EP1360343A1 - Vorrichtung zur keramikartigen beschichtung eines substrates - Google Patents

Vorrichtung zur keramikartigen beschichtung eines substrates

Info

Publication number
EP1360343A1
EP1360343A1 EP02701200A EP02701200A EP1360343A1 EP 1360343 A1 EP1360343 A1 EP 1360343A1 EP 02701200 A EP02701200 A EP 02701200A EP 02701200 A EP02701200 A EP 02701200A EP 1360343 A1 EP1360343 A1 EP 1360343A1
Authority
EP
European Patent Office
Prior art keywords
substrate
coating
layer
ceramic
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP02701200A
Other languages
English (en)
French (fr)
Inventor
Thomas Beck
Thomas Weber
Alexander Schattke
Sascha Henke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1360343A1 publication Critical patent/EP1360343A1/de
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3471Introduction of auxiliary energy into the plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/354Introduction of auxiliary energy into the plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/354Introduction of auxiliary energy into the plasma
    • C23C14/357Microwaves, e.g. electron cyclotron resonance enhanced sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/339Synthesising components

Definitions

  • the invention relates to a device for ceramic-like coating of a substrate according to the preamble of claim 1.
  • ceramic-like layers with excellent mechanical, electrical, optical and chemical properties can be produced.
  • Appropriate methods have long been used for the coating of tools to extend the service life or to increase the life of mechanically stressed components or machine elements, such as. B. shafts, bearing components, pistons, gears or the like, and used for the decorative design of surfaces.
  • metallic compounds such as. B. high-melting oxides, nitrides and carbides of aluminum, titanium, zirconium, chromium or silicon are used.
  • the titanium-based coating systems such as TiN, TiCN or TiAlN coating systems, are mainly used as wear protection on cutting tools.
  • Superhard materials are also known which represent a combination of a nanocrystalline (nc), hard transition metal nitride Me n N with amorphous (a) Si 3 N 4 .
  • nc-MeN / a-SI 3 N 4 composite materials for example, the hardness increases sharply with decreasing crystallite size below about 4 to 5 nanometers and approximates that of the diaantes at 2 to 3 nanometers.
  • the multi-phase structure of the coating leads, for example, to layers with a hardness> 2500 HV with comparatively low brittleness.
  • Corresponding layers are produced in particular by plasma-activated chemical vapor deposition (PACVD) processes at temperatures of approximately 500 to 600 ° C.
  • PSVD plasma-activated chemical vapor deposition
  • the comparatively high temperature of the substrate and consequently the coating enable diffusion of correspondingly amorphously deposited coating components and thus the formation of nanocrystallites in an amorphous matrix.
  • the object of the invention is to propose a device for ceramic-like coating of a substrate, means for applying a material, in particular by means of a plasma, to a surface of the substrate being provided which, compared to the prior art, also include a ceramic-like coating of comparatively temperature-sensitive Allows substrates.
  • This object is achieved on the basis of a device of the type mentioned in the introduction by the characterizing features of claim 1.
  • a device is characterized in that an energy source that is different from a material source of the material provided for coating is provided for locally defined energy input into the material located in front of and / or on the surface.
  • this enables, in particular, a nanostructured ceramic, high-quality layer system to be implemented within a layer, the nanostructured metal crystallites with a crystal size of up to approximately 100 nm, for example consisting of MeO, MeN or MeC, in a further structure which is amorphous, crystalline or metallic and e.g. consists of amorphous silicon compounds or the like.
  • the nanostructured layer contains at least one crystalline hard material phase.
  • the layer hardness is significantly increased, for example hardnesses of over 4000 HV can be achieved when TiO crystallites are embedded.
  • the brittleness of the ceramic layers is reduced, in particular by the nanostructuring.
  • the entire layer system can be one or more layers, chemically and partially graded and / or ungraded.
  • a run-in layer can be realized by a carbon-containing cover layer.
  • corresponding nanocomposites can advantageously be deposited, for example at substrate temperatures T ⁇ 400 ° C., preferably at temperatures T ⁇ 250 ° C., so that comparatively temperature-sensitive substrates can also be coated.
  • the supply of kinetic energy for increasing the surface mobility and thus for the diffusion of the deposited material components preferably takes place via an additional plasma excitation, so that compared to the prior art in particular much higher ion densities can be achieved, which is also due to a corresponding change in the color and the brightness of the Plasma is made clear.
  • the plasma excitation or higher ion density and thus higher energy density the initially amorphously deposited particles on the substrate receive enough energy for diffusion to be able to form, for example, nanometer-sized TiO crystallites on the substrate.
  • Further plasma sources are also conceivable for this purpose, which in particular at lower pressure, e.g. be operated in a fine vacuum.
  • the high ion energy or ion density preferably prevents the build-up of microcrystallites which have already formed, and at the same time favors the advantageous nanocrystalline growth.
  • This can include various three-dimensional components can be coated accordingly.
  • the energy is introduced into the material located on the surface, so that the initially amorphously deposited particles on the substrate again have enough energy available for diffusion, in turn, for example, cubic, hexagonal, metallic or on the substrate to be able to form other nanometer-sized crystallites.
  • a microwave unit is advantageously provided for the energy input, so that, for example, the ion density of the material can be increased by additional ionization during sputtering.
  • advantageous ionization densities of approximately 10 10 to 10 13 ions per cm 3 can be achieved, so that the material which is initially amorphously deposited on the substrate has sufficient energy available for diffusion.
  • microwave radiation for so-called electron cyclotron resonance excitation (ECR) is preferably provided.
  • an ion source unit is provided for the energy input, so that in turn advantageous plasma excitation or an increase in the ionization density is realized, thereby permitting the diffusion of the initially amorphously deposited material on the substrate.
  • a DC or RF excited hollow cathode unit or the like can also be provided for the energy input according to the invention.
  • Common to these units is the locally defined energy input according to the invention, preferably into the material located in front of the surface of the substrate.
  • UV unit or the like is advantageously provided. These units are preferably used to introduce additional kinetic energy for the diffusion of the particles initially deposited amorphously on the substrate into the material on the surface of the substrate.
  • a cooling device for cooling the substrate is provided. This advantageously ensures that the substrate temperature is reduced as far as possible. In particular, this measure makes it possible to coat more temperature-sensitive substrates.
  • the cooling device is preferably implemented by means of a metallic or other highly thermally conductive substrate carrier.
  • an advantageous coolant can also flow through the cooling device, so that a further reduction in the substrate temperature can be achieved.
  • a voltage source for generating an electrical field is provided between the material source and the substrate. This ensures that, for example, an advantageous potential profile is generated between the material source and the substrate and that charging of the substrate, in particular by means of an RF substrate or bias voltage, is prevented.
  • FIG. 1 shows a schematic structure of a device according to the invention
  • FIG. 2 shows a schematic 3D representation of a section of a coating produced according to the invention
  • 3 shows a schematic representation of a multilayer layer produced according to the invention
  • FIG. 4 shows a schematic illustration of a further multilayer layer produced according to the invention
  • FIG. 5 shows a schematic representation of a third multilayer layer produced according to the invention.
  • FIG. 1 schematically shows a section of a coating chamber 1 during a coating process.
  • a layer 3 is applied to a substrate 2 at a chamber pressure of approximately 10 "3 to 10 " 2 mbar.
  • a first material 5 is atomized by a sputter source 4.
  • a second material 7 is sputtered with the material 5 simultaneously or with a time delay from a sputter source 6.
  • the energy input locally defined according to the invention into the two materials 5, 7 takes place by means of the plasma 8 shown schematically in FIG is provided as plasma gas.
  • the plasma 8 is generated, for example, with a microwave radiation of the frequency 2.45 GHz with a layer-dependent power of preferably 1 kW.
  • the microwave radiation is coupled in, for example, via a rod antenna (not shown in more detail).
  • the sputtering source 4 can comprise a metal, a metal oxide target or a mixed target, wherein the metal can be, for example, titanium, chromium, copper, zirconium or the like.
  • a gas supply 9 and 10 two different reaction gases can be metered in as required during the coating.
  • oxygen can be metered into the coating chamber 1 by the gas supply 9 in order to produce oxidic ceramic layers. If a sputter source 4 with a metal oxide target is used, oxidic ceramic layers can also be produced without an oxygen supply by means of the gas supply 9.
  • the sputter source 6 can comprise, for example, a silicon and / or carbon target, so that the sputter source 6 enables the formation of the amorphous matrix, such as silicon nitride or the like, in particular with nitrogen supplied by the gas supply 10.
  • the gas supply 10 can also supply other gases, so that other matrices can also be produced if required.
  • the reaction of the sputtering components mostly takes place on the substrate.
  • additional energy is introduced into the atomized or deposited particles by the plasma 8 by means of the ECR microwave source without the substrate being heated to any significant extent.
  • the substrate temperature can be kept comparatively low. Due to the energy introduced by the ECR microwave source, particles of nanometer size, for example titanium oxide particles, are formed in the coating 3 on the substrate by diffusion of the initially amorphously deposited particles. Consequently, the high temperatures of the substrate which lead to the formation of the nanostructured coating according to the prior art are not required, so that temperature-sensitive substrates can also be coated according to the invention.
  • the coating is scalable, without, for example, the substrate having to be used as an electrode for compacting the applied coating.
  • a special embodiment of the invention comprises a voltage source which, for example, provides an RF bias voltage on the substrate. In this way, primarily only charging of the substrate 2 is prevented, so that in particular the deposition of the materials 5, 7 does not change disadvantageously even over a comparatively longer coating period.
  • the nanocrystallites 11 can be TiO, TiN, ZrN, ZrO, TiC, SiC, carbon or corresponding nanocrystallites 11 and various mixtures thereof with grain sizes in the range from 5 to 20 nm.
  • the proportion of the surface volume in the total volume is very high and the interfaces between the nanocrystallites 11 and the amorphous matrix 12 are comparatively sharp.
  • FIG. 3 schematically shows a layer structure of a coating 3 produced according to the invention, the nanoscale multilayer layer 3 being applied to the substrate 2.
  • layer 3 comprises an adhesion promoter 13, which can optionally be applied and, for example, consists of a metallic layer, such as an approximately 300 nm thick titanium adhesive layer.
  • a layer according to FIG. 2, for example an amorphous silicon nitride layer 12 with nanoscale titanium oxide and / or carbon particles 11, can be applied as the next layer 14.
  • a cover layer 15 can optionally be applied, which preferably consists of amorphous carbon ,
  • three-dimensional components such as drills or the like can also be coated with a corresponding nanoscale multilayer layer 3.
  • the three-layer structure ensures, in particular by means of the adhesion promoter 13, good adhesion of the superhard ceramic metal oxide layer 14 to the substrate 2.
  • the cover layer 15 ensures, for example with a similar hardness, a high coefficient of friction, so that in particular the frictional properties of the nanostructured layer in a run-in phase of mechanically stressed components or machine elements, such as. B-. Shafts, bearing components, pistons, gears or the like, the two friction partners or over the entire life of the two friction partners is improved.
  • a layer structure according to FIG. 4 can be provided.
  • the adhesion promoter 13 and a layer 14, which for example comprises an amorphous carbon network 12 with nanoscale titanium oxide particles 11, are optionally provided.
  • an alternative layer structure can in turn be provided with an optional adhesion promoter 13 and an amorphous carbon layer 16 and a layer 14 with an amorphous silicon nitride layer 12 and nanoscale titanium oxide particles 11.
  • nanostructured metal oxide layers 14 can also be applied to diamond-like carbon layers 16, for example in order to improve the running-in behavior of wear protection layers with a lower coefficient of friction.
  • nanostructured metal oxide layers 14 with or without inclusions or Upper cover layer 15 can be used as a wear protection layer for the highest load collectives with novel multifunctional properties. For example, due to their non-stick and advantageous rubbing properties, these can be used as dry lubricant layers for machining stainless steel, aluminum or the like.
  • self-cleaning properties of titanium oxide layers can be combined with anti-scratch properties.
  • Oxidic ceramic layers are generally advantageous because they have a high chemical inertness, are optically transparent and have a lower coefficient of friction than, for example, nitride layers.
  • ceramic oxide layers have so far been used only to a limited extent in production, primarily due to the more sensitive, reactive process control than with nitridic layer systems.
  • the stoichiometric oxygen content can be set here, for example, by regulating optical emission.
  • oxidic ceramics are characterized by good rubbing properties and high chemical resistance with high layer hardness.
  • nanocrystalline powder material can generally be supplied to an ion source or synthesized by means of this.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Es wird eine Vorrichtung zur keramikartigen Beschichtung eines Substrates (2), wobei Mittel zum Aufbringen eines Werkstoffes (5, /), insbesondere mittels eines Plasmas (8), auf einer Oberfläche des Substrates (2) vorgesehen sind, vorgeschlagen, die gegenüber dem Stand der Technik eine keramische Beschichtung (3) von vergleichsweise temperaturempfindlichen Substraten (2) ermöglicht. Dies wird erfindungsgemäss ddurch erreicht, dass eine von einer Werkstoffs (5, 7) verschiedenen Energiequelle zum örtlich definierten Energieeintrag in den vor und/oder auf der Oberfläche befindlichen Werkstoff (3, 5, 7, 8) vorgesehen ist.

Description

"Vorrichtung zur keramikartigen Beschichtung eines Substrates"
Die Erfindung betrifft eine Vorrichtung zur keramikartigen Beschichtung eines Substrates nach dem Oberbegriff des Anspruchs 1.
Stand der Technik
Vor allem mit Plasmaverfahren können keramikartige Schichten mit hervorragenden mechanischen, elektrischen, optischen und chemischen Eigenschaften hergestellt werden. Entsprechende Verfahren werden schon länger für die Beschichtung von Werkzeugen zur Standzeitverlängerung oder zur Erhöhung der Lebensdauer von mechanisch belasteten Bauteilen oder Maschinenelernenten, wie z. B. Wellen, Lagerkomponenten, Kolben, Zahnräder oder dergleichen, sowie zur dekorativen Gestaltung von Oberflächen eingesetzt. Hierbei kommen zahlreiche metallische Verbindungen, wie z. B. hochschmelzende Oxide, Nitride und Karbide von Aluminium, Titan, Zirkonium, Chrom oder Silizium zum Einsatz. Insbesondere die titanbasierten SchichtSysteme, wie TiN-, TiCN- oder TiAlN-SchichtSysteme, werden vor allem als Verschleißschutz auf Zerspanwerkzeuge eingesetzt. Es sind auch superharte Materialien bekannt, die eine Kombination eines nanokristallinen (nc) , harten Übergangsmetallnitrids MenN mit amorphem (a) Si3N4 darstellen. In solchen nc-MeN/a-SI3N4-Kompositmaterialien nimmt beispielsweise die Härte mit abnehmender Kristallitgröße unterhalb von etwa 4 bis 5 Nanometer stark zu und nährt sich bei 2 bis 3 Nanometer an derjenigen des Dia antes an. Insbesondere die mehrphasige Struktur der Beschichtung führt beispielsweise zu Schichten mit Härten > 2500 HV bei vergleichsweise geringer Sprödheit .
Entsprechende Schichten werden insbesondere durch Plasma- activated Chemical Vapor Deposition (PACVD) Verfahren bei Temperaturen von ca. 500 bis 600°C hergestellt. So wird insbesondere durch die vergleichsweise hohe Temperatur des Substrats und folglich der Beschichtung eine Diffusion entsprechend amorph abgeschiedener Beschichtungsbestandteile und somit die Bildung von Nanokristalliten in einer amorphen Matrix ermöglicht.
Nachteilig hierbei ist jedoch, dass vergleichsweise temperaturempfindliche Werkstoffe, wie beispielsweise zahlreiche Kunst- oder Verbundstoffe, zu Gefügeveränderung neigende Legierungen oder dergleichen, nicht beschichtet werden können.
Vorteile der Erfindung
Aufgabe der Erfindung ist es demgegenüber, eine Vorrichtung zur keramikartigen Beschichtung eines Substrates, wobei Mittel zum Aufbringen eines Werkstoffes, insbesondere mittels eines Plasmas, auf einer Oberfläche des Substrates vorgesehen sind, vorzuschlagen, die gegenüber dem Stand der Technik auch eine keramikartige Beschichtung von vergleichsweise temperaturempfindlichen Substraten ermöglicht. Diese Aufgabe wird ausgehend von einer Vorrichtung der einleitend genannten Art durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst .
Durch die in den Unteransprüchen genannten Maßnahmen sind vorteilhafte Ausführungen und Weiterbildungen der Erfindung möglich.
Dementsprechend zeichnet sich eine erfindungsgemäße Vorrichtung dadurch aus, dass eine von einer Werkstoffquelle des zur Beschichtung vorgesehenen Werkstoffes verschiedene Energiequelle zum örtlich definierten Energieeintrag in den vor und/oder auf der Oberfläche befindlichen Werkstoff vorgesehen ist .
Erfindungsgemäß ist hierdurch, insbesondere ein innerhalb einer Lage, nanostrukturiertes keramisches, qualitativ hochwertiges Schichtsystem realisierbar, das nanostrukturierte Metallkristallite mit einer Kristallgröße bis etwa 100 nm, beispielsweise bestehend aus MeO, MeN oder MeC, in einem weiteren Gefüge, das amorph, kristallin oder metallisch ist und z.B. aus amorphen Silizium-Verbindungen oder dergleichen besteht, umfasst.
Die nanostrukturierte Lage enthält mindestens eine kristalline Hartstoffphase. Hierdurch wird insbesondere die Schichthärte wesentlich erhöht, beispielsweise können Härten von über 4000 HV bei Einlagerung von TiO-Kristalliten erreicht werden. Gleichzeitig wird die Sprδdheit der keramischen Schichten, insbesondere durch die Nanostrukturierung, abgebaut. Das gesamte Schichtsystem kann ein- oder mehrlagig, chemisch und anteilig gradiert und/oder ungradiert sein. Weiterhin kann durch eine kohlenstoffhaltige Deckschicht eine EinlaufSchicht realisiert werden. Vorteilhafterweise können darüber hinaus entsprechende Nanokomposite, beispielsweise bei Substrattemperaturen T < 400°C, vorzugsweise bei Temperaturen T < 250°C, , abgeschieden werden, so dass auch vergleichsweise temperaturempfindliche Substrate beschichtbar sind.
Erfindungsgemäß erfolgt die Zufuhr kinetischer Energie zur Erhöhung der Oberflächenbeweglichkeit und somit zur Diffusion der abgeschiedenen Werkstoffbestandteile vorzugsweise über eine zusätzliche Plasmaanregung, so dass gegenüber dem Stand der Technik insbesondere wesentlich höhere Ionendichten erzielt werden können, was auch aufgrund einer entsprechenden Veränderung der Farbe sowie der Helligkeit des Plasmas verdeutlicht wird. Mittels der Plasmaanregung bzw. höheren Ionendichte und somit höheren Energiedichte erhalten die zunächst amorph abgeschiedenen Teilchen auf dem Substrat genügend Energie zur Diffusion, um auf dem Substrat beispielsweise TiO-Kristallite in Nanometergröße bilden zu können. Auch sind hierfür weitere Plasmaquellen denkbar, die insbesondere bei niedrigerem Druck, z.B. im Feinvakuum, betrieben werden.
Vorzugsweise wird durch die hohe Ionenenergie bzw. Ionendichte insbesondere mittels einer Zerschlagung von bereits entstandenen Mikrokristalliten deren Aufbau verhindert und gleichzeitig das vorteilhafte nanokristalline Wachstum begünstigt. Hierdurch können u.a. auch verschiedenste dreidimensionale Bauteile entsprechend beschichtet werden.
In einer besonderen Ausführungsform der Erfindung erfolgt der Energieeintrag in den auf der Oberfläche befindenden Werkstoff, so dass wiederum die zunächst amorph abgeschiedenen Teilchen auf dem Substrat genügend Energie zur Diffusion zur Verfügung haben, um wiederum auf dem Substrat beispielsweise kubische, hexagonale, metallische oder sonstige Kristallite in Nanomentergröße bilden zu können.
In vorteilhafter Weise ist eine Mikrowelleneinheit für den Energieeintrag vorgesehen, so dass beispielsweise beim Sputtern die Ionendichte des Werkstoffs durch Zusatzionisation erhöht werden kann. Hierdurch können vorteilhafte Ionisationsdichten von ungefähr 1010 bis 1013 Ionen pro cm3 realisiert werden, so dass der zunächst amorph abgeschiedene Werkstoff auf dem Substrat genügend Energie zur Diffusion zur Verfügung hat. Vorzugsweise wird hierfür Mikrowellenstrahlung zur sogenannten Elektron Cyklotron Resonanzanregung (ECR) vorgesehen.
In einer besonderen Ausführungsform der Erfindung ist eine Ionenquelleneinheit für den Energieeintrag vorgesehen, so dass wiederum eine vorteilhafte Plasmaanregung bzw. Erhöhung der Ionisationsdichte realisiert wird, wodurch die Diffusion des zunächst amorph abgeschiedenen Werkstoffes auf dem Substrat ermöglicht wird.
Alternativ hierzu kann beispielsweise auch eine DC- oder RF- angeregte Hohlkathodeneinheit oder dergleichen für den erfindungsgemäßen Energieeintrag vorgesehen werden. Diesen Einheiten gemeinsam ist der erfindungsgemäße örtlich definierte Energieeintrag vorzugsweise in den vor der Oberfläche des Substrates befindenden Werkstoff.
Weiterhin ist in vorteilhafter Weise eine UV-Einheit oder dergleichen vorgesehen. Mit diesen Einheiten erfolgt vorzugsweise der Eintrag zusätzlicher kinetischer Energie zur Diffusion der zunächst auf dem Substrat amorph abgeschiedenen Teilchen in den auf der Oberfläche des Substrats befindenden Werkstoff.
In einer besonderen Weiterbildung der Erfindung ist eine Kühlvorrichtung zur Kühlung des Substrates vorgesehen. Hierdurch wird in vorteilhafter Weise gewährleistet, dass eine möglichst weitestgehende Absenkung der Substrattemperatur realisiert wird. Insbesondere mittels dieser Maßnahme sind temperaturempfindlichere Substrate beschichtbar.
Vorzugsweise wird die Kühlvorrichtung mittels einem metallischen oder sonstigen gut wärmeleitenden Substrattrager realisiert . Darüber hinaus kann die Kühlvorrichtung auch von einem vorteilhaften Kühlmittel durchströmt werden, so dass eine weitere Absenkung der Substrattemperatur erreicht werden kann.
In einer besonderen Ausführungsform der Erfindung ist eine Spannungsquelle zur Erzeugung eines elektrischen Feldes zwischen der Werkstoffquelle und dem Substrat vorgesehen. Hierdurch wird gewährleistet, dass beispielsweise ein vorteilhafter Potentialverlauf zwischen der Werkstoffquelle und dem Substrat erzeugt wird und dass eine Aufladung des Substrates, insbesondere mittels einer RF-Substrat- oder Biasspannung, verhindert wird.
Ausführungsbeispiel
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird anhand der Figuren nachfolgend näher erläutert •
Im Einzelnen zeigen
Fig. 1 einen schematischen Aufbau einer erfindungsgemäßen Vorrichtung,
Fig. 2 eine schematische 3D-Darstellung eines Ausschnitts einer erfindungsgemäß hergestellten Beschichtung, Fig. 3 eine schematische Darstellung eines erfindungsgemäß hergestellten mehrlagigen Schicht,
Fig. 4 eine schematische Darstellung eines weiteren erfindungsgemäß hergestellten mehrlagigen Schicht und
Fig. 5 eine schematische Darstellung eines dritten erfindungsgemäß hergestellten mehrlagigen Schicht.
In Fig. 1 ist schematisch ein Ausschnitt einer Beschichtungskammer 1 während einem Beschichtungsvorgang dargestellt. Hierbei wird auf ein Substrat 2 eine Schicht 3 bei einem Kammerdruck von ungefähr 10"3 bis 10"2 mbar aufgebracht . So wird von einer Sputterquelle 4 ein erster Werkstoff 5 zerstäubt . Entsprechend wird von einer Sputterquelle 6 ein zweiter Werkstoff 7 gleichzeitig oder zeitversetzt mit dem Werkstoffs 5 zerstäubt. Der erfindungsgemäß örtlich definierte Energieeintrag in die beiden Werkstoffe 5, 7 erfolgt mittels dem in Fig. 1 schematisch dargestellten Plasma 8. Die Plasmaerzeugung bzw. auch Plasmaanregung erfolgt beispielsweise mittels einer nicht näher dargestellten ECR-Mikrowellenquelle, wobei beispielsweise Argon, Helium, Sauerstoff oder dergleichen als Plasmagas vorgesehen ist. Das Plasma 8 wird beispielsweise mit einer Mikrowellenstrahlung der Frequenz 2,45 GHz mit einer schichtdicken abhängigen Leistung von vorzugsweise 1 kW erzeugt. Die Mikrowellenstrahlung wird beispielsweise über eine nicht näher dargestellte Stabantenne eingekoppelt .
Beispielsweise kann die Sputterquelle 4 ein Metall, ein Metalloxidtarget oder ein Mischtarget umfassen, wobei das Metall beispielsweise Titan, Chrom, Kupfer, Zirkonium oder dergleichen sein kann. Mittels einer Gaszufuhr 9 und 10 können während der Beschichtung je nach Bedarf zwei verschiedene Reaktionsgase zudosiert werden. Beispielsweise kann durch die Gaszufuhr 9 Sauerstoff in die Beschichtungskammer 1 zudosiert werden, um oxidische Keramikschichten herzustellen. Wird gegebenenfalls eine Sputterquelle 4 mit einem Metalloxidtarget verwendet, so können oxidische Keramikschichten auch ohne eine Sauerstoffzufuhr mittels der Gaszufuhr 9 hergestellt werden.
Die Sputterquelle 6 kann beispielsweise ein Silizum- und/oder Kohlenstofftarget umfassen, so dass die Sputterquelle 6 insbesondere mit durch die Gaszufuhr 10 zugeführtem Stickstoff die Bildung der amorphen Matrix, wie Siliziumnitrid oder dergleichen, ermöglicht. Alternativ kann die Gaszufuhr 10 auch andere Gase zuführen, so dass bei Bedarf auch andere Matrices hergestellt werden können.
Erfahrungsgemäß erfolgt die Reaktion der Sputterbestandteile größtenteils erst auf dem Substrat. Mittels der ECR-Mikro- wellenquelle wird erfindungsgemäß durch das Plasma 8 zusätzliche Energie in die zerstäubten bzw. abgeschiedenen Partikel eingetragen, ohne dass das Substrat nennenswert erwärmt wird. Hierdurch kann die ' Substrattemperatur vergleichsweise klein gehalten werden. Aufgrund der durch die ECR-Mikrowellenquelle eingetragene Energie erfolgt die Bildung von Partikel in Nanometergrδße, beispielsweise von Titanoxidpartikeln, in der Beschichtung 3 auf dem Substrat durch Diffusion der zunächst amorph abgeschiedenen Teilchen. Folglich werden die hohen Temperaturen des Substrats , die zur Bildung der nanostrukturierten Beschichtung gemäß dem Stand der Technik führen, nicht benötigt, so dass erfindungsgemäß auch temperaturempfindliche Substrate beschichtet werden können.
Erfindungsgemäß" ist die Beschichtung beliebig skalierbar, ohne dass beispielsweise das Substrat als Elektrode zur Verdichtung der aufgebrachten Beschichtung verwendet werden muss. Eine besondere Ausführungsform der Erfindung umfasst jedoch eine Spannungsquelle, die beispielsweise eine RF- Biasspannung an dem Substrat vorsieht. Hierdurch wird vor allem lediglich eine Aufladung des Substrats 2 verhindert, so dass sich insbesondere die Abscheidung der Werkstoffe 5, 7 auch über einen vergleichsweise längeren Beschichtungszeitraum nicht nachteilig verändert .
Fig. 2 zeigt anschaulich einen schematischen dreidimensionalen Ausschnitt einer Schicht 3 mit mindestens zwei mehrkomponentigen Phasen 11, 12, wobei Nanokristallite 11 in ein amorphes, refraktäres Netzwerk 12 eingebunden sind. Beispielsweise kann es sich bei den Nanokristallite 11 um TiO- , TiN-, ZrN-, ZrO- , TiC- , SiC-, Kohlenstoff- oder entsprechende Nanokristallite 11 sowie verschiedenster Mischungen hiervon mit Korngrößen im Bereich von 5 bis 20 nm handeln. Erfindungsgemäß ist hierbei der Anteil des Oberflächenvolumens am Gesamtvolumen sehr hoch und die Grenzflächen zwischen den Nanokristalliten 11 und der amorphen Matrix 12 vergleichsweise scharf.
In Fig. 3 ist schematisch ein Schichtaufbau einer erfindungsgemäß hergestellten Beschichtung 3 dargestellt, wobei auf dem Substrat 2 die nanoskalige Multilagenschicht 3 aufgebracht ist . Hierbei umfasst die Schicht 3 einen Haftvermittler 13, der optional aufgebracht werden kann und beispielsweise aus einer metallischen Schicht besteht, wie zum Beispiel aus einer ca. 300 nm dicken Titan-Haftschicht. Als nächste Schicht 14 kann beispielsweise eine Schicht gemäß der Fig. 2 aufgebracht werden, d. h. beispielsweise eine amorphe Siliziumnitridschicht 12 mit nanoskaligen Titanoxid- und/oder Kohlenstoff-Partikeln 11. Anschließend kann optional beispielsweise eine Deckschicht 15 aufgebracht werden, die vorzugsweise aus amorphem Kohlenstoff besteht. Erfindungsgemäß können neben nahezu planaren Substraten auch dreidimensionale Bauteile wie Bohrer oder dergleichen mit einer entsprechenden nanoskaligen Multilagenschicht 3 beschichtet werden.
Der dreilagige Schichtaufbau gewährleistet insbesondere mittels dem Haftvermittler 13 eine gute Haftung der superharten keramischen Metalloxidschicht 14 auf dem Substrat 2. Die Deckschicht 15 stellt beispielsweise bei ähnlicher Härte einen hohen Reibbeiwert sicher, so dass insbesondere die Reibeigenschaften der nanostrukturierten Schicht in einer Einlaufphase von mechanisch belasteten Bauteilen oder Maschinenelementen, wie z. B-. Wellen, Lagerkomponenten, Kolben, Zahnräder oder dergleichen, der beiden Reibpartner oder über die gesamte Lebensdauer der beiden Reibpartner verbessert wird.
Alternativ zum Schichtaufbau gemäß der Fig. 3 kann ein Schichtaufbau gemäß der Fig. 4 vorgesehen werden. Hierbei ist entsprechend der Fig. 3 optional der Haftvermittler 13 und eine Schicht 14, die beispielsweise ein amorphes Kohlenstoffnetzwerk 12 mit nanoskaligen Titanoxidpartikeln 11 umfasst, vorgesehen.
Gemäß der Fig . 5 kann ein alternativer Schichtaufbau wiederum mit einem optional aufzubringenden Haftvermittler 13 und einer amorphen KohlenstoffSchicht 16 sowie einer Schicht 14 mit einer amorphen Siliziumnitridschicht 12 und nanoskaligen Titanoxidpartikeln 11 vorgesehen werden. So kann auch auf diamantartige Kohlenstoffschichten 16 nanostrukturierte Metalloxidschichten 14 aufgebracht werden, um beispielsweise das Einlaufverhalten von Verschleißschutzschichten mit einem niedrigeren Reibbeiwert zu verbessern.
Grundsätzlich können insbesondere nanostrukturierte Metalloxidschichten 14 mit oder ohne Einlagerungen bzw. oberer Deckschicht 15 als Verschleißschutzschicht für höchste Belastungskollektive mit neuartigen multifunktionalen Eigenschaften eingesetzt werden. So können diese zum Beispiel aufgrund ihrer Antihaft- und vorteilhaften Reibeigenschaften als Trockenschmierstoffschichten zur Bearbeitung von Edelstahl, Aluminium oder dergleichen verwendet werden. Darüber hinaus können auch die Selbstreinigungseigenschaften von Titanoxidschichten mit Antikratzeigenschaften kombiniert werde .
Generell sind oxidische Keramikschichten vorteilhaft, da diese eine hohe chemische Inertheit aufweisen, optisch transparent sind und einen niedrigeren Reibkoeffizienten als zum Beispiel Nitridschichten besitzen. Jedoch werden bislang keramische Oxidschichten vor allem aufgrund der sensibleren, reaktiveren Prozessführung als bei nitridischen SchichtSystemen nur bedingt in der Fertigung eingesetzt. Die Einstellung des stöchio etrischen Sauerstoffgehaltes kann hierbei beispielsweise durch Regelung optischer Emission erfolgen. Gleichzeitig zeichnen sich oxidische Keramiken im Einsatz durch gute Reibeigenschaften und hohe chemische Beständigkeit mit hohen Schichthärten aus .
Grundsätzlich können, entsprechend der Figur 1, auch beispielsweise Chromoxidnanopartikel in einer nicht näher dargestellten Hohlkatode hergestellt werden und unter Zugabe von Siliziumnitrid durch Siliziumsputtern sowie Zugabe von Stickstoffgas bei gleichzeitiger Zusatzionisierung durch eine erfindungsgemäße Mikrowellenwellenquelle oder Hochstromionenquelle, beispielsweise nc-CrOx/a-SiNx, hergestellt werden. Optional kann wiederum anschließend eine Kohlenstoffschicht 15 zur Verbesserung der Einlaufeigenschaften entsprechender Bauteile aufgebracht werden. Erfindungsgemäß kann generell nanokristallines Pulvermaterial einer Ionenquelle zugeführt oder mittels dieser synthetisiert werden. Bezugszeichenliste :
1 Beschichtungskammer
2 Substrat
3 Schicht
4 Sputterquelle
5 Werkstoff
6 Sputterquelle
7 Werkstoff
8 Plasma
9 Gaszufuhr
10 Gaszufuhr
11 Nanokristallite
12 Netzwerk
13 Haftvermittler
14 Schicht
15 Deckschicht
16 C-Schicht

Claims

Ansprüche :
1. Vorrichtung zur keramikartigen Beschichtung eines Substrates (2) , wobei Mittel zum Aufbringen eines Werkstoffes (5, 7) , insbesondere mittels eines Plasmas (8) , auf einer Oberfläche des Substrates (2) vorgesehen sind, dadurch gekennzeichnet, dass eine von einer Werkstoffquelle (4, 6) des zur Beschichtung vorgesehenen Werkstoffes (5, 7) verschiedenen Energiequelle zum örtlich definierten Energieeintrag in den vor und/oder auf der Oberfläche befindlichen Werkstoff (5, 7) vorgesehen ist.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass eine Mikrowelleneinheit für den Energieeintrag vorgesehen ist .
3. Vorrichtung nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass eine Ionenquelleneinheit für den Energieeintrag vorgesehen ist.
4. Vorrichtung nach einem der vorgenannten Ansprüche , dadurch gekennzeichnet, dass eine Hohlkathodeneinheit für den Energieeintrag vorgesehen ist.
5. Vorrichtung nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass eine UV-Einheit für den Energieeintrag vorgesehen ist .
6. Vorrichtung nach einem der vorgenannten Ansprüche , dadurch gekennzeichnet, dass eine Kühlvorrichtung zur Kühlung des Substrates (2) vorgesehen ist.
7. Vorrichtung nach einem der vorgenannten Ansprüche , dadurch gekennzeichnet, dass eine Spannungsquelle zur Erzeugung eines elektrischen Feldes zwischen der Werkstoffquelle und dem Substrat (2) vorgesehen ist.
8. Verfahren zur Herstellung einer keramikartigen Beschichtung (3) eines Substrates (2), wobei ein Werkstoff
(5, 7) , insbesondere mittels eines Plasmas (8) , auf einer Oberfläche des Substrates (2) aufgebracht wird, dadurch gekennzeichnet, dass eine Vorrichtung nach einem der vorgenannten Ansprüche verwendet wird.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass ein vom Werkstoffeintrag verschiedener, örtlich definierter Energieeintrag in den vor und/oder auf der Oberfläche befindlichen Werkstoff (5, 7) vorgesehen wird.
10. Verfahren nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass eine Diffusion des auf der Oberfläche befindlichen Werkstoffs (5, 7) zur Bildung von Partikeln in Nanometergroße vorgesehen wird.
EP02701200A 2001-02-02 2002-01-18 Vorrichtung zur keramikartigen beschichtung eines substrates Ceased EP1360343A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10104611A DE10104611A1 (de) 2001-02-02 2001-02-02 Vorrichtung zur keramikartigen Beschichtung eines Substrates
DE10104611 2001-02-02
PCT/DE2002/000138 WO2002061165A1 (de) 2001-02-02 2002-01-18 Vorrichtung zur keramikartigen beschichtung eines substrates

Publications (1)

Publication Number Publication Date
EP1360343A1 true EP1360343A1 (de) 2003-11-12

Family

ID=7672549

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02701200A Ceased EP1360343A1 (de) 2001-02-02 2002-01-18 Vorrichtung zur keramikartigen beschichtung eines substrates

Country Status (5)

Country Link
US (1) US20040144318A1 (de)
EP (1) EP1360343A1 (de)
JP (1) JP2004518026A (de)
DE (1) DE10104611A1 (de)
WO (1) WO2002061165A1 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10141696A1 (de) 2001-08-25 2003-03-13 Bosch Gmbh Robert Verfahren zur Erzeugung einer nanostruktuierten Funktionsbeschichtung und damit herstellbare Beschichtung
DE10256063A1 (de) 2002-11-30 2004-06-17 Mahle Gmbh Verfahren zum Beschichten von Kolbenringen für Verbrennungsmotoren
DE10256257A1 (de) * 2002-12-03 2004-06-24 Robert Bosch Gmbh Vorrichtung und Verfahren zum Beschichten eines Substrates und Beschichtung auf einem Substrat
DE10305109B8 (de) * 2003-02-07 2010-11-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Bauteil mit einer elektrisch hochisolierenden Schicht und Verfahren zu dessen Herstellung
WO2006009218A1 (ja) * 2004-07-22 2006-01-26 Nippon Telegraph And Telephone Corporation 2安定抵抗値取得装置及びその製造方法並びに金属酸化物薄膜及びその製造方法
EP1643005A3 (de) * 2004-09-01 2008-03-19 EMPA Eidgenössische Materialprüfungs- und Forschungsanstalt Abscheiden von organischen und/oder anorganischen Nanoschichten mittels Plasmaentladung
DE102004052515B4 (de) 2004-10-22 2019-01-03 Aesculap Ag Chirurgische Schere und Verfahren zum Herstellen einer chirurgischen Schere
FR2886636B1 (fr) * 2005-06-02 2007-08-03 Inst Francais Du Petrole Materiau inorganique presentant des nanoparticules metalliques piegees dans une matrice mesostructuree
SE528908C2 (sv) * 2005-07-15 2007-03-13 Abb Research Ltd Kontaktelement och kontaktanordning
CN101326303B (zh) * 2005-10-18 2012-07-18 西南研究院 抗侵蚀涂层
US20090214787A1 (en) * 2005-10-18 2009-08-27 Southwest Research Institute Erosion Resistant Coatings
WO2007115419A2 (de) * 2006-04-07 2007-10-18 Ecole D'ingenieurs De Geneve (Eig) Bauteilverschleissschutzschicht, bauteilverschleissschutzbeschichtungsverfahren und vorrichtung zur durchführung eines bauteilverschleissschutzbeschichtungsverfahrens
US20100021716A1 (en) * 2007-06-19 2010-01-28 Strock Christopher W Thermal barrier system and bonding method
FR2929264B1 (fr) 2008-03-31 2010-03-19 Inst Francais Du Petrole Materiau inorganique forme de particules spheriques de taille specifique et presentant des nanoparticules metalliques piegees dans une matrice mesostructuree
US8790791B2 (en) 2010-04-15 2014-07-29 Southwest Research Institute Oxidation resistant nanocrystalline MCrAl(Y) coatings and methods of forming such coatings
US9511572B2 (en) 2011-05-25 2016-12-06 Southwest Research Institute Nanocrystalline interlayer coating for increasing service life of thermal barrier coating on high temperature components
US9909582B2 (en) 2015-01-30 2018-03-06 Caterpillar Inc. Pump with plunger having tribological coating
US9523146B1 (en) 2015-06-17 2016-12-20 Southwest Research Institute Ti—Si—C—N piston ring coatings

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6187869A (ja) * 1984-10-05 1986-05-06 Hitachi Ltd スパツタ装置
JPS61104063A (ja) * 1984-10-24 1986-05-22 Agency Of Ind Science & Technol レ−ザ表面処理法
JP2587924B2 (ja) * 1986-10-11 1997-03-05 日本電信電話株式会社 薄膜形成装置
JPS63114966A (ja) * 1986-10-31 1988-05-19 Matsushita Electric Ind Co Ltd 薄膜製造装置
CH673071B5 (de) * 1988-06-24 1990-08-15 Asulab Sa
JPH02156072A (ja) * 1988-12-09 1990-06-15 Hitachi Ltd 酸化物超電導膜の合成法
US5186854A (en) * 1990-05-21 1993-02-16 The United States Of America As Represented By The Secretary Of The Navy Composites having high magnetic permeability and method of making
CH686187A5 (de) * 1993-03-30 1996-01-31 Alusuisse Lonza Services Ag Metallsubstrate mit laserinduzierter MMC-Beschichtung.
US5324553A (en) * 1993-04-30 1994-06-28 Energy Conversion Devices, Inc. Method for the improved microwave deposition of thin films
US5667650A (en) * 1995-02-14 1997-09-16 E. I. Du Pont De Nemours And Company High flow gas manifold for high rate, off-axis sputter deposition
US6726812B1 (en) * 1997-03-04 2004-04-27 Canon Kabushiki Kaisha Ion beam sputtering apparatus, method for forming a transparent and electrically conductive film, and process for the production of a semiconductor device
DE59710348D1 (de) * 1997-11-06 2003-07-31 Sulzer Markets & Technology Ag Verfahren zur Herstellung einer keramischen Schicht auf einem metallischen Grundwerkstoff
DE19807086A1 (de) * 1998-02-20 1999-08-26 Fraunhofer Ges Forschung Verfahren zum Beschichten von Oberflächen eines Substrates, Vorrichtung zur Durchführung des Verfahrens, Schichtsystem sowie beschichtetes Substrat
US6203865B1 (en) * 1998-07-20 2001-03-20 Qqc, Inc. Laser approaches for diamond synthesis
US6238528B1 (en) * 1998-10-13 2001-05-29 Applied Materials, Inc. Plasma density modulator for improved plasma density uniformity and thickness uniformity in an ionized metal plasma source
DE19907105A1 (de) * 1999-02-19 2000-08-31 Volkswagen Ag Verfahren und Vorrichtung zum Herstellen von verschleißfesten, tribologischen Zylinderlaufflächen
JP2000256847A (ja) * 1999-03-04 2000-09-19 Sanyo Shinku Kogyo Kk 薄膜の成膜方法とその装置
DE19958473A1 (de) * 1999-12-04 2001-06-07 Bosch Gmbh Robert Verfahren zur Herstellung von Kompositschichten mit einer Plasmastrahlquelle
US6897823B2 (en) * 2001-07-31 2005-05-24 Hitachi Maxell, Ltd. Plane antenna and method for manufacturing the same
DE10141696A1 (de) * 2001-08-25 2003-03-13 Bosch Gmbh Robert Verfahren zur Erzeugung einer nanostruktuierten Funktionsbeschichtung und damit herstellbare Beschichtung
US8273407B2 (en) * 2006-01-30 2012-09-25 Bergendahl Albert S Systems and methods for forming magnetic nanocomposite materials
JP2007291420A (ja) * 2006-04-21 2007-11-08 Canon Inc スパッタ装置
US20080008844A1 (en) * 2006-06-05 2008-01-10 Martin Bettge Method for growing arrays of aligned nanostructures on surfaces

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02061165A1 *

Also Published As

Publication number Publication date
DE10104611A1 (de) 2002-08-14
WO2002061165A1 (de) 2002-08-08
US20040144318A1 (en) 2004-07-29
JP2004518026A (ja) 2004-06-17

Similar Documents

Publication Publication Date Title
EP1360343A1 (de) Vorrichtung zur keramikartigen beschichtung eines substrates
DE60124061T2 (de) Hartstoffschicht für Schneidwerkzeuge
EP1423551B1 (de) Verfahren zur erzeugung einer nanostrukturierten beschichtung
EP0990061B1 (de) Verfahren und einrichtung zum vakuumbeschichten eines substrates
EP2148939B1 (de) Vakuumbehandlungsanlage und vakuumbehandlungsverfahren
DE19518781C1 (de) Vakuumbeschichteter Verbundkörper und Verfahren zu seiner Herstellung
EP3271497B1 (de) Beschichtungsquelle und verfahren zur herstellung dotierter kohlenstoffschichten
DE4407274C1 (de) Verfahren zur Herstellung von verschleißfesten Schichten aus kubischem Bornitrid und ihre Anwendung
DE19958473A1 (de) Verfahren zur Herstellung von Kompositschichten mit einer Plasmastrahlquelle
EP2256229A1 (de) Schichtsystem zur Bildung einer Oberflächenschicht auf einer Oberfläche eines Substrats, Beschichtungsverfahren und Substrat mit einem Schichtsystem
EP3929325A1 (de) Verfahren zur herstellung einer beschichtungsquelle zur physikalischen gasphasenabscheidung von crtan, sowie dadurch hergestellte crta beschichtungsquelle
DE102010028558A1 (de) PVD-Hybridverfahren zum Abscheiden von Mischkristallschichten
EP2480699A2 (de) Verfahren zur herstellung von kubischen zirkonoxidschichten
DE112009001396T5 (de) Hartbeschichtungsschicht und Verfahren zu deren Bildung
EP3423609A1 (de) Wasserstofffreie kohlenstoffbeschichtung mit zirkonium haftschicht
EP0337007B1 (de) Hartstoff-Schutzschicht mit homogener Elementverteilung
EP2024528B1 (de) Multifunktionelle hartstoffschichten
EP1773734A1 (de) Borhaltiges schichtsystem, bestehend aus einer borcarbid-, einer b-c-n und einer kohlenstoffmodifizierten kubischen bornitridschicht sowie verfahren zur herstellung eines solchen schichtsystems
DE4302407A1 (de)
DE19756588A1 (de) Schichtsystem, Verfahren zu seiner Herstellung sowie seine Verwendung
DE10244438B4 (de) Verbundkörper mit einer verschleißmindernden Oberflächenschicht, Verfahren zu seiner Herstellung sowie Verwendung des Verbundkörpers
DE10114306B4 (de) Kompositschicht, Verfahren zur Herstellung einer Kompositschicht und deren Verwendung
DD296110A5 (de) Verfahren zur herstellung von hartstoffschichten mittels vakuumbogenverdampfung
DD255447A3 (de) Verfahren zur ionengestuetzten herstellung einer hartstoffschicht

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030902

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20040211

17Q First examination report despatched

Effective date: 20040211

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20090313