül-wechselwirkungen

Publications (1)

Publication Number Publication Date
EP1386000A2 true EP1386000A2 (de) 2004-02-04

Family

ID=8177101

Family Applications (2)

Application Number Title Priority Date Filing Date
EP01108919A Withdrawn EP1249499A1 (de) 2001-04-10 2001-04-10 Verfahren und Vorrichtung zur Bestimmung und Selektion von Molekül-Molekül-Wechselwirkungen
EP02735242A Withdrawn EP1386000A2 (de) 2001-04-10 2002-04-10 Verfahren und vorrichtung zur bestimmung und selektion von molekül-molekül-wechselwirkungen

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP01108919A Withdrawn EP1249499A1 (de) 2001-04-10 2001-04-10 Verfahren und Vorrichtung zur Bestimmung und Selektion von Molekül-Molekül-Wechselwirkungen

Country Status (4)

Country Link
US (1) US20040241675A1 (de)
EP (2) EP1249499A1 (de)
AU (1) AU2002310934A1 (de)
WO (1) WO2002083942A2 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050059083A1 (en) * 2003-09-15 2005-03-17 Becton Dickinson And Company High throughput method to identify ligands for cell attachment
US8921283B2 (en) * 2006-10-30 2014-12-30 Washington University Method for generating microscopic patterns of protein and other macromolecules
US11014088B2 (en) * 2016-03-09 2021-05-25 The Board Of Regents Of The University Of Texas System Sensitive ELISA for disease diagnosis on surface modified poly(methyl methacrylate) (PMMA) microfluidic microplates

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2118066T3 (es) * 1989-10-05 1998-09-16 Optein Inc Sintesis y aislamiento, exentos de celulas, de nuevos genes y polipeptidos.
GB9015198D0 (en) * 1990-07-10 1990-08-29 Brien Caroline J O Binding substance
US5639603A (en) * 1991-09-18 1997-06-17 Affymax Technologies N.V. Synthesizing and screening molecular diversity
US5412087A (en) * 1992-04-24 1995-05-02 Affymax Technologies N.V. Spatially-addressable immobilization of oligonucleotides and other biological polymers on surfaces
CA2301230A1 (en) * 1996-09-20 1998-03-26 Digital Drives, Inc. Spatially addressable combinatorial chemical arrays in cd-rom format
AU3572799A (en) * 1998-04-24 1999-11-16 Genova Pharmaceuticals Corporation Function-based gene discovery
IL141148A0 (en) * 1998-07-30 2002-02-10 Solexa Ltd Arrayed biomolecules and their use in sequencing
WO2000036398A2 (de) * 1998-12-14 2000-06-22 Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts Verfahren und vorrichtungen zur erfassung optischer eigenschaften, insbesondere von lumineszenz-reaktionen und brechungsverhalten, von auf einem träger direkt oder indirekt gebundenen molekülen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02083942A2 *

Also Published As

Publication number Publication date
WO2002083942A3 (de) 2003-11-20
WO2002083942A2 (de) 2002-10-24
EP1249499A1 (de) 2002-10-16
AU2002310934A1 (en) 2002-10-28
US20040241675A1 (en) 2004-12-02

Similar Documents

Publication Publication Date Title
AU2004288228B2 (en) Use of particulate labels in bioanalyte detection methods
US7557070B2 (en) Multiplexed cell analysis system
EP1390725B1 (de) Verwendung von optischen diffraktionselementen in nachweisverfahren
JP2003505701A (ja) アレーサイトメトリー
WO2000036398A2 (de) Verfahren und vorrichtungen zur erfassung optischer eigenschaften, insbesondere von lumineszenz-reaktionen und brechungsverhalten, von auf einem träger direkt oder indirekt gebundenen molekülen
EP1140977B1 (de) Verfahren und vorrichtung zum aufbringen von substanzen auf einen träger, insbesondere von monomeren für die kombinatorische synthese von molekülbibliotheken
WO2002037944A2 (en) Multiplexed cell analysis system
Tas et al. Small peptide–protein interaction pair for genetically encoded, fixation compatible peptide-PAINT
Loeffler et al. Biomolecule arrays using functional combinatorial particle patterning on microchips
WO2002083942A2 (de) Verfahren und vorrichtung zur bestimmung und selektion von molekül-molekül-wechselwirkungen
EP1663473A2 (de) Molekül-arrays und verfahren zu deren herstellung
US11105797B2 (en) Ligand binding assays using MALDI-TOF mass spectrometry
Venton et al. Screening combinatorial libraries
EP1194780A2 (de) Screening von target-ligand-wechselwirkungen
JP2002537564A (ja) 基質−リガンド相互作用スクリーニング方法
DE102015117567B4 (de) Ultra-hochdichte Oligomerarrays und Verfahren zu deren Herstellung
DE102017123744B4 (de) High-Throughput-Screening-Methode von kombinatorischen Bibliotheken mittels optischer on-chip-Detektion und massenspektrometrischer Sequenzierung
WO2004090168A1 (en) Multiplexed cell analysis system
Palfreyman et al. Hybridization of electrodeposited magnetic multilayer micropillars
AT414047B (de) Anordnung zur bindung von molekülen
DE10128093A1 (de) Verfahren zum Nachweis von Substanzen und Artikel zur Durchführung dieser Verfahren
KR20080017738A (ko) 나노어레이 단백질 칩 및 이것의 제조 방법
EP1395601A2 (de) Multiplexiertes zellanalysesystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031015

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FISCHER, RAINER

Inventor name: BARTH, STEFAN

Inventor name: BREMUS-KOEBBERLING, ELKE

Inventor name: GILLNER, ARNOLD

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20050326