EP1356198A1 - Verfahren und vorrichtung zur ermittlung des durchsatzes eines strömenden mediums - Google Patents

Verfahren und vorrichtung zur ermittlung des durchsatzes eines strömenden mediums

Info

Publication number
EP1356198A1
EP1356198A1 EP01271494A EP01271494A EP1356198A1 EP 1356198 A1 EP1356198 A1 EP 1356198A1 EP 01271494 A EP01271494 A EP 01271494A EP 01271494 A EP01271494 A EP 01271494A EP 1356198 A1 EP1356198 A1 EP 1356198A1
Authority
EP
European Patent Office
Prior art keywords
air mass
throughput
flowing medium
determining
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01271494A
Other languages
English (en)
French (fr)
Other versions
EP1356198B1 (de
Inventor
Dieter Tank
Josef Kleinhans
Wolfgang Kienzle
Hans Hecht
Manfred Strohrmann
Wolfgang-Michael Mueller
Axel-Werner Haag
Uwe Konzelmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1356198A1 publication Critical patent/EP1356198A1/de
Application granted granted Critical
Publication of EP1356198B1 publication Critical patent/EP1356198B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/182Circuit arrangements for generating control signals by measuring intake air flow for the control of a fuel injection device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2400/00Control systems adapted for specific engine types; Special features of engine control systems not otherwise provided for; Power supply, connectors or cabling for engine control systems
    • F02D2400/08Redundant elements, e.g. two sensors for measuring the same parameter

Definitions

  • the invention relates to a method and a device for determining the throughput of a flowing medium, in particular for determining the air flow prevailing in the intake manifold of an internal combustion engine and thus for determining the intake air mass.
  • Hot film air mass meters are usually used to record the air mass sucked in by an internal combustion engine. These have a heatable element which is exposed to the air flow to be measured and is cooled by it.
  • Both types of air mass meter, or an existing method for detecting the air mass flow with a hot film air mass meter is based on the measurement of the heat that is given off to the air mass flow flowing past. For this purpose, the electrical energy required to regulate the hot film to a constant temperature is measured in a type of air mass meter.
  • a second method, or a second associated one Sensor arrangement is based on the fact that the hot film is also regulated to a constant temperature.
  • the heating power required is not used as the measurement signal, but rather the temperature profile at the edge of the hot film formed as a membrane.
  • the temperature difference between these two points is determined using an upstream and a downstream temperature sensor. Both temperature sensors, which are designed as temperature-dependent resistors, are part of a bridge circuit. A measuring signal is obtained from the resulting bridge voltage, which represents the temperature difference between the upstream and the downstream temperature-dependent resistance.
  • Both types of sensors, or evaluation methods can be impaired by interference effects, such as air humidity or pollution. This can lead to a false display of such a sensor or an error in the signal evaluation.
  • the object of the invention is to minimize the sources of error mentioned and the resulting false indications.
  • the object is achieved with a method and / or a device according to the invention for determining the throughput of a flowing medium with the features of claim 1.
  • the method according to the invention and / or the device according to the invention for determining the throughput of a flowing medium, in particular that of an internal combustion engine sucked air mass has the advantage that interference effects are compensated for during the measurement.
  • This is advantageously carried out by carrying out a redundant measurement which works according to two different methods, which are carried out with a single sensor, or there are two different types of sensors for measuring the air mass, it being essential that the two selected methods or the two sensors react differently to interference effects.
  • the combination of the two measurement results can then be used to compensate for interference effects which occur more in one method or the associated sensor than in the other method or in the other sensor.
  • DE-OS 39 25 377 proposes a method for correcting measurement errors, in which the measurement error of a hot-film air mass meter that occurs due to backflow is compensated.
  • the air mass is recorded with the hot-film air mass meter as a first value and the air mass is calculated as a second value according to a method that works independently thereof, by evaluating the throttle valve angle and the speed of the internal combustion engine.
  • Which value is used to actually determine the air mass depends on the operating range in which the internal combustion engine is located. Since the two values have different safeties in different operating ranges of the internal combustion engine, a correction signal can be obtained from the comparison of the two measured variables, which is taken into account to increase the measuring certainty.
  • the air mass flow LS to be measured is determined according to two different methods, both of which work with the same sensor 13, which comprises a heatable hot film.
  • the sensor 13 is constructed in such a way that it is suitable for both measuring methods and is exposed to the flowing air mass flow LS which cools it.
  • the evaluation process which takes place in block 10, represents a first type of evaluation process and is based on the measurement of the heat that is emitted to the air mass flow flowing past the sensor.
  • the heat which is given off to the air mass flow flowing past is determined by measuring the electrical energy which is required to regulate the hot film to a constant temperature. Ultimately, the heating output is measured and the air mass flow is determined from it.
  • the second type of detection of the air mass flow or the second evaluation process takes place in block 12 and is carried out by evaluating the temperature profile.
  • the hot film of the sensor 13 is also regulated to a constant temperature. However, the required signal is not used Heating power used, but the temperature profile at the membrane edge of the hot film air mass meter is determined.
  • the air mass meter must therefore have at least two temperature-dependent resistors in addition to the hot film and the heating resistor. In the case of such a hot film air mass meter, for example, the temperature difference between an upstream and a downstream temperature-dependent resistor, which serves as a temperature sensor, is evaluated.
  • the two output signals S1 and S2 emitted by blocks 10 and 11 are fed to a common evaluation device 12.
  • the evaluation of the two signals S1 and S2 obtained by different methods takes place in this evaluation device 12, and the interference effects are compensated for.
  • the output signal of the evaluation device 12 is then fed as a corrected measurement signal KM for further processing.
  • This further processing can take place, for example, in the control unit of an internal combustion engine, which uses the measurement signal, which then specifies the air mass actually flowing in the intake manifold of an internal combustion engine, to calculate the control signals required for regulating the internal combustion engine.
  • the arrangement shown in the figure represents a hot film air mass meter, in which a sensor is present which can be operated in two different methods, or in which the air mass is determined by two different methods.
  • a sensor which can be operated in two different methods, or in which the air mass is determined by two different methods.
  • Such an arrangement enables the air mass flow to be recorded redundantly by measuring the heating power and by evaluating the temperature profile. Since the two measuring methods react differently to interference effects, the type and magnitude of the two can be compared from the two sensor signals Interference effects are closed, and the interference effects determined in this way can be taken into account in the further signal evaluation and thus compensated for.
  • HFM 2 hot film air mass meter
  • HFM5 Hot film air mass meter
  • Evaluation methods of a first type and evaluation methods of a second type are then carried out again and the measurement results are combined with one another, however for two sensors or sensor elements.
  • the invention has been explained for the determination of a flowing air mass, but it can basically be used wherever a flowing medium influences a heatable measuring element.

Abstract

Es werden Verfahren und/oder Vorrichtungen zur Ermittlung des Durchsatzes eines strömenden Mediums, insbesonders einer Strömenden Luftmasse beschrieben, bei denen das strömende Medium mit zwei nach verschiedenen Prinzipien arbeitenden Auswerteverfahren bestimmt wird und die beiden erhaltenen Messsignale miteinander in Bezug gesetzt werden zur Ermittlung von Korrekturverfahren. Da beide Messverfahren unterschiedlich auf Störeffekte reagieren, kann aus dem Vergleich der beiden Ausgangssignale auf die Art und Grössenordnung der Störeffekte geschlossen werden und ein korrigiertes Messsignal gewonnen werden, das von den Störeffekten unabhängig ist.

Description

Verfahren und Vorrichtung zur Ermittlung des Durchsatzes eines strömenden Mediums
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Ermittlung des Durchsatzes eines strömenden Mediums, insbesonders zur Ermittlung der im Saugrohr einer Brennkraftmaschine herrschenden Luftströmung und damit zur Bestimmung der angesaugten Luftmasse.
Stand der Technik
Zur Erfassung der von einer Brennkraftmaschine angesaugten Luftmasse werden üblicherweise Heißfilm-Luftmassenmesser eingesetzt. Diese weisen ein beheizbares Element auf, das dem zu messenden Luftstrom ausgesetzt wird und durch diesen gekühlt wird. Für die Ausgestaltung des Heißfilm- Luftmassenmessers gibt es verschiedene Möglichkeiten, ebenso für die Heizungsregelung und die Auswerteverfahren. Beide Arten von Luftmassenmessern, bzw. ein existierendes Verfahren zur Erfassung des Luftmassenstromes mit einem Heißfilm-Luftmassenmesser, beruht auf der Messung der Wärme, die an den vorbeiströmenden Luftmassenstrom abgegeben wird. Dazu wird bei einer Art von Luftmassenmessern die elektrische Energie, die zur Regelung des Heißfilmes auf eine konstante Temperatur benötigt wird, gemessen. Ein zweites Verfahren, bzw. eine zweite zugehörige Sensoranordnung, beruht darauf, daß der Heißfilm ebenfalls auf eine konstante Temperatur geregelt wird. Als Meßsignal wird jedoch nicht die dazu benötigte Heizleistung verwendet, sondern das Temperaturprofil am Rand des als Membran ausgebildeten Heißfilms. Dabei wird mit Hilfe eines stromaufwärts und eines stromabwärts vom Heizbereich liegenden Temperatursensors die Temperaturdifferenz zwischen diesen beiden Stellen bestimmt. Beide Temperatursensoren, die als temperaturabhängige Widerstände ausgebildet sind, sind Bestandteil einer Brückenschaltung. Aus der sich einstellenden Brückenspannung wird ein Meßsignal gewonnen, das die Temperaturdifferenz zwischen dem stromaufwärts und dem stromabwärts vom Heizbereich liegenden temperaturabhängigen Widerstand repräsentiert.
Beide Arten von Sensoren, bzw. Auswerteverfahren, können durch Störeffekte, wie beispielsweise Luftfeuchtigkeit oder Verschmutzung, beeinträchtigt werden. Dies kann zu einer Fehlanzeige eines solchen Sensors führen, bzw. zu einem Fehler in der Signalauswertung.
Aufgabe der Erfindung
Die Aufgabe der Erfindung besteht darin, die angesprochenen Fehlerquellen und die daraus resultierenden Fehlanzeigen zu minimieren. Die Lösung der Aufgabe wird mit einem erfindungsgemäßen Verfahren und/oder einer erfindungsgemäßen Vorrichtung zur Ermittlung des Durchsatzes eines strömenden Mediums mit den Merkmalen des Anspruchs 1 erzielt.
Vorteile der Erfindung
Das erfindungsgemäße Verfahren und/oder die erfindungsgemäße Vorrichtung zur Ermittlung des Durchsatzes eines strömenden Mediums, insbesonders der von einer Brennkraftmaschine angesaugten Luftmasse, hat den Vorteil, daß Störeffekte bei der Messung kompensiert werden. In vorteilhafter Weise erfolgt dies, indem eine redundante Messung durchgeführt wird, die nach zwei verschiedenen Verfahren arbeitet, die bei einem einzigen Sensor durchgeführt werden oder es sind zwei verschiedenartige Sensoren zur Messung der Luftmasse vorhanden, wobei wesentlich ist, dass die beiden ausgewählten Verfahren bzw. die beiden Sensoren unterschiedlich auf Störeffekte reagieren. Durch Kombination der beiden Meßergebnisse lassen sich dann Störeffekte, die bei einem Verfahren, bzw. dem zugehörigen Sensor, stärker auftreten als beim anderen Verfahren, bzw. beim anderen Sensor, kompensieren. Erzielt werden diese Vorteile dabei durch ein Verfahren und/oder eine Vorrichtung mit den Merkmalen des Anspruchs 1.
Weitere Vorteile der Erfindung werden durch die in den Unteransprüchen angegebenen Maßnahmen erzielt.
Zeichnung
Ein Ausführungsbeispiel der Erfindung ist in der einzigen Figur dargestellt und wird in der nachfolgenden Beschreibung näher erläutert.
Beschreibung
Bei der Ermittlung des Durchsatzes eines strömenden Mediums besteht die Gefahr, daß die Genauigkeit durch Störeffekte beeinträchtigt wird. Insbesonders im Zusammenhang mit der Erfassung der im Saugrohr einer Brennkraftmaschine strömenden Luftmasse gibt es verschiedene Probleme, die beispielsweise dadurch verursacht werden, daß die Feuchtigkeit der strömenden Luft nicht genau bekannt ist oder daß die Sensorelemente bei andauerndem Gebrauch verschmutzt werden, wodurch sich Fehler in der Auswertung einstellen können. Eine weitere Problematik bei der Messung der im Saugrohr einer Brennkraftmaschine strömenden Luft wird verursacht durch die Tatsache, daß die Strömung nicht immer in eine Richtung erfolgt, sondern eine sogenannte Strömungsumkehr, bzw. eine Pulsation, auftreten kann. Zur Kompensation von Fehlern und insbesonders zur Kompensation der Störeffekte, die durch solche Saugrohrpulsationen verursacht werden, ist es bekannt, die Ermittlung der strömenden Luftmasse nach zwei unterschiedlichen Verfahren durchzuführen und die erhaltenen Meßergebnisse miteinander zu kombinieren, um damit Fehlmessungen zu minimieren.
Dazu wird beispielsweise in der DE-OS 39 25 377 ein Verfahren zur Meßfehlerkorrektur vorgeschlagen, bei dem der durch Rückströmung auftretende Meßfehler eines Heißfilm- Luftmassenmessers kompensiert wird. Dazu wird die Luftmasse mit dem Heißfilm-Luftmassenmesser als ein erster Wert erfaßt und als zweiter Wert wird nach einem davon unabhängig arbeitenden Verfahren die Luftmasse berechnet, indem der Drosselklappenwinkel und die Drehzahl der Brennkraftmaschine ausgewertet werden. Welcher Wert zur tatsächlichen Bestimmung der Luftmasse verwendet wird, hängt davon ab, in welchem Betriebsbereich sich die Brennkraftmaschine befindet. Da die beiden Werte in verschiedenen Betriebsbereichen der Brennkraftmaschine unterschiedliche Sicherheiten aufweisen, kann aus dem Vergleich der beiden Meßgrößen ein Korrektursignal gewonnen werden, das zur Erhöhung der Meßsicherheit berücksichtigt wird.
Bei diesem bekannten Verfahren wird jedoch nur der durch die Rückströmung verursachte Meßfehler kompensiert, andere Meßfehler werden dagegen nicht berücksichtigt. Beim bekannten Verfahren wird im übrigen auch nur ein Luftmassensensor eingesetzt, die zweiten Informationen, die zur Berechnung der Luftmasse benötigt werden, werden nicht direkt gemessen, sondern berechnet, sie lassen sich nicht zur erfindungsgemäßen Korrektur bzw. Kompensation von allgemeinen, verschiedenartigen Meßfehlern heranziehen.
Bei dem erfindungsgemäßen Verfahren, bzw. der zugehörigen Vorrichtung, die in der Figur dargestellt ist, können verschiedene Meßfehler kompensiert werden und somit eine sehr zuverlässige und genaue Erfassung des Durchsatzes eines strömenden Mediums, beispielsweise der von einer Brennkraftmaschine angesaugten Luftmasse, erhalten werden. Dazu wird bei dem in Figur 1 als Blockanordnung dargestellten Ausführungsbeispiel der zu messende Luftmassenstrom LS nach zwei unterschiedlichen Verfahren bestimmt, die beide mit dem selben Sensor 13, der einen beheizbaren Heißfilm umfaßt, arbeiten. Der Sensor 13 ist dabei so aufgebaut ist, dass er für beide Meßverfahren geeignet ist und dem strömenden Luftmassenstrom LS ausgesetzt wird, der ihn kühlt.
Das Auswerteverfahren, das in Block 10 abläuft, stellt eine erste Art von Auswerteverfahren dar und beruht auf der Messung der Wärme, die an den am Sensor vorbeiströmenden Luftmassenstrom abgegeben wird. Die Wärme, die an den vorbeiströmenden Luftmassenstrom abgegeben wird, wird ermittelt, indem die elektrische Energie, die zur Regelung des Heißfilms auf eine konstante Temperatur benötigt wird, gemessen wird. Es wird also letztendlich die Heizleistung gemessen und der Luftmassenstrom daraus bestimmt.
Die zweite Art der Erfassung des Luftmassenstromes bzw. das zweite Auswerteverfahren läuft im Block 12 ab und erfolgt durch Auswertung des Temperaturprofiles. Dabei wird der Heißfilm des Sensors 13 ebenfalls auf konstante Temperatur geregelt. Als Meßsignal wird jedoch nicht die benötigte Heizleistung verwendet, sondern das Temperaturprofil am Membranrand des Heißfilm-Luftmassenmessers wird ermittelt. Der Luftmassenmesser muß also neben dem Heißfilm und dem Heizwiderstand wenigstens noch zwei temperaturabhängige Widerstände aufweisen. Bei einem solchen Heißfilm- Luftmassenmesser wird beispielsweise die Temperaturdifferenz zwischen einem stromaufwärts und einem stromabwärts vom Heizbereich liegenden temperaturabhängigen Widerstand, der als Temperatursensor dient, ausgewertet.
Die beiden von den Blöcken 10 und 11 abgegebenen Ausgangssignale Sl und S2 werden einer gemeinsamen Auswerteeinrichtung 12 zugeführt. In dieser Auswerteeinrichtung 12 erfolgt die Auswertung der beiden nach unterschiedlichen Verfahren erhaltenen Signale Sl und S2 und dabei erfolgt eine Kompensation der Störeffekte. Das Ausgangssignal der Auswerteeinrichtung 12 wird dann als korrigiertes Meßsignal KM der weiteren Verarbeitung zugeführt. Diese weitere Verarbeitung kann beispielsweise im Steuergerät einer Brennkraftmaschine erfolgen, das aus dem Meßsignal, das dann die im Saugrohr einer Brennkraftmaschine tatsächlich strömende Luftmasse angibt, die die für die Regelung der Brennkraftmaschine erforderlichen Ansteuersignale berechnet.
Die in der Figur dargestellte Anordnung stellt einen Heißfilm-Luftmassenmesser dar, bei dem ein Sensor vorhanden ist, der in zwei unterschiedlichen Verfahren betreibbar ist, bzw. bei dem die Luftmasse nach zwei unterschiedlichen Verfahren bestimmt wird. Eine solche Anordnung ermöglicht es, den Luftmassenstrom redundant zu erfassen durch Messung der Heizleistung und durch Auswertung des Temperaturprofils. Da beide Meßverfahren unterschiedlich auf Störeffekte reagieren, kann aus dem Vergleich der beiden Sensorsignale auf die Art und die Größenordnung der betreffenden Störeffekte geschlossen werden, und die so ermittelten Störeffekte können bei der weiteren Signalauswertung berücksichtigt und damit kompensiert werden.
Anstelle eines einzigen Sensors können auch zwei verschiedene Sensoren eingesetzt werden, die als HFM 2 bzw. HFM5 bekannt sind, wobei dann ein erster Sensor ein Heißfilmluftmassenmesser (HFM2) ist, bei dem die Erfassung des Luftmassenstromes durch Messung der Heizleistung erfolgt und ein zweiter Sensor ein Heißfilmluftmassenmesser (HFM5) ist, bei dem die Erfassung des Luftmassenstromes durch Auswertung des Temperaturprofiles auf der Sensormembran erfolgt. Es werden dann also auch wieder Auswerteverfahren einer ersten Art und Auswerteverfahren einer zweiten Art durchgeführt und die Meßergebnisse miteinander kombiniert, allerdings für zwei Sensoren bzw. Sensorelemente.
Die Erfindung wurde für die Bestimmung einer strömenden Luftmasse erläutert, sie ist aber grundsätzlich überall dort anwendbar, wo ein strömendes Medium ein beheizbares Meßelement beeinflußt.

Claims

Ansprüche
1. Verfahren und/oder Vorrichtung zur Ermittlung des Durchsatzes eines strömenden Mediums, insbesonders der im Saugrohr einer Brennkraftmaschine strömenden Luftmasse, bei dem der Luftmassenstrom nach zwei unterschiedlichen Auswerteverfahren ermittelt wird und die beiden unterschiedlichen Meßergebnisse miteinander kombiniert werden, zur Ermittlung von Korrekturgrößen, dadurch gekennzeichnet, dass beide Auswerteverfahren auf die Ausgangssignale jeweils eines Durchsatzmeßelements zurückgreifen, und beide Verfahren unterschiedlich auf Störeffekte reagieren, so daß aus dem Vergleich der beiden Signale auf die Art und/oder die Größenordnung von auftretenden Störeffekten geschlossen wird.
2. Verfahren und/oder Vorrichtung zur Ermittlung des Durchsatzes eines strömenden Mediums nach Anspruch 1, dadurch gekennzeichnet, daß der Sensor ein Heißfilm- Luftmassenmesser ist oder beide Sensoren Heißfilm- Luftmassenmesser sind, und beide Auswerteverfahren voraussetzen, dass der Heißfilm jeweils auf konstante Temperatur geregelt wird.
3. Verfahren und/oder Vorrichtung zur Ermittlung des Durchsatzes eines strömenden Mediums, dadurch gekennzeichnet, daß beim ersten Auswerteverfahren die benötigte Heizleistung gemessen wird.
4. Verfahren und/oder Vorrichtung zur Ermittlung des Durchsatzes eines strömenden Mediums nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß beim zweiten Auswerteverfahren ein Temperaturprofil ermittelt wird.
5. Verfahren und Vorrichtung zur Ermittlung des Durchsatzes eines strömenden Mediums nach Anspruch 4, dadurch gekennzeichnet, daß die Temperaturdifferenz zwischen einem bezogen auf die Richtung des strömenden Mediums stromaufwärts und einem stromabwärts vom Heizbereich liegenden Temperatursensor ausgewertet wird.
6. Verfahren und Vorrichtung zur Ermittlung des Durchsatzes eines strömenden Mediums nach Anspruch 4, dadurch gekennzeichnet, daß die beiden Temperatursensoren temperaturabhängige Widerstände sind, die in einer Brückenschaltung liegen und daß die sich in Folge der herrschenden Temperaturdifferenz einstellende Brückenspannung als Meßsignal ausgewertet wird
EP01271494A 2000-12-21 2001-12-07 Verfahren und vorrichtung zur ermittlung des durchsatzes eines strömenden mediums Expired - Lifetime EP1356198B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10063752 2000-12-21
DE10063752A DE10063752A1 (de) 2000-12-21 2000-12-21 Verfahren und Vorrichtung zur Ermittlung des Durchsatzes eines strömenden Mediums
PCT/DE2001/004624 WO2002050412A1 (de) 2000-12-21 2001-12-07 Verfahren und vorrichtung zur ermittlung des durchsatzes eines strömenden mediums

Publications (2)

Publication Number Publication Date
EP1356198A1 true EP1356198A1 (de) 2003-10-29
EP1356198B1 EP1356198B1 (de) 2006-03-08

Family

ID=7668106

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01271494A Expired - Lifetime EP1356198B1 (de) 2000-12-21 2001-12-07 Verfahren und vorrichtung zur ermittlung des durchsatzes eines strömenden mediums

Country Status (7)

Country Link
US (1) US7096723B2 (de)
EP (1) EP1356198B1 (de)
JP (1) JP2004516465A (de)
KR (1) KR20020081337A (de)
CN (1) CN1283917C (de)
DE (2) DE10063752A1 (de)
WO (1) WO2002050412A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10163751A1 (de) * 2001-12-27 2003-07-17 Bosch Gmbh Robert Verfahren zum Betreiben einer Brennkraftmaschine
JP3964347B2 (ja) * 2003-04-18 2007-08-22 株式会社ケーヒン 内燃機関の吸気装置
JP2006242748A (ja) * 2005-03-03 2006-09-14 Hitachi Ltd 発熱抵抗体式空気流量測定装置およびその計測誤差補正方法
CN100491931C (zh) * 2005-04-14 2009-05-27 中国科学院电工研究所 一种流量检测装置
DE102006010710B4 (de) * 2006-03-08 2009-03-19 Audi Ag Verfahren zur Luftmassenermittlung bei Brennkraftmaschinen
JP4202400B1 (ja) * 2007-07-27 2008-12-24 三菱重工業株式会社 き裂進展予測方法及びプログラム
DE102009000067A1 (de) * 2009-01-08 2010-08-26 Innovative Sensor Technology Ist Ag Vorrichtung zur Bestimmung und/oder Überwachung eines Massedurchflusses und Vorrichtung zur Bestimmung und/oder Überwachung einer Anlagerung einer Substanz
DE102010030952B4 (de) * 2010-07-05 2022-05-25 Innovative Sensor Technology Ist Ag Vorrichtung zur Bestimmung und/oder Überwachung eines Volumendurchflusses und/oder einer Durchflussgeschwindigkeit
JP2012207925A (ja) * 2011-03-29 2012-10-25 Denso Corp 熱式空気流量計
DE102013102398B4 (de) 2013-03-11 2024-05-02 Innovative Sensor Technology Ist Ag Thermischer Strömungssensor zur Bestimmung der Zusammensetzung eines Gasgemisches, sowie dessen Strömungsgeschwindigkeit
CN105181544A (zh) * 2015-09-21 2015-12-23 劲天环境科技(上海)有限公司 一种空气中颗粒物浓度的检测装置及检测方法
DE102019110876A1 (de) * 2019-04-26 2020-10-29 Endress+Hauser Flowtec Ag Verfahren zum Betreiben einer Sonde eines thermischen Durchflussmessgeräts und ein thermisches Durchflussmessgerät mit einer solchen Sonde
JP7268533B2 (ja) * 2019-08-23 2023-05-08 トヨタ自動車株式会社 エンジン制御装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4043196A (en) * 1976-02-09 1977-08-23 Technology Incorporated Method and apparatus for effecting fluid flow measurement in a single sensor
KR940002956B1 (ko) * 1987-09-29 1994-04-09 미쓰비시전기주식회사 내연기관의 공연비 제어장치
JPH0750099B2 (ja) * 1987-09-29 1995-05-31 三菱電機株式会社 内燃機関の燃料性状検出装置
DE3917908A1 (de) * 1989-06-01 1990-12-06 Siemens Ag Verfahren zum bestimmen der luftfuellung des arbeitsvolumen einer fremdgezuendeten kolbenbrennkraftmaschine und zum bestimmen der kraftstoffeinleitmasse
DE3925377A1 (de) 1989-08-01 1991-02-07 Bosch Gmbh Robert Verfahren zur messfehlerkorrektur eines heissfilm-luftmassenmessers
GB2270165B (en) * 1992-08-28 1995-11-08 Delco Electronics Corp Method and apparatus for determining air pressure in an engine
US5435180A (en) * 1992-10-07 1995-07-25 Hitachi, Ltd. Method and system for measuring air flow rate
JP3141762B2 (ja) * 1995-12-13 2001-03-05 株式会社日立製作所 空気流量計測装置及び空気流量計測方法
DE19740916B4 (de) 1997-04-01 2007-05-10 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
US6109249A (en) * 1997-09-17 2000-08-29 Robert Bosch Gmbh System for operating an internal combustion engine
US6370935B1 (en) * 1998-10-16 2002-04-16 Cummins, Inc. On-line self-calibration of mass airflow sensors in reciprocating engines
DE19927674B4 (de) * 1999-06-17 2010-09-02 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE19933665A1 (de) * 1999-07-17 2001-01-18 Bosch Gmbh Robert Vorrichtung zur Erfassung einer pulsierenden Größe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0250412A1 *

Also Published As

Publication number Publication date
CN1411534A (zh) 2003-04-16
DE50109150D1 (de) 2006-05-04
CN1283917C (zh) 2006-11-08
US20030177843A1 (en) 2003-09-25
JP2004516465A (ja) 2004-06-03
WO2002050412A1 (de) 2002-06-27
KR20020081337A (ko) 2002-10-26
US7096723B2 (en) 2006-08-29
EP1356198B1 (de) 2006-03-08
DE10063752A1 (de) 2002-06-27

Similar Documents

Publication Publication Date Title
EP1356198B1 (de) Verfahren und vorrichtung zur ermittlung des durchsatzes eines strömenden mediums
DE102007023840B4 (de) Thermischer Massendurchflussmesser und Verfahren zu dessen Betrieb
DE102015121298B4 (de) Luftmengenmesser
DE102013218271B4 (de) Thermisches Luftflussmeter
DE102005049870B4 (de) Verfahren und Vorrichtung zur Erkennung eines fehlerhaften Anschlusses eines Differenzdrucksensors
DE10154521B4 (de) Verfahren zum Berechnen einer Einlassluftmenge und Vorrichtung, die das Verfahren durchführt
EP2758755B1 (de) Verfahren zur erfassung einer strömungseigenschaft eines strömenden fluiden mediums
WO2007065785A1 (de) Vorrichtung zur bestimmung eines massenstroms
EP0700508B1 (de) Verfahren zur korrektur des ausgangssignales eines luftmassenmessers
DE10206767A1 (de) Verfharen zur Ermittlung des Atmosphärendruckes auf der Basis des Druckes in der Ansaugleitung einer Brennkraftmaschine
EP1099939A2 (de) Anordnung zur Abgasregelung mit einem Massensensor
EP1821009A1 (de) Prüfvorrichtung zur Erfassung der Dampfemission an wenigstens einer Leckagestelle, vorzugsweise bei Gleitringdichtungen, insbesondere im automotiven Bereich
DE102010030952B4 (de) Vorrichtung zur Bestimmung und/oder Überwachung eines Volumendurchflusses und/oder einer Durchflussgeschwindigkeit
DE102004026124B4 (de) System und Verfahren zur Bestimmung der Masse an Motoransaugluft mit Rückflusskompensation
DE102017219851A1 (de) Thermischer Luftstrommesser
EP1038160B1 (de) Verfahren und vorrichtung zur selbstkompensierenden messung des volumendurchflusses von gasen
DE4342481C2 (de) Verfahren zum Messen der angesaugten Luftmasse
DE102012219290A1 (de) Verfahren zum Betreiben eines Luftmassenmessers
DE102021100561B4 (de) Durchflussmesser
DE19633680B4 (de) Einrichtung zur Korrektur eines Meßfehlers
DE4009922C2 (de) Verfahren und Anordnung zur Ermittlung der tatsächlichen Luftdichte des Ansaug-Luftmassenstroms einer Brennkraftmaschine
DE10322012A1 (de) Durchflusssensor mit verbessertem Betriebsverhalten
DE2247090A1 (de) Kraftstoffeinspritzanlage fuer brennkraftmaschinen
DE112004002987B4 (de) Verfahren und Vorrichtung zum Überwachen der Kraftstoffeinspritzung
DE102006038596A1 (de) Messvorrichtung zur Erfassung eines Gasmassenstroms

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030721

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KLEINHANS, JOSEF

Inventor name: HECHT, HANS

Inventor name: KONZELMANN, UWE

Inventor name: KIENZLE, WOLFGANG

Inventor name: TANK, DIETER

Inventor name: MUELLER, WOLFGANG-MICHAEL

Inventor name: STROHRMANN, MANFRED

Inventor name: HAAG, AXEL-WERNER

17Q First examination report despatched

Effective date: 20040212

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KLEINHANS, JOSEF

Inventor name: HAAG, AXEL-WERNER

Inventor name: STROHRMANN, MANFRED

Inventor name: MUELLER, WOLFGANG-MICHAEL

Inventor name: TANK, DIETER

Inventor name: KONZELMANN, UWE

Inventor name: KIENZLE, WOLFGANG

Inventor name: HECHT, HANS

REF Corresponds to:

Ref document number: 50109150

Country of ref document: DE

Date of ref document: 20060504

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060621

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061211

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160224

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20161222

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20161221

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50109150

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171207

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171207