EP1377752B1 - Pompe turbomoleculaire - Google Patents

Pompe turbomoleculaire Download PDF

Info

Publication number
EP1377752B1
EP1377752B1 EP02727419A EP02727419A EP1377752B1 EP 1377752 B1 EP1377752 B1 EP 1377752B1 EP 02727419 A EP02727419 A EP 02727419A EP 02727419 A EP02727419 A EP 02727419A EP 1377752 B1 EP1377752 B1 EP 1377752B1
Authority
EP
European Patent Office
Prior art keywords
pump
temperature
stator
output power
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02727419A
Other languages
German (de)
English (en)
Other versions
EP1377752A2 (fr
Inventor
Roland Dr. Blumenthal
Heinz-Dieter Odendahl
Dieter Bohry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leybold GmbH
Original Assignee
Oerlikon Leybold Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oerlikon Leybold Vacuum GmbH filed Critical Oerlikon Leybold Vacuum GmbH
Publication of EP1377752A2 publication Critical patent/EP1377752A2/fr
Application granted granted Critical
Publication of EP1377752B1 publication Critical patent/EP1377752B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/046Combinations of two or more different types of pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/335Output power or torque

Definitions

  • the invention relates to a turbomolecular pump with a pump stator, a fast-rotating pump rotor and a motor for driving the pump rotor.
  • a gas or gas particles are compressed by rotating blades of the pump rotor and the fixed blades of the pump stator to a multiple of the input pressure to generate a high vacuum.
  • the gas heating caused by the gas compression and gas friction is dissipated again predominantly via the pump rotor and the pump stator.
  • the cooling of the pump stator can be done by a cooling fluid leading cooling channels, the active pump rotor cooling is problematic because the rotating pump rotor no cooling fluid can be supplied. Under unfavorable operating conditions, the pump rotor can therefore overheat.
  • turbomolecular pump must therefore always be operated below the maximum permissible rotor temperature.
  • the turbomolecular pump therefore has a control device which limits the engine power to a predetermined constant maximum motor power, so that the pump power and the correlating gas and rotor heating are limited to a constant maximum value.
  • the maximum permissible motor power is determined mathematically and / or experimentally by assuming the most unfavorable process conditions for pump operation, for example, a thermally unfavorable behaving gas, a poor pump stator cooling, high ambient temperatures, etc.
  • the maximum permissible motor power is chosen that the pump rotor can not exceed the maximum permissible rotor temperature even under the most unfavorable process conditions.
  • the motor power is limited to the predetermined maximum power even if the process conditions are more favorable than assumed for the calculation of the maximum engine power.
  • the motor power is therefore limited to the specified maximum motor power even if the actual rotor temperature has not yet reached the maximum permissible rotor temperature. Since the extreme process conditions on which the determination of the maximum permissible engine maximum power represents only a rare exceptional case in practice, the output power of the turbomolecular pump is usually limited to a value far below an actually thermally permissible value.
  • the object of the invention is therefore to provide an apparatus and a method with which the output of a turbomolecular pump is increased.
  • EP 0 967 394 A1 describes a turbomolecular pump in which the engine speed is controlled as a function of the rotor temperature to avoid overheating of the engine.
  • a temperature sensor for measuring the stator temperature is arranged on the pump stator. Furthermore, the control device has a maximum power-determining device which determines the maximum permissible motor power as a function of the measured stator temperature.
  • the permissible motor maximum power is therefore not a constant unchangeable value, but is determined as a function of the respective stator temperature.
  • the rotor temperature correlates strongly with the temperature of the stator-side parts of the pump, for example, the temperature of the base flange, the pump housing, the motor housing, the bearing housing, the pump stator, the motor and the actual motor or pump power.
  • the stator temperature therefore provides information about the rotor temperature, so that by measuring the stator temperature and limiting the maximum permissible motor power for the respective stator temperature and the rotor temperature can be reliably limited to a maximum value.
  • the maximum permissible motor power is adapted to the respective thermal situation, and is thus usually above a determined for unfavorable thermal circumstances constant maximum permissible motor power.
  • the actual engine power and thus the output power of the pump can be in this way under normal Process conditions are significantly increased.
  • the pump rotor is more reliably protected against overheating, ie exceeding the maximum permissible rotor temperature, since an indirect monitoring of the rotor temperature takes place.
  • the maximum power determination device has a rotor temperature determination device which determines the rotor temperature from the stator temperature measured by the temperature sensor. Subsequently, the maximum power determination device determines the maximum permissible motor power as a function of the determined rotor temperature.
  • the rotor temperature determination device determines the motor rotor temperature from a plurality of different stator temperatures, which are inserted into a polynomial whose constant coefficients were previously determined experimentally. In this way, finally, the maximum permissible motor power can be determined quickly and also with little storage space.
  • the limitation of the maximum engine power may only intervene upon reaching a threshold temperature of the rotor and limit the maximum permissible motor power, while the maximum motor power is not limited, as long as the calculated rotor temperature is below the threshold temperature.
  • the maximum permissible motor power can also be determined directly from a polynomial which is resolved according to the permissible motor maximum power and in which the rotor threshold temperature and / or a rotor maximum temperature in the form of coefficients is already included.
  • the maximum motor power calculated on the basis of the coefficients may optionally be additionally limited by other parameters.
  • the temperature sensors can on the housing of the turbomolecular pump, on a pump stator, on a Stator side part of the motor, for example, be arranged on the motor housing or on the motor winding, or in a cooling channel of the pump stator.
  • the temperature sensors can also be arranged on other stator-side points of the turbomolecular pump whose temperature and temperature behavior allow reliable conclusions about the temperature of the rotor. In this way, a precise inference to the rotor temperature and thus to the permissible maximum engine power is made possible from a multiplicity of measured temperatures.
  • the limitation of the engine power is therefore close to the objectively permissible maximum engine power.
  • the determination of the rotor temperature and the maximum permissible motor power through a plurality of stator temperature sensors is so reliable and accurate that only low safety margins must be provided in order to avoid overheating of the rotor. In this way, the engine can be controlled with a maximum of thermally permissible power, ie the power potential of the engine and the pump can always be almost completely exhausted.
  • the maximum power determination device has a characteristic map memory in which the permissible maximum engine power for each stator temperature is stored in a characteristic map.
  • a complex non-linear characteristic can be stored, so that a complex determination of the maximum permissible motor power can be omitted by arithmetic operations.
  • the method steps are provided according to claim 9: Measuring the pump stator temperature, determining a maximum permissible motor power from the measured pump stator temperature and limiting the Motor power to the determined maximum permissible motor power.
  • a turbomolecular pump 10 which has a pump housing 12, whose one longitudinal end forms the suction side 14 and whose other end forms the pressure side and has a gas outlet 16.
  • a pump stator 18 is arranged, which comprises a pump rotor 20.
  • the pump rotor 20 has a rotor shaft 22 which is rotatably mounted in the pump housing 12 with two radial magnetic bearings 24,26 and a thrust bearing, not shown.
  • the rotor shaft 22 and the associated pump rotor 20 are driven by an electric motor 28.
  • the electric motor 28 and the two radial magnetic bearings 24, 26 are accommodated in a common bearing motor housing 30.
  • the pump housing 12 is cooled by a coolant flowing through a cooling passage 13 in the pump housing 12.
  • the turbomolecular pump 10 is used to generate a high vacuum and rotates at speeds up to 100 000 U / min.
  • the turbomolecular pump 10 has a plurality of temperature sensors 32-38 on the stator side, ie on the side of the stationary parts.
  • a first temperature sensor 32 is in the region of the base flange of the pump housing. 12 arranged.
  • a second temperature sensor 34 is arranged on or in the pump stator 18.
  • a third temperature transmitter 36 is disposed on the engine 28 and measures the temperature prevailing in the area of the motor coils or the motor magnetic guide plates.
  • a fourth temperature sensor 38 is disposed on the bearing motor housing 30. Another temperature sensor may be arranged in the course of the cooling channel 13.
  • the heat transferred to the pump rotor 20 by the gas heating of the compressed gas and induced by the active magnetic bearings 26 and the electric motor 28 in the pump rotor 20 is dissipated substantially by heat radiation from the pump rotor 20 to the stator-side portions.
  • the stator-side parts, so the pump housing 12, the pump stator 18, the bearing motor housing 30 and the magnetic bearing 24,26 and the electric motor 28 are thus heated in addition to their self-heating by the heat radiated from the pump rotor 20 on them.
  • the measurement of the temperature and the temperature profile of said stator-side parts therefore allows conclusions about the rotor temperature.
  • the relationship between the actual temperature of the pump rotor 20 and the temperatures of the stator-side parts measured by the temperature sensors 32-38 can be determined with a simple experimental setup.
  • a rotor temperature sensor 40 is suitably arranged as close as possible to the pump rotor 20 on the suction side. In this way, the rotor temperature can be measured directly in the experiment, so that the relationship between the rotor temperature and the temperatures measured by the stator-side temperature sensors 32-38 can be recorded under different process conditions.
  • T 1 to T n are the respective measured temperatures of the stator-side temperature sensor 32-38 and the rotor temperature sensor 40.
  • the coefficients ⁇ 0 to ⁇ n and ⁇ 1 to ⁇ n are constants obtained by the evaluation of the experimentally measured Pump rotor and pump stator temperatures were determined. If, instead of the measured rotor tempearture, the maximum permissible rotor temperature is entered into this polynomial, the permissible maximum engine power P max is determined with this polynomial.
  • FIG. 2 schematically the control of the pump rotor motor 28 is shown.
  • a control device 42 controls a motor driver 44, which in turn drives the coils of the electric motor 28. Via an actuating element 46, a motor power setpoint is output to the control device 42.
  • the control device 42 includes a maximum power detection device 50 and a power limiter 52.
  • the maximum power determination device 50 the permissible maximum engine power P max is determined from the temperature values supplied by the four temperature sensors 32-38 according to the above formula.
  • the power limiter 52 the engine power setpoint provided by the actuator 46 is limited to the determined engine maximum allowed power if the power value indicated by the actuator 46 is greater than the detected maximum engine power.
  • the rotor temperature is limited to a maximum temperature, so that the rotor is protected from destruction by overheating.
  • the permissible maximum motor power the actual motor power, the ambient temperature and other measured variables can be used in addition to the cooling fluid temperature.
  • the described device can be closed about several stator temperature sensor on the present rotor temperature.
  • a maximum motor power that is determined by the determined rotor temperature is determined, to which the motor power is limited.
  • the permissible maximum engine power is therefore variable, so that the performance of the engine and the pump can be fully utilized, and limited only in case of overheating.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

La présente invention concerne une pompe turbomoléculaire (10) comprenant un stator, un rotor de pompe, un moteur (28), qui permet d'entraîner ledit rotor de pompe, ainsi qu'un dispositif de commande (42), qui régule la puissance du moteur de façon qu'elle ne dépasse pas une puissance maximale autorisée de moteur. Des capteurs de température (32-38) montés sur la pompe turbomoléculaire (10), côté stator, permettent de mesurer la température du stator. Le dispositif de commande (42) présente un dispositif de détermination de puissance maximale (50), qui détermine la puissance maximale autorisée de moteur en fonction de la température du stator mesurée. Ainsi, la puissance maximale autorisée de moteur n'est pas réglée à une valeur constante, mais est toujours déterminée en fonction de la température du stator, ce qui permet d'exploiter pleinement la capacité de puissance du moteur, tant que la température du stator mesurée reste en-dessous d'une valeur maximale.

Claims (9)

  1. Pompe turbomoléculaire comprenant un stator (12, 18), un rotor de pompe (20), un moteur (28) pour entrainer ledit rotor de pompe (20) et un dispositif de commande (42) pour commander ledit moteur (28),
    ledit dispositif de commande (42) réglant la puissance du moteur de manière que la puissance du moteur ne surpasse pas une puissance maximale du moteur acceptable, et
    un capteur de température (32-38) est disposé, côté stator, pour mesurer la température du stator de pompe,
    ledit dispositif de commande (42) comprenant un dispositif de détection de la puissance maximale (50) qui détermine, en fonction de la température du stator de pompe mesurée respective, une puissance maximale du moteur acceptable variable,
    caractérisée en ce que
    plusieurs capteurs de température (32-38) sont prévus à différentes positions sur le stator (12, 18) et ledit dispositif de détection de la puissance maximale (50) détermine la puissance maximale du moteur acceptable en fonction des températures du stator de pompe mesurées de tout les capteurs de température (32-38), et
    ledit dispositif de détection de la puissance maximale (50) détermine la puissance maximale du moteur acceptable à l'aide d'un polynôme.
  2. Pompe turbomoléculaire selon la revendication 1, caractérisée en ce que ledit dispositif de détection de la puissance maximale (50) est associé à un dispositif de détection de la température du rotor déterminant la température du rotor à partir de la température du stator de pompe mesurée par ledit capteur de température (32-38), et que ledit dispositif de détection de la puissance maximale (50) détermine la puissance maximale du moteur acceptable en fonction de la température du rotor déterminée.
  3. Pompe turbomoléculaire selon les revendications 1 ou 2, caractérisée en ce que ledit dispositif de détection de la puissance maximale (50) comprend un mémoire de diagrammes caractéristiques dans lequel est stockée dans un diagramme caractéristique ladite puissance maximale du moteur pour chaque température du stator de pompe.
  4. Pompe turbomoléculaire selon l'une quelconque des revendications 1-3, caractérisée en ce que ledit capteur de température (32) est prévu sur un boitier de pompe (12).
  5. Pompe turbomoléculaire selon l'une quelconque des revendications 1-3, caractérisée en ce que ledit capteur de température (34) est prévu sur un stator de pompe (18).
  6. Pompe turbomoléculaire selon l'une quelconque des revendications 1-3, caractérisée en ce que ledit capteur de température (36) est prévu sur une partie du moteur (28), côté stator.
  7. Pompe turbomoléculaire selon l'une quelconque des revendications 1-3, caractérisée en ce que le moteur (28) comprend un boitier (30) et ledit capteur de température (38) est prévu sur ledit boitier du moteur.
  8. Pompe turbomoléculaire selon l'une quelconque des revendications 1-7, caractérisée en ce que le boitier de la pompe (12) ou l'élément de stator de pompe (18) comprend un conduit de refroidissement (13) et que le capteur de température est prévu dans le tracé dudit conduit de refroidissement (13).
  9. Procédé pour limiter la puissance du moteur d'un moteur (28) dans une pompe turbomoléculaire (10), ledit moteur entrainant un rotor de pompe (20) supporté dans un stator (12, 18), le procédé comprenant les étapes suivantes:
    mesurer la température du stator de pompe à différentes positions du stator de pompe (12, 18),
    déterminer une puissance maximale du moteur acceptable en fonction de la température du stator de pompe mesurée, ladite puissance maximale du moteur acceptable étant variable en fonction de la température du stator de pompe mesurée respective,
    commander le moteur de manière que la puissance du moteur est limitée à la puissance maximale du moteur acceptable déterminée,
    la détermination de la puissance maximale du moteur acceptable comprenant les étapes de
    calculer la température du rotor de pompe à partir des températures du stator de pompe mesurées, et
    déterminer la puissance maximale du moteur acceptable à partir de la température du rotor de pompe à l'aide d'un polynôme.
EP02727419A 2001-03-27 2002-03-15 Pompe turbomoleculaire Expired - Lifetime EP1377752B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10114969 2001-03-27
DE10114969A DE10114969A1 (de) 2001-03-27 2001-03-27 Turbomolekularpumpe
PCT/EP2002/002884 WO2002077462A2 (fr) 2001-03-27 2002-03-15 Pompe turbomoleculaire

Publications (2)

Publication Number Publication Date
EP1377752A2 EP1377752A2 (fr) 2004-01-07
EP1377752B1 true EP1377752B1 (fr) 2011-05-11

Family

ID=7679189

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02727419A Expired - Lifetime EP1377752B1 (fr) 2001-03-27 2002-03-15 Pompe turbomoleculaire

Country Status (7)

Country Link
US (1) US7090469B2 (fr)
EP (1) EP1377752B1 (fr)
JP (1) JP4511117B2 (fr)
AU (1) AU2002257665A1 (fr)
CA (1) CA2441957C (fr)
DE (1) DE10114969A1 (fr)
WO (1) WO2002077462A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2846043A1 (fr) 2013-09-09 2015-03-11 Oerlikon Leybold Vacuum GmbH Calcul de la température du rotor d'une pompe à vide à l'aide du courant ou de la puissance du moteur

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI117350B (fi) * 2002-10-16 2006-09-15 Waertsilae Finland Oy Laitteisto ja menetelmä polttoaineen syöttöjärjestelmän yhteydessä
GB0229353D0 (en) * 2002-12-17 2003-01-22 Boc Group Plc Vacuum pumping system and method of operating a vacuum pumping arrangement
GB0322883D0 (en) * 2003-09-30 2003-10-29 Boc Group Plc Vacuum pump
FR2861142B1 (fr) * 2003-10-16 2006-02-03 Mecanique Magnetique Sa Pompe a vide turbo moleculaire
GB0502149D0 (en) * 2005-02-02 2005-03-09 Boc Group Inc Method of operating a pumping system
GB0508872D0 (en) * 2005-04-29 2005-06-08 Boc Group Plc Method of operating a pumping system
DE102005041500A1 (de) * 2005-09-01 2007-03-08 Leybold Vacuum Gmbh Vakuumpumpe
DE102005041501A1 (de) * 2005-09-01 2007-03-08 Leybold Vacuum Gmbh Vakuum-Turbomolekularpumpe
JP4821308B2 (ja) * 2005-12-21 2011-11-24 株式会社島津製作所 真空ポンプ
DE102007001065B4 (de) * 2007-01-03 2021-07-22 Leybold Gmbh Gaspumpe
JP4935509B2 (ja) * 2007-06-05 2012-05-23 株式会社島津製作所 ターボ分子ポンプ
KR101750572B1 (ko) * 2009-08-21 2017-06-23 에드워즈 가부시키가이샤 진공 펌프
FR2974175B1 (fr) * 2011-04-14 2013-10-11 Mecanique Magnetique Sa Dispositif de detection de la position axiale d'un arbre tournant et application a une pompe turbo-moleculaire
US9404811B2 (en) * 2011-10-04 2016-08-02 Hamilton Sundstrand Corporation Motor housing thermal sensing
DE102013223020A1 (de) 2013-11-12 2015-05-13 Oerlikon Leybold Vacuum Gmbh Verfahren zum Betreiben einer Vakuumpumpe
JP6705228B2 (ja) * 2016-03-14 2020-06-03 株式会社島津製作所 温度制御装置およびターボ分子ポンプ
US10590955B2 (en) * 2017-02-23 2020-03-17 Shimadzu Corporation Turbo-molecular pump
JP6445227B1 (ja) * 2017-10-31 2018-12-26 株式会社アルバック 真空ポンプおよびその制御方法
CN111213316B (zh) * 2017-10-31 2021-07-13 株式会社爱发科 真空泵及其控制方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2757599A1 (de) * 1977-12-23 1979-06-28 Kernforschungsz Karlsruhe Turbo-molekularpumpe
IT1288738B1 (it) * 1996-10-08 1998-09-24 Varian Spa Unita' elettronica di comando per pompa da vuoto.
JP3057486B2 (ja) 1997-01-22 2000-06-26 セイコー精機株式会社 ターボ分子ポンプ
US6123522A (en) * 1997-07-22 2000-09-26 Koyo Seiko Co., Ltd. Turbo molecular pump
US6075337A (en) * 1998-06-30 2000-06-13 Fuji Electric Co., Ltd. Speed control apparatus for induction motor
US6329732B1 (en) * 1999-07-20 2001-12-11 General Electric Company Electric motors and methods for assembling temperature sensors therein
JP3480439B2 (ja) * 1999-09-27 2003-12-22 日産自動車株式会社 回転電機の制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2846043A1 (fr) 2013-09-09 2015-03-11 Oerlikon Leybold Vacuum GmbH Calcul de la température du rotor d'une pompe à vide à l'aide du courant ou de la puissance du moteur

Also Published As

Publication number Publication date
US20040081560A1 (en) 2004-04-29
WO2002077462A3 (fr) 2002-12-12
AU2002257665A1 (en) 2002-10-08
EP1377752A2 (fr) 2004-01-07
US7090469B2 (en) 2006-08-15
CA2441957C (fr) 2010-08-03
DE10114969A1 (de) 2002-10-10
CA2441957A1 (fr) 2002-10-03
JP2004522040A (ja) 2004-07-22
WO2002077462A2 (fr) 2002-10-03
JP4511117B2 (ja) 2010-07-28

Similar Documents

Publication Publication Date Title
EP1377752B1 (fr) Pompe turbomoleculaire
DE69109955T2 (de) Temperatursteuerungssystem für Motoren und Leistungsbestandteile eines Material-Handhabungsfahrzeuges.
EP2435812B1 (fr) Banc d'essai présentant un ventilateur de refroidissement à température réglable
DE102016000368B4 (de) Temperaturschätzvorrichtung eines Elektromotors
WO2007048394A1 (fr) Dispositif de commande d'un appareil de chauffage independant du moteur, systeme de chauffage et procede de commande d'un appareil de chauffage independant du moteur
EP0224689B1 (fr) Dispositif pour contrôler la température des moteurs shunt à courant continu pour presses rotatives à imprimer
EP2818720B1 (fr) Agencement hydraulique et son procédé de commande
DE102015221167A1 (de) Verfahren zum Steuern eines Temperaturregulierungssystems einer Werkzeugmaschine
WO2018072907A1 (fr) Procédé de déclassement de température de machines électriques
EP0204164A2 (fr) Procédé de limitation du nombre de tours du moteur d'entraînement d'une rotative en offset
DE202017103424U1 (de) Wicklungstemperaturüberwachung
DE202018003585U1 (de) Vakuumpumpe
EP3749076A1 (fr) Procédé de surveillance d'un effet de refroidissement d'un dispositif de refroidissement d'air
DE102008057870A1 (de) Lüfteranordnung
EP1450460B1 (fr) Procédé de surveillance de la température d'un moteur électrique
EP0332568B1 (fr) Procédé de travail et circuit de commande pour surveiller le démarrage de moteurs électriques à haute tension avec démarrage asynchrone
DE19734405B4 (de) Drehstrommaschine und Verfahren zum Betreiben einer Drehstrommaschine
EP2484004A1 (fr) Procédé de protection d'un générateur de véhicule automobile contre une surchauffe
DE3012364A1 (de) Verfahren zur regelung eines elektromotors
DE102016001393B4 (de) Laseroszillator mit Gebläse
DE102004050898B4 (de) Verfahren und Einrichtung zur Überwachung einer Temperatur eines Lagers einer rotierend umlaufenden Welle
EP3652854B1 (fr) Machine asynchrone à efficacité énergétique
DE102014112026A1 (de) Läuferkritischer Motor mit thermischem Motorschutzsystem
DE10213617A1 (de) Leistungshalbleiterschalteranordnung und Verfahren zum Betreiben einer Leistungshalbleiterschalteranordnung, insbesondere zum Schutz eines Leistungshalbleiters vor einer thermischen Überlastung
DE3886854T2 (de) Methode zur Einstellung der thermischen Balance eines Läufers.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030923

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BOHRY, DIETER

Inventor name: ODENDAHL, HEINZ-DIETER

Inventor name: BLUMENTHAL, ROLAND DR.

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LEYBOLD VACUUM GMBH

17Q First examination report despatched

Effective date: 20081028

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB IT LI

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OERLIKON LEYBOLD VACUUM GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50215045

Country of ref document: DE

Effective date: 20110622

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120403

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50215045

Country of ref document: DE

Effective date: 20120214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120322

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120509

Year of fee payment: 11

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130315

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20131129

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50215045

Country of ref document: DE

Effective date: 20131001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130315

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130402

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131001