EP1373700B1 - Verfahren zum reinigen des abgases einer brennkraftmaschine - Google Patents

Verfahren zum reinigen des abgases einer brennkraftmaschine Download PDF

Info

Publication number
EP1373700B1
EP1373700B1 EP02722002A EP02722002A EP1373700B1 EP 1373700 B1 EP1373700 B1 EP 1373700B1 EP 02722002 A EP02722002 A EP 02722002A EP 02722002 A EP02722002 A EP 02722002A EP 1373700 B1 EP1373700 B1 EP 1373700B1
Authority
EP
European Patent Office
Prior art keywords
lambda
signal
converter
post
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP02722002A
Other languages
English (en)
French (fr)
Other versions
EP1373700A2 (de
Inventor
Gerd RÖSEL
Hong Zhang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1373700A2 publication Critical patent/EP1373700A2/de
Application granted granted Critical
Publication of EP1373700B1 publication Critical patent/EP1373700B1/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1455Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor resistivity varying with oxygen concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D2041/1468Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an ammonia content or concentration of the exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration

Definitions

  • the invention relates to a method for purifying the exhaust gas of an internal combustion engine operated by lambda control with an exhaust gas tract in which a catalytic converter is arranged, wherein a pre-catalytic lambda value of the exhaust gas is detected continuously upstream of the catalytic converter, whereby a pre-catalyst lambda signal is generated.
  • the Vorkat lambda signal is used as a reference variable of the lambda control, continuously a Nachkat lambda value of the exhaust gas is detected downstream of the catalyst, and by means of the Nachkat lambda signal in a trim control, a correction of the lambda control is performed.
  • a three-way catalyst in the exhaust system of the engine Upstream of this catalyst is a lambda probe which emits a signal which is dependent on the residual oxygen content contained in the exhaust gas. This residual oxygen content in turn depends on the mixture that has been supplied to the internal combustion engine. In the case of excess fuel (rich mixture or air data with lambda ⁇ 1), the proportion of oxygen in the raw exhaust gas is lower, and in the case of excess air during combustion (lean mixture or air ratios with lambda> 1) higher.
  • the lambda probes usually used upstream of the catalytic converter, which because of their position are also referred to as pre-catalyst lambda probes, are so-called binary or jump probes.
  • lean output (lambda> 1)
  • the output voltage is usually below 100 mV
  • increases at a stoichiometric combustion with lambda 1 almost leaps and reaches in a rich mixture (Lambda ⁇ 1) Values over 0.6 V; this is called two-point behavior.
  • Characteristic of this two-point behavior of binary lambda probes is that in the region in which the characteristic has a steep slope, therefore, the signal emitted by the lambda probe very much depends on the lambda value of the exhaust gas.
  • the slope of the characteristic then flattens significantly from a lambda value close to 1.
  • Lambda probes are also known which provide a clear, strictly monotonically increasing signal in a wide lambda range (between about 0.7 and 4). These lambda probes are referred to as linear lambda probes or broadband lambda probes.
  • each lambda probe The dynamic and static properties of each lambda probe are altered by aging and poisoning of the probe. As a result, the position of the signal level corresponding to ⁇ 0 is shifted.
  • This lambda probe which is also referred to as Nachkat lambda probe due to the position downstream of the catalyst, serves as a monitor probe for monitoring the catalytic conversion and allows fine adjustment of the mixture by the ⁇ 0 associated signal level of the Vorkat lambda probe is corrected so that the most favorable lambda value ⁇ 0 for the conversion can always be maintained on average. This method is called guiding or trim control.
  • trim control method is known in which instead of a Nachkat lambda probe signal from a downstream of a three-way catalyst arranged NO x -sensitive sensor is used.
  • a similar trim control method using a NO x sensitive sensor is disclosed in US Pat DE 198 52 244 C1 described.
  • the aging usually also leads to a shift in the signal level, ie to a change in the offset, whereby the signal assumes levels in the rich mixture range, which no longer allow reliable evaluation of the signal, since they are outside the manufacturer's specifications.
  • This offset shift additionally aggravates the problem of the curve flattening. With such aged probes a trim control is no longer possible with the required accuracy, or the desired longevity of the Nachkat lambda probe is not achieved.
  • the invention is therefore based on the object to provide a method for purifying the exhaust gas of an internal combustion engine operated in lambda control, in which with high-efficiency three-way catalysts a trim control with a longer service life of the Nachkat lambda probe is possible.
  • the signal of a postcatalyst lambda probe is also used for trim regulation.
  • the lambda range in which the signal of this probe is no longer suitable for trim control, another generated measurement signal is used for trim control.
  • this region in which the signal of the Nachkat lambda probe is no longer sufficiently accurate, is present, it is decided on the basis of the signal level of the Nachkat lambda signal. If this signal level is above a threshold value, the measuring signal is used for trim regulation. If the signal level of the postcatalyst lambda signal is below the threshold value, as is known, the postcatalyst lambda signal is used for trim regulation.
  • this measurement signal is relatively low. It only needs to be in the area in question, i. then, if the post-catalyst lambda signal is above the threshold, allow a more accurate statement about the lambda value than the post-catalyst lambda signal. This implies that there is an unambiguous assignment between the measurement signal and the lambda value of the exhaust gas downstream of the catalytic converter, which is why the measurement signal must depend strictly monotonically increasing or decreasing on the lambda value.
  • the threshold value should be such that, at levels of the post-catalytic converter lambda signal below the threshold value, an accuracy of the post-catalytic converter lambda signal is sufficient for the trim control. Since it is no longer the post-catalytic lambda signal that is used above the threshold value for the trim control, it is particularly expedient to select the threshold value such that all signal levels above the threshold value for the trim control no longer allow a sufficient resolution of the lambda value.
  • the threshold thus results from the precision requirements which the trim control places on the post-catalytic converter lambda signal, as well as from the measurement accuracy which the after-catalyst lambda signal can ensure as a function of the lambda value of the exhaust gas.
  • One possible signal suitable as a measuring signal in the invention is the output signal of a broadband lambda probe.
  • a broadband lambda probe is therefore advantageous since their characteristic curve over a wide lambda range, in particular over the in the trim control of a stoichiometric mixture operated, lambda-controlled internal combustion engine into consideration, has a relatively constant slope. Switching to the measurement signal of the broadband lambda probe when the postcatalyst lambda probe signal is above the threshold is thus particularly simple.
  • broadband lambda probes have the disadvantage that sometimes a strong shift of the signal level occurs with probe aging. Such behavior, occurring in particular in the case of low-cost broadband lambda probes, has hitherto precluded its use as the sole measuring sensor downstream of a three-way catalytic converter in a trim regulation.
  • the post-catalytic lambda probe signal of the binary post-catalytic lambda probe reaches the threshold value, then there is an exhaust gas composition with a specific lambda value at this time; So you know at this time the lambda value of the exhaust gas. Due to the knowledge of the lambda value, the measurement signal of the broadband lambda probe with regard to any additive Errors are corrected by the preferred embodiment of the method. Thus, an error adjustment of the measuring signal of the broadband lambda probe takes place at the threshold value.
  • the threshold value is 0.45 V (claim 6).
  • the object underlying the invention is in an alternative embodiment by a method having the features of claim 7 and in particular solved in that by means of a broadband lambda probe, a linear Nachkat lambda signal is generated, which depends strictly monotonically increasing from the lambda value of the exhaust downstream of the catalyst, the linear Nachkat lambda signal is used for trim control and in the presence of a certain signal level the binary Nachkat lambda signal is simultaneously determined an actual signal level of the linear Nachkat lambda signal, from the lambda value, which is assigned to the specific signal level of the binary Nachkat lambda signal, a corresponding desired signal level of the linear Nachkat lambda signal is determined and a difference between Actual signal level and target signal level in the trim control as a correction factor, in particular as an additive factor for offset correction, is taken into account (claim 7).
  • the signal of a broadband lambda probe is used continuously for trim control.
  • the output signal of a binary Vietnamese lambda probe is additionally evaluated to allow already described manner an adjustment of the offset of the Nachkat lambda signal used for the trim control.
  • the adjustment of the offset can be done intermittently at certain intervals. These should be chosen so that there is no change in the offset between the adjustment times, which could lead to an inadmissible falsification of the trim control.
  • the invention relates to the cleaning of the exhaust gas of an internal combustion engine by means of an exhaust gas purification system, as shown schematically in Fig. 1. It may be a working with Gemischansaugung or direct fuel injection engine.
  • the operation of the internal combustion engine 1 of FIG. 1 is controlled by an operation control unit 2.
  • a fuel supply system 3 which may be formed as an injection system, for example, is controlled by unspecified lines from the operating control unit 2 and concerned the fuel allocation for the internal combustion engine 1.
  • a catalyst 5 which has three-way properties. It also has a NO x -redupermeabilizingde function, for the regulation of a NO x -Messaufêt 6 is provided downstream of the catalyst 5.
  • the catalyst 5 has due to its three-way properties at a lambda value ⁇ 0 optimal effect.
  • ⁇ 0 can be between 0.99 and 1 depending on the catalyst.
  • a pre-lambda sensor 7 is provided which, like the NO x -Messauf disrupt 6 not their measurements over specified lines to the operation control unit 2 emits.
  • the operating control unit 2 is further supplied with the measured values of further sensors, in particular for the speed, load, catalyst temperature, etc.
  • the operating control device 2 controls the operation of the internal combustion engine 1.
  • the operation of the internal combustion engine 1 takes place in a lambda control so that the signal indicating the oxygen content in the raw exhaust gas signal of the lambda probe 7 in the mean value corresponds to a predetermined signal level.
  • Vorkat lambda probe 7 corresponds to this signal level in the exhaust ⁇ 0, ie the lambda value at which the catalyst 5 has optimal three-way properties.
  • the trim controller 8 then generates a control value that compensates for such a shift, so that it is ensured that the internal combustion engine 1 is controlled by the operating control unit 2 so that the lambda value of the raw exhaust gas in the exhaust tract 4 upstream of the catalyst 5 as closely as possible to the desired lambda value, in which the catalyst 5 has optimal properties, corresponds, therefore, lies in the so-called catalyst window.
  • the trim controller 8 requires a Nachkat lambda signal for this trim control, which reproduces the lambda value of the exhaust gas downstream of the catalyst 5 with sufficient precision.
  • a NO x -Messauf choir 6 is used, which emits not only a NO x -dependent signal but also a binary lambda signal.
  • a separate binary lambda probe can be found downstream of the catalyst 5 use.
  • curve 9 corresponds to the output signal of a new, binary lambda Probe in conventional three-way catalysts.
  • the section 11 runs much flatter on the other hand. This is entered as a dashed section 12 in Fig. 2.
  • Such a flat course of the curve does not permit the exact determination of the lambda value from the postcatalyst lambda signal necessary for the trim control.
  • the trim controller 8 no longer uses the postcatalyst lambda signal shown in curve 9, but rather the NO x concentration indicating signal of the NO x -Messauf choirs 6. This signal is shown as a curve 13 in Fig. 2.
  • this section 13 of the trimming controller 8 uses the signal of the NO x transducer for trim control instead of the post-catalytic lambda signal.
  • a broadband lambda probe can also be used. Their signal is shown in Fig. 3, in turn, the curve 9 of the Nachkat lambda signal is located.
  • the broadband lambda signal 15 depends strictly monotonically increasing from the lambda value. However, it is subject to aging influences, which can lead to a shift by an offset V, so that the broadband lambda signal 15 can also have the characteristic denoted by reference numeral 16. If such aging dependence occurs, the broadband lambda signal 15 is not readily suitable for trim regulation.
  • the trim controller 8 then corrects the offset V in the following way:
  • the signal level of the broadband lambda signal applied simultaneously is determined. Since the lambda value is known at the same time, the current offset V of the broadband lambda signal can be determined from this. This offset value is taken into account continuously in the determination of the lambda value from the wideband lambda signal 15 if the trim controller 8 uses the wideband lambda signal at signal levels of the postcatalyst lambda signal above the trim control threshold and not the postcatalyst lambda signal.
  • the broadband lambda signal can also be continuously used for trim regulation, wherein each time the signal level of the postcatalyst lambda signal reaches a predetermined lambda value of the exhaust gas downstream of the catalytic converter 5 indicates the offset V is determined and thereby an adjustment of the wideband lambda signal is achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Reinigung des Abgases einer unter Lambda-Regelung betriebenen Brennkraftmaschine mit einem Abgastrakt, in dem ein Katalysator angeordnet ist, wobei fortlaufend ein Vorkat-Lambdawert des Abgases stromauf des Katalysators erfasst wird, wobei ein Vorkat-Lambdasignal erzeugt wird, das Vorkat-Lambdasignal als Führungsgröße der Lambda-Regelung verwendet wird, fortlaufend ein Nachkat-Lambdawert des Abgases stromab des Katalysators erfasst wird, wobei ein Nachkat-Lambdasignal erzeugt wird, das monoton fallend vom Lambdawert des Abgases stromab des Katalysators abhängt, und mittels des Nachkat-Lambdasignals in einer Trimmregelung eine Korrektur der Lambda-Regelung durchgeführt wird, wobei ein Messsignal erzeugt wird, das zumindest unterhalb eines bestimmten Lambdawertes nahe Lambda = 1 streng monoton steigend oder fallend vom Lambdawert des Abgases stromab des Katalysators abhängt, und bei Signalpegeln des Nachkat-Lambdasignals oberhalb eines Schwellenwertes das weitere Messsignal und bei Signalpegeln des Nachkat-Lambdasignales unterhalb dieses Schwellenwertes das Nachkat-Lambdasignal selbst zur Trimmregelung verwendet wird.

Description

  • Die Erfindung bezieht sich auf Verfahren zur Reinigung des Abgases einer mittels Lambda-Regelung betriebenen Brennkraftmaschine mit einem Abgastrakt, in dem ein Katalysator angeordnet ist, wobei fortlaufend ein Vorkat-Lambdawert des Abgases stromauf des Katalysators erfasst wird, wobei ein Vorkat-Lambdasignal erzeugt wird, das Vorkat-Lambdasignal als Führungsgröße der Lambda-Regelung verwendet wird, fortlaufend ein Nachkat-Lambdawert des Abgases stromab des Katalysators erfasst wird, und mittels des Nachkat-Lambdasignals in einer Trimmregelung eine Korrektur der Lambda-Regelung durchgeführt wird.
  • Zur Reinigung des Abgases ist bei Brennkraftmaschinen, die nach dem Otto-Prinzip arbeiten, üblicherweise ein Drei-Wege-Katalysator im Abgastrakt der Brennkraftmaschine angeordnet. Stromauf dieses Katalysators befindet sich eine Lambda-Sonde, die ein Signal abgibt, das abhängig vom im Abgas enthaltenen Restsauerstoffanteil ist. Dieser Restsauerstoffanteil wiederum hängt vom Gemisch ab, das der Brennkraftmaschine zugeführt wurde. Bei Kraftstoffüberschuss (fettes Gemisch bzw. Luftzahlen mit Lambda < 1) ist der Sauerstoffanteil im Rohabgas niederer, bei Luftüberschuss während der Verbrennung (mageres Gemisch bzw. Luftzahlen mit Lambda > 1) höher.
  • Bei den üblicherweise stromauf des Katalysators verwendeten Lambda-Sonden, die aufgrund ihrer Lage auch als Vorkat-Lambdasonden bezeichnet werden, handelt es sich um sogenannte binäre oder Sprung-Sonden. Bei diesen liegt bei magerem Gemisch (Lambda > 1) die Ausgangsspannung üblicherweise unter 100 mV, steigt bei einer stöchiometrischen Verbrennung mit Lambda = 1 fast sprunghaft und erreicht bei fettem Gemisch (Lambda < 1) Werte über 0,6 V; dies wird als Zweipunkt-Verhalten bezeichnet. Charakteristisch für dieses Zweipunkt-Verhalten von binären Lambda-Sonden ist es, dass im Bereich, in dem die Kennlinie eine starke Steigung aufweist, mithin das von der Lambda-Sonde abgegebene Signal sehr stark vom Lambdawert des Abgases abhängt. Zu fetterem Gemisch hin flacht die Steigung der Kennlinie dann ab einem Lambdawert nahe 1 deutlich ab. Bei gegenwärtig verfügbaren binären Lambda-Sonden liegt der dadurch bedingte Knick der Kennlinie etwa bei Lambda = 0,998.
  • Es sind auch Lambda-Sonden bekannt, die in einem weiten Lambda-Bereich (zwischen etwa 0,7 und 4) ein eindeutiges, streng monoton steigendes Signal liefern. Diese Lambda-Sonden werden als lineare Lambda-Sonden oder Breitband-Lambdasonden bezeichnet.
  • Der Betrieb einer Lambda-geregelten Brennkraftmaschine erfolgt nun so, dass das den Lambdawert des Rohabgases wiedergebende Ausgangssignal der Lambda-Sonde um einen vorbestimmten Mittelwert schwingt, der in etwa Lambda = 1 zugeordnet ist. Da ein Drei-Wege-Katalysator beim Rohabgas mit einem bestimmten Lambdawert λ0 optimale katalytische Eigenschaften zeigt, sollte dieser vorbestimmte Mittelwert auch tatsächlich λ0 entsprechen. Je nach Katalysator kann der Lambdawert λ0, bei dem optimale katalytische Wirkung vorliegt, leicht von Lambda = 1 abweichen, beispielsweise bei Lambda = 0,99, insbesondere Lambda = 0,998 liegen.
  • Die dynamischen und statischen Eigenschaften jeder LambdaSonde werden durch Alterung und Vergiftung der Sonde verändert. Dadurch wird die Lage des λ0 entsprechenden Signalpegels verschoben. Um diesem abzuhelfen, ist es bekannt, stromab des Drei-Wege-Katalysators eine weitere Lambda-Sonde anzuordnen, die aufgrund ihrer größeren Entfernung zur Brennkraftmaschine geringeren thermischen Belastungen und aufgrund ihrer Lage stromab des Katalysators einer geringeren Beaufschlagung mit chemisch aggressiven Substanzen ausgesetzt ist. Diese Lambda-Sonde, die aufgrund der Lage stromab des Katalysators auch als Nachkat-Lambdasonde bezeichnet wird, dient als Monitorsonde zur Überwachung der katalytischen Umwandlung und ermöglicht eine Feinregulierung des Gemisches, indem der λ0 zugeordnete Signalpegel der Vorkat-Lambdasonde so korrigiert wird, dass der für die Konvertierung günstigste Lambdawert λ0 im Mittel immer eingehalten werden kann. Dieses Verfahren wird als Führungs- oder Trimmregelung bezeichnet.
  • Aus der DE 198 19 461 A1 ist ein Trimmregelungsverfahren bekannt, bei dem statt eines Nachkat-Lambdasondensignals das Signal eines stromab eines Drei-Wege-Katalysators angeordneten NOx-sensitiven Messaufnehmers verwendet wird. Ein ähnliches Trimmregelungsverfahren unter Einsatz eines NOxempfindlichen Messaufnehmers ist in der DE 198 52 244 C1 beschrieben.
  • Im Zuge der fortschreitenden Reduzierung der von einer Brennkraftmaschine emittierten Schadstoffe, sind mittlerweile Drei-Wege-Katalysatoren verfügbar, die eine deutlich gesteigerte Konvertierungsrate für Kohlenwasserstoffe, Kohlenmonoxid und Stickoxide aufweisen. Es hat sich jedoch gezeigt, dass solche hochwirksamen Katalysatoren das Verhalten der Nachkat-Lambdasonde dahingehend verändern, dass die Steigung der Sondenkennlinie im fetten Gemischbereich, d.h. bei Lambdawerten < 1, deutlich flacher verläuft, als bei fabrikneuen Sonden oder bei gealterten Sonden, die mit herkömmlichen Drei-Wege-Katalysatoren betrieben wurden. Darüber hinaus führt die Alterung meist auch zu einer Verschiebung des Signalpegels, d.h. zu einer Veränderung des Offsets, wodurch im fetten Gemischbereich das Signal Pegel annimmt, die keine sichere Auswertung des Signals mehr erlauben, da sie außerhalb der Herstellerspezifikationen liegen. Diese Offsetverschiebung verschärft die Problematik der Kurvenabflachung zusätzlich. Mit derart gealterten Sonden ist eine Trimmregelung nicht mehr mit der erforderlichen Genauigkeit möglich, bzw. die gewünschte Langlebigkeit der Nachkat-Lambdasonde wird nicht erreicht.
  • Der Erfindung liegt somit die Aufgabe zugrunde, ein Verfahren zur Reinigung des Abgases einer in Lambda-Regelung betriebenen Brennkraftmaschine anzugeben, bei dem mit hocheffizienten Drei-Wege-Katalysatoren eine Trimmregelung bei längerer Standzeit der Nachkat-Lambdasonde möglich ist.
  • Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs gelöst. Sie wird insbesondere bei einem eingangs geschilderten Verfahren, wobei ein Nachkat-Lambdasignal erzeugt wird, das monoton fallend vom Lambdawert des Abgases stromab des Katalysators abhängt, dadurch gelöst, dass ein Messsignal erzeugt wird, das zumindest unterhalb eines bestimmten Lambdawertes nahe Lambda = 1 streng monoton steigend oder fallend vom Lambdawert des Abgases stromab des Katalysators abhängt, und bei Signalpegeln des Nachkat-Lambdasignals oberhalb eines Schwellenwertes das weitere Messsignal und bei Signalpegeln des Nachkat-Lambdasignales unterhalb dieses Schwellenwertes das Nachkat-Lambdasignal selbst zur Trimmregelung verwendet wird.
  • Erfindungsgemäß wird also zur Trimmregelung weiterhin das Signal einer Nachkat-Lambdasonde verwendet. Allerdings wird in dem Lambdabereich, in dem das Signal dieser Sonde nicht mehr zur Trimmregelung tauglich ist, ein anderes erzeugtes Messsignal zur Trimmregelung eingesetzt. Wann dieser Bereich, in dem das Signal der Nachkat-Lambdasonde nicht mehr ausreichend genau ist, vorliegt, wird anhand des Signalpegels des Nachkat-Lambdasignals entschieden. Liegt dieser Signalpegel oberhalb eines Schwellenwertes, wird das Messsignal zur Trimmregelung eingesetzt. Liegt der Signalpegel des Nachkat-Lambdasignals unterhalb des Schwellenwertes, wird wie bekannt das Nachkat-Lambdasignal zur Trimmregelung verwendet.
  • Dieses Vorgehen hat den Vorteil, dass die Trimmregelung auf Basis des herkömmlichen Nachkat-Lambdasignals in den Bereichen, in denen sie weiterhin die bekannt guten Ergebnisse zeigt, unverändert bleibt. Lediglich in den Bereichen, in denen sie durch die hochkonvertierenden Katalysatoreigenschaften das Nachkat-Lambdasignal nicht mehr über die gesamte Nutzlebensdauer tauglich ist, wird dieses durch das Messsignal ersetzt.
  • Die Anforderungen an dieses Messsignal sind relativ gering. Es muss lediglich im fraglichen Bereich, d.h. dann, wenn das Nachkat-Lambdasignal oberhalb des Schwellenwertes liegt, eine präzisere Aussage über den Lambdawert erlauben, als das Nachkat-Lambdasignal. Dies impliziert, dass es eine eindeutige Zuordnung zwischen Messsignal und Lambdawert des Abgases stromab des Katalysators gibt, weshalb das Messsignal streng monoton steigend oder fallend vom Lambdawert abhängen muss.
  • Der Schwellenwert sollte so liegen, dass bei Pegeln des Nachkat-Lambdasignals unterhalb des Schwellenwertes eine für die Trimmregelung ausreichende Genauigkeit des Nachkat-Lambdasignals gegeben ist. Da oberhalb des Schwellenwertes zur Trimmregelung nicht mehr das Nachkat-Lambdasignal verwendet wird, sondern das Messsignal, ist es besonders zweckmä-ßig, den Schwellenwert so zu wählen, dass alle Signalpegel oberhalb des Schwellenwertes für die Trimmregelung keine ausreichende Auflösung des Lambdawertes mehr ermöglichen. Der Schwellenwert ergibt sich also aus den Präzisionsanforderungen, die die Trimmregelung an das Nachkat-Lambdasignal stellt, sowie aus der Messgenauigkeit, die das Nachkat-Lambdasignal in Abhängigkeit vom Lambdawert des Abgases gewährleisten kann.
  • Aufgrund des zweipunktartigen Verlaufes hat das Sondensignal im Bereich Lambda = 1 eine sehr große Steigung. Diese ermöglicht ist, den Schwellenwert exakt so zu definieren, dass er Lambda = 1 entspricht. Die große Steigung gewährleistet zugleich eine hohe Genauigkeit dieser Zuordnung.
  • Ein mögliches, als Messsignal in der Erfindung taugliches Signal ist das Ausgangssignal einer Breitband-Lambdasonde. Eine solche Breitband-Lambdasonde ist deshalb vorteilhaft, da ihre Kennlinie über einen weiten Lambda-Bereich, insbesondere über den bei der Trimmregelung einer mit stöchiometrischem Gemisch betriebenen, Lambda-geregelten Brennkraftmaschine in Betracht kommt, eine relativ konstante Steigung aufweist. Das Wechseln auf das Messsignal der Breitband-Lambdasonde, wenn das Nachkat-Lambdasondensignal oberhalb des Schwellenwertes liegt, ist damit besonders einfach.
  • Breitband-Lambdasonden haben jedoch den Nachteil, dass mitunter bei Sondenalterung eine starke Verschiebung des Signalpegels auftritt. Ein solches, insbesondere bei kostengünstigeren Breitband-Lambdasonden auftretendes Verhalten, schloss bislang den Einsatz als alleiniger Messaufnehmer stromab eines Drei-Wege-Katalysators in einer Trimmregelung aus. Gemäß einer bevorzugten Weiterbildung des erfindungsgemäßen Verfahrens ist vorgesehen, dass der Schwellenwert des Nachkat-Lambdasignals einem bestimmten Lambdawert nahe Lambda = 1 entspricht, zu dem Zeitpunkt, zu dem das Nachkat-Lambdasignal gleich dem Schwellenwert ist, die Differenz zwischen dem vom Messsignal angezeigten Lambdawert und dem bestimmten Lambdawert ermittelt wird und dem bestimmten Lambdawert ermittelt wird und diese Differenz bei der Trimmregelung berücksichtigt wird, soweit dabei das Messsignal verwendet wird (Patentanspruch 3).
  • Damit wird erreicht, dass eine alterungsbedingte Veränderung des Signalpegels, insbesondere ein geänderter Offset, der das Messsignal bereitstellenden Breitband-Lambdasonde ausgeglichen wird.
  • Erreicht das Nachkat-Lambdasondensignal der binären Nachkat-Lambdasonde den Schwellenwert, so liegt zu diesem Zeitpunkt eine Abgaszusammensetzung mit einem bestimmten Lambdawert vor; man kennt also zu diesem Zeitpunkt den Lambdawert des Abgases. Durch die Kenntnis des Lambdawertes kann das Messsignal der Breitband-Lambdasonde hinsichtlich eventueller additiver Fehler durch die bevorzugte Weiterbildung des Verfahrens korrigiert werden. Es findet somit ein Fehlerabgleich des Messsignals der Breitband-Lambdasonde am Schwellenwert statt.
  • Im Abgas einer Brennkraftmaschine, die mit fettem Gemisch betrieben wird, findet sich aufgrund des Kraftstoffüberangebotes bei der Verbrennung relativ wenig Stickoxid, verglichen mit magerer Verbrennung, bei der Luftüberschuss besteht. Man würde deshalb bei einem NOx-Sensor im mageren Bereich, d.h. bei Lambdawerten < 1, keine merkliche Abhängigkeit des Sensorsignals vom Lambdawert erwarten. Jedoch entsteht bei Verbrennung von fettem Kraftstoffgemisch NH3. Es ist deshalb vorteilhaft möglich, das für die Erfindung notwendige Messsignal mittels eines NOx-Messaufnehmer zu erzeugen, der eine Querempfindlichkeit gegen NH3 zeigt. Diese Weiterbildung ist insbesondere bei Brennkraftmaschinen, die einen NOx-Messaufnehmer, beispielsweise zur Steuerung eines NOx-Katalysators aufweisen, vorteilhaft. Bei dieser Weiterbildung, bei der das Nachkat-Lambdasignal mittels einem binären Lambda-Sondensignal gewonnen wird und das Messsignal mittels einer eine NH3-Querempfindlichkeit zeigenden NOx-Sonde gewonnen wird und unterhalb Lambda = 1 streng monoton fallend vom Lambdawert des Abgases abhängt, kann auf ohnehin bereits vorgesehene Messaufnehmer zurückgegriffen werden (Patentanspruch 4). Zusätzliche Messaufnehmer sind damit nicht erforderlich. Durch dieses Verfahren kann eine Eigenschaft von NOx-Messaufnehmern positiv ausgenutzt werden, die bislang an und für sich eher als störend empfunden und deshalb möglichst reduziert wurde.
  • Setzt man zur Gewinnung des Nachkat-Lambdasignals eine binäre Lambdasonde ein, ist es zu bevorzugen, dass der Schwellenwert 0,45 V beträgt(Patentanspruch 6).
  • Die der Erfindung zugrundeliegende Aufgabe wird in einer alternativen Ausbildung durch ein Verfahren mit den Merkmalen des Anspruch 7 und insbesondere dadurch gelöst, dass mittels einer Breitband-Lambdasonde ein lineares Nachkat-Lambdasignal erzeugt wird, das streng monoton steigend vom Lambdawert des Abgases stromab des Katalysators abhängt, das lineare Nachkat-Lambdasignal zur Trimmregelung verwendet wird und bei Vorliegen eines bestimmten Signalpegels des binären Nachkat-Lambdasignals gleichzeitig ein Ist-Signalpegel des linearen Nachkat-Lambdasignals ermittelt wird, aus dem Lambdawert, der dem bestimmten Signalpegels des binären Nachkat-Lambdasignals zugeordnet ist, ein entsprechender Soll-Signalpegel des linearen Nachkat-Lambdasignals bestimmt wird und eine Differenz zwischen Ist-Signalpegel und Soll-Signalpegel bei der Trimmregelung als Korrekturfaktor, insbesondere als additiver Faktor zur Offsetkorrektur, berücksichtigt wird (Patentanspruch 7).
  • In dieser Ausbildung wird fortwährend zur Trimmregelung das Signal einer Breitband-Lambdasonde verwendet. Um alterungsbedingte Verschiebungen des Signalpegels eines solchen Nachkat-Lambdasignals auszugleichen, wird zusätzlich das Ausgangssignal einer binären Nachkat-Lambdasonde ausgewertet, um auf bereits beschriebene Art einen Abgleich des Versatzes des für die Trimmregelung verwendeten Nachkat-Lambdasignals zu ermöglichen. Diese erfindungsgemäße Lösung der Aufgabe erlaubt es, für die Trimmregelung durchgehend ein Nachkat-Lambdasignal zu verwenden. Ein Umschalten ist nicht nötig.
  • Der Abgleich des Versatzes kann intermittierend in gewissen Zeitabständen erfolgen. Diese sollten so gewählt sein, dass sich zwischen den Abgleichzeitpunkten keine Änderung des Versatzes einstellt, die zu einer unzulässigen Verfälschung der Trimmregelung führen könnten.
  • Die Erfindung wird nachfolgend anhand der Zeichnung beispielhaft noch näher erläutert. In der Zeichnung zeigt:
  • Fig. 1
    eine schematische Blockdarstellung einer Brennkraftmaschine mit einer Abgasreinigungsanlage,
    Fig. 2
    die Abhängigkeit eines Nachkat-Lambdasignals einer binären Lambda-Sonde sowie eines NOx-Messsignals eines NOx-Messaufnehmers vom Lambdawert, und
    Fig. 3
    die Abhängigkeit eines Nachkat-Lambdasignals einer binären Lambda-Sonde sowie einer Breitband-Lambdasonde.
  • Die Erfindung betrifft die Reinigung des Abgases einer Brennkraftmaschine mittels einer Abgasreinigungsanlage, wie sie schematisch in Fig. 1 dargestellt ist. Es kann sich dabei um eine mit Gemischansaugung oder mit Kraftstoffdirekteinspritzung arbeitende Brennkraftmaschine handeln. Der Betrieb der Brennkraftmaschine 1 der Fig. 1 wird von einem Betriebssteuergerät 2 gesteuert. Ein Kraftstoffzufuhrsystem 3, das z.B. als Einspritzanlage ausgebildet sein kann, wird über nicht näher bezeichnete Leitungen vom Betriebssteuergerät 2 angesteuert und besorgt die Kraftstoffzuteilung für die Brennkraftmaschine 1. In deren Abgastrakt 4 befindet sich ein Katalysator 5, der Drei-Wege-Eigenschaften hat. Er weist darüber hinaus eine NOx-reduzierende Funktion auf, für deren Regelung ein NOx-Messaufnehmer 6 stromab des Katalysators 5 vorgesehen ist. Auf die NOx-reduzierende Arbeitsweise der Abgasreinigungsanlage kommt es jedoch im folgenden nicht an.
    Der Katalysator 5 hat aufgrund seiner Drei-Wege-Eigenschaften bei einem Lambdawert λ0 optimale Wirkung. λ0 kann je nach Katalysator zwischen 0,99 und 1 liegen.
  • Zum Lambda-geregelten Betrieb der Brennkraftmaschine 1, der für optimale Drei-Wege-Wirkung des Katalysators 5 erforderlich ist, ist stromauf des Katalysators 5 eine Vorkat-Lambda-Sonde 7 vorgesehen, die ebenso wie der NOx-Messaufnehmer 6 ihre Messwerte über nicht näher bezeichnete Leitungen an das Betriebssteuergerät 2 abgibt. Dem Betriebssteuergerät 2 werden ferner die Messwerte weiterer Messaufnehmer, insbesondere für die Drehzahl, Last, Katalysatortemperatur usw. zugeführt.
  • Mit Hilfe dieser Messwerte steuert das Betriebssteuergerät 2 den Betrieb der Brennkraftmaschine 1.
  • Der Betrieb der Brennkraftmaschine 1 erfolgt dabei in einer Lambdaregelung so, dass das den Sauerstoffgehalt im Rohabgas anzeigende Signal der Lambda-Sonde 7 im Mittelwert einem vorbestimmten Signalpegel entspricht. Bei einer normalen, voll funktionsfähigen, insbesondere nicht Alterungseinflüssen unterworfenen Vorkat-Lambdasonde 7 entspricht dieser Signalpegel im Abgas λ0, also dem Lambdawert, bei dem der Katalysator 5 optimale Drei-Wege-Eigenschaften aufweist.
  • Um diesen, λ0-zugeordneten Signalpegel der Vorkat-Lambdasonde 7 fein zu justieren und damit Veränderungen der Vorkat-Lambdasonde auszugleichen, überprüft ein im Betriebssteuergerät 2 vorgesehener Trimmregler 8 durch ein Nachkat-Lambdasignal, auf dessen Erzeugung noch eingegangen wird und das den Lambdawert des Abgases stromab des Katalysators 5 wiedergibt, ob der Lambda = 1 zugeordnete Signalpegel der Vorkat-Lambdasonde 7 einer z.B. alterungsbedingten Verschiebung unterworfen ist. Der Trimmregler 8 erzeugt dann einen Stellwert, der eine solche Verschiebung ausgleicht, so dass sichergestellt ist, dass die Brennkraftmaschine 1 vom Betriebssteuergerät 2 so geregelt wird, dass der Lambdawert des Rohabgases im Abgastrakt 4 stromauf des Katalysators 5 möglichst genau dem gewünschten Lambdawert, bei dem der Katalysator 5 optimale Eigenschaften aufweist, entspricht, mithin im sogenannten Katalysatorfenster liegt.
  • Der Trimmregler 8 benötigt für diese Trimmregelung ein Nachkat-Lambdasignal, das den Lambdawert des Abgases stromab des Katalysators 5 mit ausreichender Präzision wiedergibt. Im vorliegenden Fall ist zur Gewinnung dieses Signals ein NOx-Messaufnehmer 6 verwendet, der nicht nur ein NOx-abhängiges Signal sondern auch ein binäres Lambdasignal abgibt. Natürlich kann auch eine separate binäre Lambdasonde stromab des Katalysators 5 Verwendung finden.
  • Der Verlauf des Nachkat-Lambdasignals als Funktion des Lambdawertes ist in Kurve 9 der Fig. 2 dargestellt. Wie zu sehen ist, steigt die Ausgangsspannung U mit fallenden Lambdawerten an. Im mageren Bereich, bei Lambdawerten deutlich über 1, ist die Steigung der Kurve 9 des Nachkat-Lambdasignals relativ flach. In einem Abschnitt 10, der bei Lambdawerten etwas oberhalb Lambda = 1 beginnt, hat die Kurve 9 dagegen eine sehr große Steigung. Bei Lambda 0,998 schließt sich daran zu niederen Lambdawerten ein Abschnitt 11 mit sehr geringer Steigung an. Die genaue Lage des dadurch gebildeten Knickes zwischen den Abschnitten 10 und 11 hängt vom Typ der binären Lambda-Sonde ab, er liegt jedoch regelmäßig nahe Lambda = 1. Die durchgezogen in Fig. 2 eingezeichnete Kurve 9 entspricht dem Ausgangssignal einer neuwertigen, binären Lambda-Sonde bei herkömmlichen Drei-Wege-Katalysatoren. Beim Einsatz stromab von Katalysatoren, die hohe statische Konvertierungsraten zeigen, und insbesondere einen erhöhten H2-Anteil im Abgasstrom stromab des Katalysators zur Folge haben, verläuft der Abschnitt 11 dagegen deutlich flacher. Dies ist als gestrichelter Abschnitt 12 in Fig. 2 eingetragen. Ein derart flacher Kurvenverlauf erlaubt nicht die für die Trimmregelung nötige genaue Bestimmung des Lambdawertes aus dem Nachkat-Lambdasignal.
  • Deshalb wird, sobald das Nachkat-Lambdasignal den Schwellenwert übersteigt, beispielsweise den in Fig. 2 eingezeichneten Wert von Lambda = 0,998, vom Trimmregler 8 nicht mehr das Nachkat-Lambdasignal verwendet, das in Kurve 9 eingezeichnet ist, sondern ein die NOx-Konzentration anzeigendes Signal des NOx-Messaufnehmers 6. Dieses Signal ist als Kurve 13 in Fig. 2 wiedergegeben.
  • Aufgrund einer Querempfindlichkeit gegen NH3 (Ammoniak) steigt dieses Signal unterhalb eines bestimmten Lambdawertes nahe Lambda = 1 mit sinkenden Lambdawerten an. In diesem Abschnitt 13 verwendet der Trimmregler 8 das Signal des NOx-Messaufnehmers zur Trimmregelung anstelle des Nachkat-Lambdasignals. In der Trimmregelung schaltet der Trimmregler 8 also bei einem ansteigenden Signalpegel des Nachkat-Lambdasignals vom Nachkat-Lambdasignal auf das Messsignal des NOx-Messaufnehmers 6 um, wenn der Signalpegel des Nachkat-Lambdasignals über einen bestimmten Schwellenwert, in diesem Fall dem Lambda = 0,998 entsprechenden Signalpegel steigt.
  • Anstelle des Signals des NOx-Messaufnehmers 6 kann auch eine Breitband-Lambdasonde verwendet werden. Deren Signal ist in Fig. 3 dargestellt, wobei wiederum die Kurve 9 des Nachkat-Lambdasignals eingezeichnet ist. Das Breitband-Lambdasignal 15 hängt streng monoton steigend vom Lambdawert ab. Es ist allerdings Alterungseinflüssen unterworfen, die zu einer Verschiebung um einen Versatz V führen können, so dass das Breitband-Lambdasignal 15 auch den mit Bezugszeichen 16 bezeichneten Verlauf haben kann. Tritt eine solche Alterungsabhängigkeit auf, so ist das Breitband-Lambdasignal 15 nicht ohne weiteres zur Trimmregelung geeignet. Der Trimmregler 8 korrigiert dann den Versatz V auf folgende Weise:
  • Zeigt das Nachkat-Lambdasignal (vgl. Kurve 9) einen dem Schwellenwert entsprechenden Signalpegel (Lambda = 0,998 in Fig. 3) so wird der gleichzeitig anliegende Signalpegel des Breitband-Lambdasignals bestimmt. Da gleichzeitig der Lambdawert bekannt ist, kann daraus der aktuelle Versatz V des Breitband-Lambdasignals ermittelt werden. Dieser Wert für den Versatz wird bei der Bestimmung des Lambda-Wertes aus dem Breitband-Lambdasignal 15 fortlaufend berücksichtigt, wenn der Trimmregler 8 bei Signalpegeln des Nachkat-Lambdasignals oberhalb des Schwellenwertes zur Trimmregelung das Breitband-Lambdasignal verwendet und nicht das Nachkat-Lambdasignal.
  • Alternativ kann auch fortwährend das Breitband-Lambdasignal zur Trimmregelung herangezogen werden, wobei jedes Mal dann, wenn der Signalpegel des Nachkat-Lambdasignals einen vorbestimmten Lambdawert des Abgases stromab des Katalysators 5 anzeigt, der Versatz V bestimmt wird und dadurch ein Abgleich des Breitband-Lambdasignals erreicht wird.

Claims (7)

  1. Verfahren zur Reinigung des Abgases einer mittels Lambda-Regelung betriebenen Brennkraftmaschine (1) mit einem Abgastrakt (4), in dem ein Katalysator (5) angeordnet ist, wobei
    - fortlaufend ein Vorkat-Lambdawert des Abgases stromauf des Katalysators (5) erfasst wird, wobei ein Vorkat-Lambdasignal erzeugt wird,
    - das Vorkat-Lambdasignal als Führungsgröße der Lambda-Regelung verwendet wird,
    - fortlaufend ein Nachkat-Lambdawert des Abgases stromab des Katalysators erfasst wird, wobei ein Nachkat-Lambdasignal (9) erzeugt wird, das monoton fallend vom Lambdawert (λ) des Abgases stromab des Katalysators (5) abhängt, und
    - mittels des Nachkat-Lambdasignals (9) in einer Trimmregelung (8) eine Korrektur der Lambda-Regelung durchgeführt wird,
    dadurch gekennzeichnet, dass
    - ein Messsignal erzeugt wird, das zumindest unterhalb eines bestimmten Lambdawertes nahe Lambda = 1 streng monoton steigend oder fallend vom Lambdawert des Abgases stromab des Katalysators (5) abhängt, und
    - bei Signalpegeln des Nachkat-Lambdasignals (9) oberhalb eines Schwellenwertes das weitere Messsignal und bei Signalpegeln des Nachkat-Lambdasignales (9) unterhalb dieses Schwellenwertes das Nachkat-Lambdasignal selbst zur Trimmregelung verwendet wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass
    - das Nachkat-Lambdasignal (9) mittels einer binären Lambdasonde gewonnen wird und
    - das Messsignal mittels einer Breitband-Lambdasonde gewonnen wird und beiderseits von Lambda = 1 streng monoton steigend vom Lambdawert des Abgases abhängt.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass
    - der Schwellenwert des Nachkat-Lambdasignals (9) einem bestimmten Lambdawert nahe Lambda = 1 entspricht,
    - zu dem Zeitpunkt, zu dem das Nachkat-Lambdasignal gleich dem Schwellenwert ist, die Differenz zwischen dem vom Messsignal angezeigten Lambdawert und dem bestimmten Lambdawert ermittelt wird und
    - diese Differenz bei der Trimmregelung (8) berücksichtigt wird, soweit bei der Trimmregelung (8) das Messsignal verwendet wird.
  4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass
    - das Nachkat-Lambdasignal (9) mittels einer binären Lambda-Sonde gewonnen wird und
    - das Messsignal mittels einer Querempfindlichkeit gegen NH3 zeigenden NOx-Sonde gewonnen wird und unterhalb Lambda = 1 streng monoton fallend vom Lambdawert des Abgases abhängt.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass der Schwellenwert des Nachkat-Lambdasignals (9)dem bestimmten Lambdawert nahe Lambda = 1 entspricht, unterhalb dessen das Ausgangssignal des NOx-Messaufnehmers mit sinkenden Lambdawerten ansteigt.
  6. Verfahren nach einem der obigen Ansprüche, dadurch gekennzeichnet, dass der Schwellenwert 0,45 V beträgt.
  7. Verfahren zur Reinigung des Abgases einer mittels Lambda-Regelung betriebenen Brennkraftmaschine (1) mit einem Abgastrakt (4), in dem ein Katalysator (5) angeordnet ist, wobei
    - fortlaufend ein Vorkat-Lambdawert des Abgases stromauf des Katalysators (5) erfasst wird, wobei ein Vorkat-Lambdasignal erzeugt wird,
    - das Vorkat-Lambdasignal als Führungsgröße der Lambda-Regelung verwendet wird,
    - fortlaufend ein Nachkat-Lambdawert des Abgases stromab des Katalysators erfasst wird, wobei ein Nachkat-Lambdasignal erzeugt wird, und
    - mittels des Nachkat-Lambdasignals in einer Trimmregelung (8) eine Korrektur der Lambda-Regelung durchgeführt wird,
    dadurch gekennzeichnet, dass
    - mittels einer Breitband-Lambdasonde ein lineares Nachkat-Lambdasignal als das Nachkat-Lambasignal erzeugt wird, das streng monoton steigend vom Lambdawert des Abgases stromab des Katalysators (5) abhängt und zur Trimmregelung verwendet wird,
    - fortlaufend mittels einer binären Lambdasonde ein Nachkat-Lambdawert des Abgases stromab des Katalysators erfasst wird, wobei ein binäres Nachkat-Lambdasignal (9) erzeugt wird, das monoton fallend vom Lambdawert des Abgases stromab des Katalysators (5) abhängt und einen zweipunktartigen Verlauf um Lambda = 1 herum aufweist, und
    - bei Vorliegen eines bestimmten Signalpegels des binären Nachkat-Lambdasignals gleichzeitig ein Ist-Signalpegel des linearen Nachkat-Lambdasignals ermittelt wird, aus dem Lambdawert, der dem bestimmten Signalpegels des binären Nachkat-Lambdasignals zugeordnet ist, ein entsprechender Soll-Signalpegel des linearen Nachkat-Lambdasignals bestimmt wird und eine Differenz zwischen Ist-Signalpegel und Soll-Signalpegel bei der Trimmregelung als Korrekturfaktor berücksichtigt wird.
EP02722002A 2001-04-05 2002-03-08 Verfahren zum reinigen des abgases einer brennkraftmaschine Expired - Fee Related EP1373700B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10117050 2001-04-05
DE10117050A DE10117050C1 (de) 2001-04-05 2001-04-05 Verfahren zum Reinigen des Abgases einer Brennkraftmaschine
PCT/DE2002/000839 WO2002081887A2 (de) 2001-04-05 2002-03-08 Verfahren zum reinigen des abgases einer brennkraftmaschine

Publications (2)

Publication Number Publication Date
EP1373700A2 EP1373700A2 (de) 2004-01-02
EP1373700B1 true EP1373700B1 (de) 2007-08-01

Family

ID=7680542

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02722002A Expired - Fee Related EP1373700B1 (de) 2001-04-05 2002-03-08 Verfahren zum reinigen des abgases einer brennkraftmaschine

Country Status (4)

Country Link
US (1) US7028464B2 (de)
EP (1) EP1373700B1 (de)
DE (2) DE10117050C1 (de)
WO (1) WO2002081887A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014015523B3 (de) * 2014-10-20 2015-11-05 Audi Ag Verfahren zum Betreiben einer Antriebseinrichtung sowie entsprechende Antriebseinrichtung

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7018442B2 (en) * 2003-11-25 2006-03-28 Caterpillar Inc. Method and apparatus for regenerating NOx adsorbers
FR2874091B1 (fr) * 2004-08-06 2006-11-24 Peugeot Citroen Automobiles Sa Systeme de correction d'un signal de sortie d'une sonde a oxygene
DE102004060125B4 (de) * 2004-12-13 2007-11-08 Audi Ag Verfahren zur Steuerung der Be- und Entladung des Sauerstoffspeichers eines Abgaskatalysators
DE102005002237A1 (de) * 2005-01-18 2006-07-20 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
US7389773B2 (en) * 2005-08-18 2008-06-24 Honeywell International Inc. Emissions sensors for fuel control in engines
EP2005251B1 (de) 2006-04-04 2011-11-02 tesa scribos GmbH Vorrichtung und verfahren zur steuerung einer vorrichtung zur mikrostrukturierung eines speichermediums
US7581390B2 (en) * 2006-04-26 2009-09-01 Cummins Inc. Method and system for improving sensor accuracy
US20080190099A1 (en) * 2006-12-20 2008-08-14 Aleksey Yezerets System and method for inhibiting uncontrolled regeneration of a particulate filter for an internal combustion engine
JP4492669B2 (ja) * 2007-10-24 2010-06-30 トヨタ自動車株式会社 内燃機関の空燃比制御装置
DE102008018013B3 (de) * 2008-04-09 2009-07-09 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
US8060290B2 (en) 2008-07-17 2011-11-15 Honeywell International Inc. Configurable automotive controller
US8620461B2 (en) 2009-09-24 2013-12-31 Honeywell International, Inc. Method and system for updating tuning parameters of a controller
US8504175B2 (en) 2010-06-02 2013-08-06 Honeywell International Inc. Using model predictive control to optimize variable trajectories and system control
US9677493B2 (en) 2011-09-19 2017-06-13 Honeywell Spol, S.R.O. Coordinated engine and emissions control system
US9650934B2 (en) 2011-11-04 2017-05-16 Honeywell spol.s.r.o. Engine and aftertreatment optimization system
US20130111905A1 (en) 2011-11-04 2013-05-09 Honeywell Spol. S.R.O. Integrated optimization and control of an engine and aftertreatment system
DE102012019907B4 (de) * 2012-10-11 2017-06-01 Audi Ag Verfahren zum Betreiben einer Brennkraftmaschine mit einer Abgasreinigungseinrichtung sowie entsprechende Brennkraftmaschine
EP3051367B1 (de) 2015-01-28 2020-11-25 Honeywell spol s.r.o. Ansatz und system zur handhabung von einschränkungen für gemessene störungen mit unsicherer vorschau
EP3056706A1 (de) 2015-02-16 2016-08-17 Honeywell International Inc. Ansatz zur nachbehandlungssystemmodellierung und modellidentifizierung
EP3091212A1 (de) 2015-05-06 2016-11-09 Honeywell International Inc. Identifikationsansatz für verbrennungsmotor-mittelwertmodelle
EP3125052B1 (de) 2015-07-31 2020-09-02 Garrett Transportation I Inc. Quadratischer programmlöser für mpc mit variabler anordnung
US10272779B2 (en) 2015-08-05 2019-04-30 Garrett Transportation I Inc. System and approach for dynamic vehicle speed optimization
US10415492B2 (en) 2016-01-29 2019-09-17 Garrett Transportation I Inc. Engine system with inferential sensor
US10036338B2 (en) 2016-04-26 2018-07-31 Honeywell International Inc. Condition-based powertrain control system
US10124750B2 (en) 2016-04-26 2018-11-13 Honeywell International Inc. Vehicle security module system
DE102016207516B4 (de) * 2016-05-02 2021-10-28 Vitesco Technologies GmbH Verfahren zur Alterungsbestimmung einer zur Ermittlung einer Gaskonzentration eines Gasgemischs ausgebildeten Sonde einer Brennkraftmaschine
US11199120B2 (en) 2016-11-29 2021-12-14 Garrett Transportation I, Inc. Inferential flow sensor
JP2018178762A (ja) * 2017-04-04 2018-11-15 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE102017218327B4 (de) 2017-10-13 2019-10-24 Continental Automotive Gmbh Verfahren zum Betreiben einer Brennkraftmaschine mit Dreiwegekatalysator und Lambdaregelung
US11057213B2 (en) 2017-10-13 2021-07-06 Garrett Transportation I, Inc. Authentication system for electronic control unit on a bus
DE102018206451B4 (de) 2018-04-26 2020-12-24 Vitesco Technologies GmbH Verfahren zum Betreiben einer Brennkraftmaschine mit 3-Wege-Katalysator und Lambdaregelung über NOx-Emissionserfassung
DE102020106502B4 (de) 2020-03-10 2024-01-04 Audi Aktiengesellschaft Verfahren zum Betreiben einer Antriebseinrichtung mit einer Sensoreinrichtung sowie entsprechende Antriebseinrichtung

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08507143A (ja) * 1993-02-26 1996-07-30 ロート‐テヒニーク・ゲー・エム・ベー・ハー・ウント・コー・フォルシュング・フュア・アウトモービル‐ウント・ウムヴェルトテヒニーク ラムダセンサの組合せ
US5452576A (en) * 1994-08-09 1995-09-26 Ford Motor Company Air/fuel control with on-board emission measurement
US5842340A (en) * 1997-02-26 1998-12-01 Motorola Inc. Method for controlling the level of oxygen stored by a catalyst within a catalytic converter
DE19819204C1 (de) * 1998-04-29 1999-09-30 Siemens Ag Verfahren zur Abgasreinigung mit Trimmregelung
DE19819461B4 (de) * 1998-04-30 2004-07-01 Siemens Ag Verfahren zur Abgasreinigung mit Trimmregelung
DE19852244C1 (de) * 1998-11-12 1999-12-30 Siemens Ag Verfahren und Vorrichtung zur Abgasreinigung mit Trimmregelung
US6427437B1 (en) * 2000-03-17 2002-08-06 Ford Global Technologies, Inc. Method for improved performance of an engine emission control system
US6481199B1 (en) * 2000-03-17 2002-11-19 Ford Global Technologies, Inc. Control for improved vehicle performance
DE10016886A1 (de) * 2000-04-05 2001-10-18 Volkswagen Ag Verfahren und Vorrichtung zur Regelung einer Verbrennungskraftmaschine
JP2001298655A (ja) 2000-04-13 2001-10-26 Sony Corp 撮像装置および方法、並びに記録媒体
US6546720B2 (en) * 2001-09-04 2003-04-15 Ford Global Technologies, Inc. Method and apparatus for controlling the amount of reactant to be added to a substance using a sensor which is responsive to both the reactant and the substance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014015523B3 (de) * 2014-10-20 2015-11-05 Audi Ag Verfahren zum Betreiben einer Antriebseinrichtung sowie entsprechende Antriebseinrichtung
US10113497B2 (en) 2014-10-20 2018-10-30 Audi Ag Method of operating a drive device and corresponding drive device

Also Published As

Publication number Publication date
DE10117050C1 (de) 2002-09-12
WO2002081887A3 (de) 2002-12-12
US20040103642A1 (en) 2004-06-03
EP1373700A2 (de) 2004-01-02
DE50210592D1 (de) 2007-09-13
WO2002081887A2 (de) 2002-10-17
US7028464B2 (en) 2006-04-18

Similar Documents

Publication Publication Date Title
EP1373700B1 (de) Verfahren zum reinigen des abgases einer brennkraftmaschine
EP1098694B1 (de) VERFAHREN ZUR REGENERATION EINES NOx-SPEICHERKATALYSATORS
DE19953601C2 (de) Verfahren zum Überprüfen eines Abgaskatalysators einer Brennkraftmaschine
DE19837074C2 (de) Rückkopplungsregelung zur Entschwefelung einer NOx-Falle
EP0928890B1 (de) Verfahren zum Betreiben eines Stickoxid-Speicherkatalysators
DE10103772C2 (de) Verfahren zum Betreiben eines Dreiweg-Katalysators, welcher eine Sauerstoff speichernde Komponente enthält
EP1272746B1 (de) Verfahren zur diagnose einer abgasreinigungsanlage einer lambdageregelten brennkraftmaschine
EP1117917B1 (de) VERFAHREN ZUM REGENERIEREN EINES NOx-SPEICHERKATALYSATORS
DE10319983B3 (de) Verfahren und Vorrichtung zur Lambda-Regelung und zur Katalysatordiagnose bei einer Brennkraftmaschine
DE19711295A1 (de) System zur Ermittlung einer Verschlechterung eines Katalysators zur Abgasreinigung
EP1250524A2 (de) VERFAHREN ZUR ENTSCHWEFELUNG EINES IN EINEM ABGASKANAL EINER VERBRENNUNGSKRAFTMASCHINE ANGEORDNETEN NO x?-SPEICHERKATALYSATORS
EP1370759A2 (de) Verfahren zum betrieb von brennkraftmaschinen
DE3822415C2 (de)
DE19539024C2 (de) Diagnoseeinrichtung zur Erfassung von Katalysatorschäden eines in der Abgasleitung einer Brennkraftmaschine angeordneten Katalysators
DE10001133A1 (de) Vorrichtung zum Steuern des Luft-Kraftstoffverhältnisses bei einer Verbrennungskraftmaschine
DE19851843A1 (de) Verfahren zur Sulfatregeneration eines NOx-Speicherkatalysators für eine Mager-Brennkraftmaschine
DE19819461B4 (de) Verfahren zur Abgasreinigung mit Trimmregelung
EP1730391B1 (de) Verfahren und vorrichtung zum steuern einer brennkraftmaschi­ne
WO2005066468A2 (de) Verfahren zur regeneration eines stickoxid-speicherkatalysators
DE19963938A1 (de) Verfahren zum Betreiben eines Dreiwegekatalysators einer Brennkraftmaschine
DE19859580C2 (de) Verfahren zum Betreiben eines Abgas-Messaufnehmers im Abgassystem einer Brennkraftmaschine
DE19629554C2 (de) Verfahren zur Temperaturregelung für eine Lambdasonde
EP1241336B1 (de) Verfahren und Vorrichtung zur Regelung einer externen Abgasrückführrate
EP2188511B1 (de) Verfahren zur lambda-regelung in betreibsbereichen mit kraftstoff-mangel oder kraftstoff-überschuss bei einer nernst-sonde
DE10223629B4 (de) Verfahren und Vorrichtung zur Ermittlung von Kenngrößen eines Abgasreinigungssystems

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030917

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20050210

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): DE FR IT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS VDO AUTOMOTIVE AG

REF Corresponds to:

Ref document number: 50210592

Country of ref document: DE

Date of ref document: 20070913

Kind code of ref document: P

ET Fr: translation filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: VDO AUTOMOTIVE AG

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080506

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090321

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090312

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100308

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180331

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50210592

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191001