EP1354248B1 - Procede pour la simulation de systemes mecatroniques - Google Patents

Procede pour la simulation de systemes mecatroniques Download PDF

Info

Publication number
EP1354248B1
EP1354248B1 EP01990371A EP01990371A EP1354248B1 EP 1354248 B1 EP1354248 B1 EP 1354248B1 EP 01990371 A EP01990371 A EP 01990371A EP 01990371 A EP01990371 A EP 01990371A EP 1354248 B1 EP1354248 B1 EP 1354248B1
Authority
EP
European Patent Office
Prior art keywords
simulating
time
modal
forces
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01990371A
Other languages
German (de)
English (en)
Other versions
EP1354248A1 (fr
Inventor
Carsten Hamm
Michael Louis
Wolfgang Papiernik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10137909A external-priority patent/DE10137909A1/de
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1354248A1 publication Critical patent/EP1354248A1/fr
Application granted granted Critical
Publication of EP1354248B1 publication Critical patent/EP1354248B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric

Definitions

  • the invention relates to a method for simulating mechatronic systems.
  • Such mechatronic systems have at least one mechanical and electrotechnical / electronic component, which combine in terms of construction, structure and function to form a single system. This fact is expressed by the term "mechatronic".
  • M is the mass matrix
  • D the damping matrix
  • C is the stiffness matrix
  • F ⁇ the nodal forces
  • u the node displacement vector
  • t the time.
  • This calculation rule is integrated into such a finite element model in a manner known to those skilled in the art.
  • Object of the present invention is therefore to provide a method of the type mentioned, which provides a higher simulation accuracy with respect to the previously described, known methods lower computational complexity.
  • the transformation of the fundamental equation of motion to linear differential equations of the first order takes place in the modal space. This ensures that predefinable eigenmodes can be selected or deselected before time discretization takes place.
  • actuators with any transfer function can be used.
  • the fundamental equation of motion (1) described at the outset is initially transformed according to the invention to ordinary standard equation of state, in particular to first order linear differential equations, preferably in modal space. These are then time-discretized so that only algebraic difference equations need to be solved to determine the time behavior of the system instead of the differential equations, which is easier and more effectively possible with today's computer systems.
  • the time grid that is to say the calculation of the difference equations, is only to be updated in the sampling grid of the control processor. This is the case because only the values in the computer clock of a computer executing the calculation are of importance.
  • the calculation step size can be reduced from typically 1 ... 5 msec to 100 ⁇ sec, depending on the required accuracy.
  • the time saving factor over the known methods outlined above is more than 1000.
  • modal coordinates and their time derivatives are suitably used. Given a coordinate transformation of a finite element system given in the form of the fundamental equation of motion (1) with the matrix of eigenvectors X and the generalized modal coordinates q ⁇ before, the system can be transformed into the so-called "modal space”.
  • M ⁇ X ' ⁇ M ⁇ X the modal mass matrix
  • D ⁇ X ' ⁇ D ⁇ X the modal damping matrix
  • X is the matrix of the eigenvectors of the undamped system
  • q ⁇ the generalized modal coordinates
  • u ⁇ X ⁇ q ⁇ the nodal shifts
  • Q ⁇ X ' ⁇ F ⁇ the generalized modal forces.
  • the description of the state in the modal space also has the advantage that specific, specifiable eigenmodes (de) can be selected before the time discretization takes place.
  • FIG. 1 shows a finite element model of a simple mechanical bridge B on which a carriage S can be moved in the x-direction x.
  • a sketched coordinate system shows the spatial orientation in x-direction x, y-direction y and z-direction z.
  • exemplary connection nodes 1 to 4 a measuring node 5 and a force introduction node 6 are shown, which serve for the simulation.
  • the stiffness at the connection nodes is therefore equal to 0 in the x-direction x, while in the y- and z-direction y, z is predetermined by the rigidity of the guides. Volume elements are used to represent the structural behavior.
  • the system order after the discretization according to the calculation rules (7) and (8) is also of order 43.
  • the simulation duration of a step response according to the method according to the invention is, for example, 130 msec with the program 'Matlab / Simulink / Realtime Workshop'.
  • the simulation of the same process in a conventional manner takes, with exemplary use of the software instrument PERMAS '11 min., I. the simulation time can be shortened by the factor 5000 by application of the present patent application.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Complex Calculations (AREA)
  • Feedback Control In General (AREA)

Claims (6)

  1. Procédé de simulation d'un système mécatronique, le système mécatronique comportant au moins un composant mécanique et électrotechnique/électronique, à partir d'une équation de mouvement de base. M u ¨ ( t ) + D u ˙ ( t ) + C u ( t ) = F ( t )
    Figure imgb0058
    pour modéliser le système, où
    M désigne la matrice d'inertie,
    D désigne la matrice d'amortissement
    C désigne la matrice de raideur,
    F
    Figure imgb0059
    désigne les forces aux points nodaux,
    u
    Figure imgb0060
    désigne et le vecteur de translation nodale et
    t désigne le temps
    caractérisé par les étapes opératoires suivantes :
    - transformation de l'équation de mouvement de base en des équations différentielles linéaires de premier ordre,
    - autre transformation des équations différentielles linéaires en des équations d'état à valeurs discrètes dans le temps,
    - détermination du comportement dans le temps du système par actualisation des équations différentielles algébriques résultantes dans la trame d'analyse d'un processeur de régulation associé.
  2. Procédé de simulation d'un système mécatronique selon la revendication 1, caractérisé en ce que la transformation de l'équation de mouvement de base en équations différentielles linéaires de premier ordre est effectuée dans l'espace modal.
  3. Procédé de simulation d'un système mécatronique selon la revendication 1 ou 2, caractérisé en ce que, pour simuler des retards des forces aux points nodaux, des équations différentielles correspondantes sont ajoutées et prises en compte dans la détermination du comportement dans le temps du système.
  4. Procédé de simulation d'un système mécatronique selon la revendication 3, caractérisé en ce que, dans le système, des forces non retardées supplémentaires ( F D )
    Figure imgb0061
    sont prises en compte dans la détermination du comportement dans le temps du système en scindant le vecteur force ( F )
    Figure imgb0062
    en une partie forces retardées ( F R )
    Figure imgb0063
    et une partie forces non retardées ( F D ) .
    Figure imgb0064
  5. Procédé de simulation d'un système mécatronique selon la revendication 3 ou 4, caractérisé en ce que les équations différentielles destinées à la simulation de retards des forces aux points nodaux ( F )
    Figure imgb0065
    sont décrites avec un élément de régulation PT1 comme actionneur, la force de consigne ( F W )
    Figure imgb0066
    représentant la grandeur de commande de ce régulateur.
  6. Procédé de simulation d'un système mécatronique selon l'une des revendications précédentes 2 à 5, caractérisé en ce que des coordonnées modales et leurs dérivations par rapport au temps servent à décrire la partie mécanique du système mécatronique, lesquelles coordonnées et dérivations permettant d'obtenir l'équation de mouvement de base M q ¨ ( t ) + D q ˙ ( t ) + C q ( t ) = Q ( t )
    Figure imgb0067

    = X'·M·X désigne la matrice d'inertie modale
    = X'·D·X désigne la matrice d'amortissement modale
    = X'·C·X désigne la matrice de raideur modale
    X désigne la matrice des vecteurs propres du système non amorti,
    q
    Figure imgb0068
    désigne les coordonnées modales généralisées,
    u = X q
    Figure imgb0069
    désigne les translations de point modal
    Q = X F
    Figure imgb0070
    désigne les forces modales généralisées.
EP01990371A 2001-01-18 2001-12-21 Procede pour la simulation de systemes mecatroniques Expired - Lifetime EP1354248B1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10102313 2001-01-18
DE10102313 2001-01-18
DE10137909 2001-08-02
DE10137909A DE10137909A1 (de) 2001-01-18 2001-08-02 Verfahren zur Simulation mechatronischer Systeme
PCT/DE2001/004890 WO2002057857A1 (fr) 2001-01-18 2001-12-21 Procede pour la simulation de systemes mecatroniques

Publications (2)

Publication Number Publication Date
EP1354248A1 EP1354248A1 (fr) 2003-10-22
EP1354248B1 true EP1354248B1 (fr) 2006-06-21

Family

ID=26008281

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01990371A Expired - Lifetime EP1354248B1 (fr) 2001-01-18 2001-12-21 Procede pour la simulation de systemes mecatroniques

Country Status (5)

Country Link
US (1) US7236913B2 (fr)
EP (1) EP1354248B1 (fr)
JP (1) JP4612989B2 (fr)
DE (1) DE50110293D1 (fr)
WO (1) WO2002057857A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2934393B1 (fr) * 2008-07-25 2010-09-10 Commissariat Energie Atomique Procede de realisation d'un systeme mecatronique flexible
US8255197B2 (en) * 2008-09-30 2012-08-28 Rockwell Automation Technologies, Inc. Simulation of tuning effects for a servo driven mechatronic system
EP2988181B1 (fr) 2014-08-19 2019-07-03 Siemens Aktiengesellschaft Dispositif de réglage à compensation d'erreur adaptative
EP3115857A1 (fr) 2015-07-09 2017-01-11 Siemens Aktiengesellschaft Procédé de détermination de trajectoire pour mouvements de temps mort
EP3131202A1 (fr) 2015-08-11 2017-02-15 Siemens Aktiengesellschaft Procede d'inversion de filtre pour une commande de machine
EP3136192A1 (fr) 2015-08-24 2017-03-01 Siemens Aktiengesellschaft Procede de commande de mouvement d'un outil et dispositif de commande
EP3144754A1 (fr) 2015-09-17 2017-03-22 Siemens Aktiengesellschaft Amortissement des oscillations de charge sans moyen de mesure supplementaire cote charge
CN111395173B (zh) * 2020-03-23 2021-06-29 东南大学 一种基于bim的钢桁拱桥螺栓连接施工精度控制方法
CN115438513B (zh) * 2022-11-07 2023-03-31 人工智能与数字经济广东省实验室(广州) 分数阶阻尼减震结构抗震设计的分析方法、系统、设备和介质

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4881172A (en) 1986-12-22 1989-11-14 Lord Corporation Observer control means for suspension systems or the like
US4984173A (en) * 1989-06-09 1991-01-08 General Electric Company System for aligning a rotating line-shaft
JP2730195B2 (ja) * 1989-06-30 1998-03-25 三菱電機株式会社 結合振動特性解析装置
JPH03100801A (ja) * 1989-09-14 1991-04-25 Toshiba Corp 制御装置
US5422834A (en) * 1991-07-02 1995-06-06 Hitachi, Ltd. Simulation method and system for simulating drive mechanism
DE4207541B4 (de) * 1992-03-10 2006-04-20 Robert Bosch Gmbh System zur Steuerung einer Brennkraftmaschine
US5590261A (en) * 1993-05-07 1996-12-31 Massachusetts Institute Of Technology Finite-element method for image alignment and morphing
US6427127B1 (en) * 1998-07-16 2002-07-30 Micro Motion, Inc. Vibrating conduit process parameter sensors, operating methods and computer program products utilizing complex modal estimation

Also Published As

Publication number Publication date
US20040049368A1 (en) 2004-03-11
JP2004523824A (ja) 2004-08-05
JP4612989B2 (ja) 2011-01-12
WO2002057857A1 (fr) 2002-07-25
DE50110293D1 (de) 2006-08-03
US7236913B2 (en) 2007-06-26
EP1354248A1 (fr) 2003-10-22

Similar Documents

Publication Publication Date Title
DE102008048479B4 (de) Verfahren und Systeme der technischen Analyse unter Verwendung eines hybriden Ansatzes mit FEM und adaptiver SPH
DE102008048481A1 (de) Systeme und Verfahren zur Begrenzung der Kontakteindringung in einer numerischen Simulation einer nicht linearen Antwort einer Struktur
EP1354248B1 (fr) Procede pour la simulation de systemes mecatroniques
EP2442248B1 (fr) Méthode de couplage pour la co-simulation non-itérative
DE112013002018T5 (de) Echtzeithaltungs- und Bewegungsvorhersage bei der Ausführung von Betriebsaufgaben
EP2851815A1 (fr) Dispositif de test pour le test en temps réel d'un appareil de commande virtuel
EP3188053A1 (fr) Procede de configuration d'une co-simulation pour systeme entier
DE102008048480A1 (de) Systeme und Verfahren zur Auswahl einer CAE-Analyse-Lösungsvorrichtung mit einer passenden numerischen Genauigkeit in jeder einer Serie von hierarchisch zueinander in Beziehung stehenden technischen Simulationen
EP4320542A1 (fr) Système pour déterminer des états de contrainte internes d'un composant mécanique
EP2899652B1 (fr) Procédé d'optimisation de l'utilisation de modules logiques programmables dans des appareils de commande pour véhicules
DE102005002188B4 (de) Breitbandsystemmodelle
DE10137909A1 (de) Verfahren zur Simulation mechatronischer Systeme
DE102012016610B4 (de) Echtzeit-Schaltungssimulation
DE69911066T2 (de) Verfahren zum modellieren der formung eines anisotropischen materials
EP3521949A1 (fr) Dispositif de simulation d'une machine ou d'une installation commandées ainsi que procédé
DE69031661T2 (de) Simulation von Schaltungen mit Analogteilen und Digitalteilen
WO2024149730A1 (fr) Procédé et dispositif de calcul de forces se produisant dans un système mems, et système mems
DE10064688A1 (de) Verfahren zum bedarfsorientierten Erzeugen einzelner Zufallszahlen einer Folge von Zufallszahlen eines 1/f-Rauschens
EP1343061A1 (fr) Procédé de simulation d 'un système technique et simulateur
DE19711484C1 (de) Verfahren zur Abbildung eines technischen Systems durch einen Rechner
AT508852B1 (de) Verfahren zum umschalten von heterogenen simulationsmodellen zur laufzeit
WO2024149731A1 (fr) Procédé et dispositif de calcul de décalages de fréquence de fréquences angulaires se produisant dans un système mems, et système mems
EP4009216A1 (fr) Procédé de modélisation de collisions entre deux véhicules
DE10331431A1 (de) Datenkompression von Simulationsergebnissen
DE102020118626A1 (de) Verfahren und Vorrichtungen zur Berechnung eines Zustands eines elektromechanischen Objekts

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030530

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PAPIERNIK, WOLFGANG

Inventor name: LOUIS, MICHAEL

Inventor name: HAMM, CARSTEN

17Q First examination report despatched

Effective date: 20040621

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060712

REF Corresponds to:

Ref document number: 50110293

Country of ref document: DE

Date of ref document: 20060803

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070322

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20151209

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20151214

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160219

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50110293

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161221

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161221