EP1352254A2 - Vorrichtung, strommesser und kraftfahrzeug - Google Patents

Vorrichtung, strommesser und kraftfahrzeug

Info

Publication number
EP1352254A2
EP1352254A2 EP01984693A EP01984693A EP1352254A2 EP 1352254 A2 EP1352254 A2 EP 1352254A2 EP 01984693 A EP01984693 A EP 01984693A EP 01984693 A EP01984693 A EP 01984693A EP 1352254 A2 EP1352254 A2 EP 1352254A2
Authority
EP
European Patent Office
Prior art keywords
section
magnetic field
conductor
sensor means
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01984693A
Other languages
English (en)
French (fr)
Inventor
M. Henning Hauenstein
Andreas Stratmann
Stephan Ernst
Wolfgang Feiler
Qu Ning
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1352254A2 publication Critical patent/EP1352254A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/207Constructional details independent of the type of device used

Definitions

  • magnetic field sensors for example Hall sensors, lateral magnetotransistors, magnetoresistive resistors, etc., which are able to precisely measure the magnetic field effect of a current-carrying conductor.
  • a known measure to avoid such difficulties is shielding the magnetic field sensor from interfering magnetic fields and the concentration of the magnetic field to be measured by a so-called magnetic circuit. Shielding for highly sensitive sensors is very complex and expensive. Magnetic circuits are also expensive and also require a lot of mounting space, and their assembly is also difficult. Another disadvantage of magnetic circuits is the possibility that they tend to saturate and thus introduce a non-linearity between current strength and magnetic field strength in the measurement.
  • the device according to the invention, the current meter according to the invention and the motor vehicle according to the invention with the features of the independent claims have the advantage that the measurement of the useful magnetic field is less affected by interference magnetic fields. This enables interference field suppression. It is also possible to do without magnetic shielding while reducing the dependence on inhomogeneous interference fields. As a result, the effort for shielding measures can be reduced or eliminated, which results in a significant cost advantage.
  • a third sensor means is provided, and that the first sensor means and the third sensor means are provided at locations at which the useful magnetic field is essentially the same, at least in terms of amount. This makes it possible that a possible positioning inaccuracy of the main sensors can be detected and electrically compensated for by a suitable signal evaluation, so that the assembly and adjustment process can be simplified. Furthermore, this method can also be used for offset compensation of the sensor means.
  • the second sensor means is provided in the middle between the first and the third sensor means. This makes it even easier to detect or compensate for the positioning accuracy of the main sensors.
  • the conductor cross-section is round. As a result, the magnetic field caused by the current flow in the conductor outside the conductor is only slightly dependent on the frequency of the electrical current.
  • a magnetic field sensor in particular a Hall sensor, a lateral magnetotransistor or a magnetoresistive resistor is provided as the sensor means. This enables easy and inexpensive current sensing via the magnetic field caused by the current flow, sensor means provided in this way also taking up little space.
  • FIG. 1 shows a perspective view of a first embodiment of a conductor arrangement
  • Figure 2 shows the first embodiment of the ladder arrangement
  • Figure 3 shows the arrangement of the sensor means in the first
  • Figure 4 shows the arrangement of the sensor means in a second
  • Figure 5 is a perspective view of the second
  • Figure 6 is a side view of the second embodiment of the
  • Figure 7 is a front view of the second embodiment of the
  • a conductor arrangement 1 or a conductor 1 is shown in perspective for a first embodiment.
  • the conductor 1 has a cross section 2 which is changed in the region of a slot 12.
  • the cross section which is decisive for the current flow is limited only to a first section 10 and a second section 20.
  • FIG. 2 shows the conductor 1 in a front view, again showing the first section 10 and the second section 20 and the slot 12.
  • a section line AA is shown in FIG. 2 for the conductor 1, the section line AA in the region of the first and second section 10, 20 runs.
  • FIG. 3 shows the first embodiment of the conductor 1 as a sectional view along the section line AA 1 from FIG. 2.
  • the first section 10 and the second section 20 are visible.
  • the first section 10 and the second section 20 are marked with a cross in the interior of the sections 10, 20, which is intended to clarify that the current direction runs into the plane of the drawing. This results in magnetic fields around the first section 10 and the second section 20, for each of which a magnetic field line is depicted.
  • a first magnetic field line 11 is drawn around the first section 10 and a second magnetic field line 21 around the second section 20.
  • the course of the respective magnetic fields around the sections 10, 20 is shown only schematically in FIG. Any shape other than a round shape for the course of the magnetic field lines because of the non-round cross section of the conductor 1 in the region of the sections 10, 20 was neglected in FIG. 3. Both magnetic field lines 11, 21 are oriented clockwise.
  • a first sensor means 15, a second sensor means 16 and a third sensor means 17 are shown in FIG.
  • the first sensor means 15 and the third sensor means 17 are arranged symmetrically to the second sensor means 16.
  • the three sensor means 15, 16, 17 are arranged essentially along a straight line.
  • the magnetic fields caused by the current flow around the sections 10, 20 each result in a useful magnetic field through superimposition.
  • the second sensor 16 is arranged such that the useful magnetic field just disappears at its location.
  • the first sensor means 15 and the third sensor means 17 are arranged such that the useful magnetic field is essentially of the same magnitude at their location. So it is possible to use the second sensor means 16 to measure only any magnetic interference field, while the first sensor means 15 and the third sensor means 17 each measure the useful magnetic field.
  • the interference magnetic field can be suppressed or calculated out, for example by subtracting the electrical measurement signals.
  • the first and third sensor means 15, 17 are also referred to as main sensors, and the second sensor means 16 is also referred to as a secondary sensor.
  • the difference in the useful signals of the two main sensors 15, 17 can be used to electronically compensate for any positioning inaccuracies of these sensors 15, 17.
  • it can be compensated electronically by evaluation that currents of different strengths flow in different sections 10, 20 due to manufacturing tolerances, in particular different cross sections. This makes the conductor 1 easier and cheaper to manufacture.
  • the working point of the main sensors which are provided, for example, as lateral magnetotransistors, is adapted for each of the main sensors in such a way that the sensitivity of the two sensors is different and thus the
  • the three or more sensors can also be arranged on a single, somewhat more extensive ASIC. Furthermore, it is provided to provide an evaluation circuit, for example on an ASIC, for the sensor means 15, 16, 17. Furthermore, it is provided to integrate the arrangement according to the invention in a housing, for example by casting the conductor 1 together with the sensors 15, 16, 17 and the evaluation circuit, which is not shown, by means of a casting compound. From such a component or ammeter, only the signal lines for the control and evaluation of the evaluation electronics and the supply and discharge lines of the conductor 1 lead out.
  • such a housing is particularly intended to contain magnetically active substances which have a further shielding effect for interference magnetic fields.
  • the use of such an ammeter in a motor vehicle offers a particularly cost-effective, simple and space-saving option for carrying out different currents on a wide range of sizes in spite of the strong electromagnetic interference field occurring in and around a motor vehicle.
  • FIG. 4 shows a second embodiment of a conductor 1 in which the sensor arrangement according to the invention is implemented.
  • a third section 30 and a fourth section 40 of the conductor 1 are provided in addition to a first section 10 and a second section 20, a third section 30 and a fourth section 40 of the conductor 1 are provided.
  • the first, second, third and fourth sections 10, 20, 30, 40 are in particular provided as straight conductor pieces which run parallel to one another and whose center points lie approximately in one plane with respect to their longitudinal axis.
  • a cross section of such a second embodiment of the conductor 1 in a plane perpendicular to the sections 10, 20, 30, 40 is shown in FIG.
  • a first current direction is defined by the current direction in the first section 10 and in the fourth section 40
  • a second current direction is defined by the current direction in the second section 20 and in the third section 30 and that the first current direction and the second current direction are oriented antiparallel.
  • the center points or centers of the sections essentially form a rectangle or a square in the cross-sectional plane.
  • the corresponding center of the first section 10 and the corresponding center of the fourth section 40 are diagonally opposite.
  • the first sensor means 15 is provided between the first section 10 and the third section 30, the third sensor means 17 is provided between the second section 20 and the fourth section 40, and the second sensor means 16 is in the middle between the first section 10 , the second section 20, the third section 30 and the fourth section 40, that is to say in the center of the arrangement.
  • a vanishing useful magnetic field is again provided at the location of the second sensor means 16.
  • FIG. 4 also shows the local magnetic fields around sections 10, 20, 30, 40. Representing this, a first magnetic field line 11 is shown around the first section 10, which is oriented clockwise. This correlates with the fact that the current direction in the first section 10 is oriented into the plane of the drawing, which is represented by a cross within the first section 10.
  • a fourth magnetic field line 41 is shown around the fourth section 40, which is likewise oriented clockwise and which also correlates with the fact that the current direction in the fourth section 4 is oriented into the plane of the drawing, which is represented by a cross in the fourth section 40.
  • a second magnetic field line 21 is shown around the second section 20, which is oriented counterclockwise to indicate that the current direction in the second section 20 is oriented out of the plane of the drawing, which is represented by a point in the second section 20.
  • a third magnetic field line 31 is shown around the third section 30, which is also oriented counterclockwise and indicates the current direction in the third section 30 from the plane of the drawing through a point in the third section 30.
  • the sensor means 15, 16, 17 are mounted on a mounting plate 50 in FIG. 4, just as in FIG. 3.
  • FIGS. 5, 6 and 7 show the second embodiment of the electrical conductor arrangement 1 or of the electrical conductor
  • the conductor 1 comprises the first section 10, the second section 20, the third section 30 and the fourth section 40.
  • the conductor 1 further comprises a first conductor region 100, which is provided essentially in the shape of a horseshoe.
  • the first conductor area 100 comprises the first section 10 and the second section 20.
  • the horseshoe shape in the first conductor area 100 is caused by the following shape: the first conductor area 100 comprises, in addition to the first section 10 and the second section 20, a connecting section which is essentially semicircular is provided and at the ends of the first section 10 and the second section
  • the electrical conductor 1 comprises four ends of two horseshoe shapes, of which, according to the invention, two ends of different conductor areas 100, 200 are connected by means of a connecting piece 150 such that the two conductor areas 100, 200 are connected and the other two ends of the horseshoe shapes formed by the conductor areas 100, 200 serve for supplying and discharging the electrical current.
  • the intermediate piece 150 is in this case likewise also provided essentially in a semicircular shape.
  • the two conductor areas 100, 200 are arranged next to one another and are aligned identically.
  • a round cross section is provided in particular as the conductor cross section, but in principle rectangular or square cross sections are also conceivable here.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measuring Magnetic Variables (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

Es wird eine Vorrichtung, ein Strommesser und ein Kraftfahrzeug vorgeschlagen, wobei zur Messung der elektrischen Stromstärke in einem Leiter (1) ein erster Abschnitt (10) und ein zweiter Abschnitt (20) des Leiters (1) vorgesehen ist, wobei ein erstes Sensormittel (15) und ein zweites Sensormittel (16) vorgesehen ist, wobei der Stromfluß im ersten Abschnitt (10) und im zweiten Abschnitt (20) ein Nutzmagnetfeld erzeugt, wobei das erste Sensormittel (15) zur Messung des Nutzmagnetfeldes vorgesehen ist, wobei das zweite Sensormittel (16) an einem Ort vorgesehen ist, an dem das Nutzmagnetfeld verschwindet, wobei das zweite Sensormittel (16) zur Messung eines Störmagnetfeldes vorgesehen ist und wobei die Messung des Nutzmagnetfeldes durch die Messung des Störmagnetfeldes korrigierbar ist.

Description

Vorrichtung. Strommesser und Kraftfahrzeug
Stand der Technik
Die genaue Erfassung der Stromstärke in einem zumindest zeitweise stromdurchflossenen Leiter ist in vielen Situationen erforderlich. Beispiele hierfür sind im Automobilbereich beispielsweise die Ermittlung elektrischer Parameter von Generatoren und elektrischen Antrieben während des Betriebs dieser Aggregate . Hierbei ist eine berührungslose, verlustarme und potentialfreie Messung des elektrischen Stromes notwendig.
Stand der Technik sind derzeit sogenannte Shunt-Widerstände zur Messung von Strömen. Deren, insbesondere bei hohen Strömen, hohe Verlustleistung und ihre zusätzliche Eigeninduktivität sind unerwünscht. Darüber hinaus ist keine Potentialfreiheit zwischen Messkreis und Hauptstromkreis gewährleistet .
Bekannt sind weiterhin Magnetfeldsensoren, z.B. Hall-Sensor, lateraler Magnetotransistor, magnetoresistive Widerstände, usw., die in der Lage sind die Magnetfeldwirkung eines stromdurchflossenen Leiters genau zu messen. Vorteilhaft ist hierbei insbesondere die Potentialtrennung zwischen dem Messstromkreis und dem HauptStromkreis, die geringe bzw. gar nicht vorhandene Verlustleistung und die Abwesenheit von den zu messenden Strom beeinflussenden Größen, wie beispielsweise induktive Rückkopplung oder Widerstand.
Problematisch bei der Verwendung von Magnetfeldsensoren zur Strommessung ist jedoch die Existenz von Stör- bzw. Streufeldern von benachbart zu dem zu messenden Stromleiter angeordneten weiteren Stromleitern bzw. durch in der Umgebung von Generatoren vorhandenen rotierenden Magnetfeldern. Schwierig ist daher die Diskriminierung zwischen dem mit Magnetfeldsensor zu messenden Magnetfeld und parasitären Streufeldern der Umgebung.
Eine bekannte Maßnahme zur Vermeidung solcher Schwierigkeiten ist die Abschirmung des Magnetfeldsensors von störenden Magnetfeldern und die Konzentration des zu messenden Magnetfeldes durch einen sogenannten Magnetkreis. Abschirmung für hochsensitive Sensoren ist jedoch sehr aufwendig und teuer. Magnetkreise sind ebenfalls teuer und benötigen darüber hinaus viel Anbauplatz, weiterhin ist deren Montage schwierig. Ein weiterer Nachteil von Magnetkreisen ist die Möglichkeit, dass diese zur Sättigung neigen und somit eine Nichtlinearität zwischen Stromstärke und Magnetfeldstärke in die Messung einbringen.
Vorteile der Erfindung
Die erfindungsgemäße Vorrichtung, der erfindungsgemäße Strommesser und das erfindungsgemäße Kraftfahrzeug mit den Merkmalen der nebengeordneten Ansprüche hat demgegenüber den Vorteil, dass die Messung des Nutzmagnetfeldes weniger durch Störmagnetfelder beeinträchtigt wird. Hierdurch wird eine Störfeldunterdrückung ermöglicht. Weiterhin ist es möglich, auf magnetischer Abschirmung bei gleichzeitiger Reduzierung der Abhängigkeit von inhomogenen Störfeldern zu verzichten. Dadurch kann der Aufwand für Abschirmmaßnahmen reduziert werden bzw. entfallen, was einen deutlichen Kostenvorteil zur Folge hat .
Weiterhin ist von Vorteil, dass ein drittes Sensormittel vorgesehen ist, und dass das erste Sensormittel und das dritte Sensormittel an Orten vorgesehen sind, an denen das Nutzmagnetfeld zumindest betragsmäßig im Wesentlichen gleich ist. Dadurch ist es möglich, dass durch eine geeignete Signalauswertung eine mögliche Positionierungsungenauigkeit der Hauptsensoren erfasst und elektrisch kompensiert werden kann, so dass der Montage- und Justiervorgang vereinfacht werden kann. Weiterhin kann diese Methode auch zur Offset- Kσmpensation der Sensormittel genutzt werden.
Weiterhin ist von Vorteil, dass das zweite Sensormittel in der Mitte zwischen dem ersten und dem dritten Sensormittel vorgesehen ist. Dadurch ist es noch einfacher möglich, die Positionierungsgenauigkeit der Hauptsensoren zu erfassen bzw. zu kompensieren.
Weiterhin ist es von Vorteil, dass der Leiterquerschnitt rund vorgesehen ist. Dadurch ist das durch den Stromfluß im Leiter außerhalb des Leiters hervorgerufene Magnetfeld nur wenig abhängig von der Frequenz des elektrischen Stromes .
Weiterhin ist von Vorteil, dass als Sensormittel ein Magnetfeldsensor, insbesondere ein Hall-Sensor, ein lateraler Magnetotransistor oder ein magnetoresistiver Widerstand vorgesehen ist . Dadurch ist eine leichte und kostengünstige Stromsensierung über das durch den Stromfluß hervorgerufene Magnetfeld möglich, wobei solchermaßen vorgesehene Sensormittel auch wenig Platz beanspruchen.
Zeichnung Zwei Ausführungsbeispiele der Erfindung sind in der
Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert . Es zeigen
Figur 1 eine erste Ausfuhrungsform einer Leiteranordnung in perspektivischer Darstellung,
Figur 2 die erste Ausfuhrungs orm der Leiteranordnung in
Vorderansich ,
Figur 3 die Anordnung der Sensormittel bei der ersten
Ausfuhrungsform der Leiteranordnung,
Figur 4 die Anordnung der Sensormittel bei einer zweiten
Ausfuhrungsform der Leiteranordnung,
Figur 5 eine perspektivische Darstellung der zweiten
Ausfuhrungsform der Leiter nordnung,
Figur 6 eine Seitenansicht der zweiten Ausführungsform der
Leiteranordnung und
Figur 7 eine Vorderansicht der zweiten Ausfuhrungsform der
Leiteranordnung .
Beschreibung der Ausführungsbeispiele
In Figur 1 ist eine Leiteranordnung 1 bzw. ein Leiter 1 in perspektivischer Darstellung für eine erste Ausfuhrungsform dargestellt. Der Leiter 1 weist einen Querschnitt 2 auf, der im Bereich eines Schlitzes 12 verändert ist. Im Bereich des Schlitzes 12 ist der für den Stromfluß maßgebende Querschnitt lediglich auf einen ersten Abschnitt 10 und einen zweiten Abschnitt 20 begrenzt.
In Figur 2 ist der Leiter 1 in Vorderansicht dargestellt, wobei wiederum der erste Abschnitt 10 und der zweite Abschnitt 20 dargestellt sind, sowie der Schlitz 12. Eine Schnittlinie A-A ist in Figur 2 beim Leiter 1 eingezeichnet, wobei die Schnittlinie A-A im Bereich des ersten und zweiten Abschnitts 10, 20 verläuft. In Figur 3 ist die erste Ausfuhrungsform des Leiters 1 als Schnittbild entlang der Schnittlinie A-A1 aus der Figur 2 dargestellt. Sichtbar ist der erste Abschnitt 10 und der zweite Abschnitt 20. Der erste Abschnitt 10 und der zweite Abschnitt 20 sind mit einem Kreuz im Inneren der Abschnitte 10, 20 markiert, was verdeutlichen soll, dass die Stromrichtung in die Zeichenebene hinein verläuf . Hierdurch ergeben sich jeweils Magnetfelder um den ersten Abschnitt 10 und den zweiten Abschnitt 20 herum, für die stellvertretend jeweils eine Magnetfeldlinie eingezeichnet ist. So ist eine erste Magnetfeldlinie 11 um den ersten Abschnitt 10 und eine zweite Magnetfeldlinie 21 um den zweiten Abschnitt 20 herum eingezeichnet. Der Verlauf der jeweiligen Magnetfelder um die Abschnitte 10, 20 herum ist in Figur 3 lediglich schematisch dargestellt. Eine etwaige andere Form als eine runde für den Verlauf der Magnetfeldlinien wegen des nicht runden Querschnitts des Leiters 1 im Bereich der Abschnitte 10, 20 wurde in der Figur 3 vernachlässigt. Beide Magnetfeidlinien 11, 21 sind in Uhrzeigerrichtung orientiert .
Weiterhin ist in Figur 3 ein erstes Sensormittel 15, ein zweites Sensormittel 16 und ein drittes Sensormittel 17 dargestellt. Das erste Sensormittel 15 und das dritte Sensormittel 17 sind symmetrisch zum zweiten Sensormittel 16 angeordnet. Weiterhin sind die drei Sensormittel 15, 16, 17 im Wesentlichen entlang einer Gerade angeordnet. Die jeweils um die Abschnitte 10, 20 durch den Stromfluß verursachten Magnetfelder ergeben 'durch Überlagerung ein Nutzmagnetfeld. Der zweite Sensor 16 ist so angeordnet, dass an seinem Ort das Nutzmagnetfeld gerade verschwindet. Das erste Sensormittel 15 und das dritte Sensormittel 17 sind so angeordnet, dass an ihrem Ort das Nutzmagnetfeld im Wesentlichen betragsmäßig gleich großist. Somit ist es möglich, durch das zweite Sensormittel 16 ausschließlich ein etwaiges Störmagnetfeld zu messen, während das erste Sensormittel 15 und das dritte Sensormittel 17 jeweils das Nutzmagnetfeld messen. Durch geeignete Auswertung der Signale des ersten und dritten Sensormittels 15, 17 einerseits und des zweiten Sensormittels 16 andererseits kann, beispielsweise durch Subtraktion der elektrischen Meßsignale das Störmagnetfeld unterdrückt bzw. herausgerechnet werden. Das erste und dritte Sensormittel 15, 17 werden auch als Hauptsensoren bezeichnet, dass zweite Sensormittel 16 wird auch als Nebensensor bezeichnet. Weiterhin kann die Differenz der Nutzsignale der beiden Hauptsensoren 15, 17 verwendet werden, um eventuelle Positionierungsungenauigkeiten dieser Sensoren 15, 17 elektronisch auszugleichen. Weiterhin kann elektronisch durch Auswertung kompensiert werden, dass in unterschiedlichen Abschnitten 10, 20 durch Fertigungstoleranzen, insbesondere unterschiedliche Querschnitte, unterschiedlich starke Ströme fließen. Hierdurch ist der Leiter 1 einfacher und kostengünstiger herstellbar. Hierzu wird beispielsweise der Arbeitspunkt der Hauptsensoren, die beispielsweise als laterale Magnetotransistoren vorgesehen sind, für jeden der Hauptsensoren so angepasst, dass die Empfindlichkeit beider Sensoren unterschiedlich ist und damit die
Signalunterschiede beider Sensorelemente 15, 17 ausgeglichen werden können. Dadurch kann eine wesentlich höhere Genauigkeit erreicht werden.
Die drei oder mehreren Sensoren können auch auf einem einzigen, etwas ausgedehnteren ASIC angeordnet werden. Weiterhin ist vorgesehen., zu den Sensormitteln 15, 16, 17 eine Auswerteschaltung, beispielsweise auf einem ASIC, vorzusehen. Weiterhin ist vorgesehen, die erfindungsgemäße Anordnung in ein Gehäuse zu integrieren, beispielsweise dadurch, dass der Leiter 1 zusammen mit den Sensoren 15, 16, 17 und der Auswerteschaltung, die nicht dargestellt ist, mittels Vergußmasse vergossen werden. Aus einem solchen Bauelement bzw. Strommesser führen dann lediglich noch die Signalleitungen für die Ansteuerung und Auswertung der Auswerteelektronik heraus und die Zu- und Ableitungen des Leiters 1.
Ein solches Gehäuse ist erfindungsgemäß insbesondere dazu vorgesehen, magnetisch aktive Substanzen zu enthalten, die einen weiteren Abschirmeffekt für Störmagnetfelder aufweisen. Die Verwendung eines solchen Strommessers im Kraftfahrzeug bietet eine besondere kostengünstige, einfache und räumlich wenig Platz beanspruchende Möglichkeit, verschiedene Ströme auf einer weiten Größenskala trotz des im und um ein Kraftfahrzeug herum auftretenden starken elektromagnetischen Störfeldes durchzuführen.
Figur 4 zeigt eine zweite Ausführungsform eines Leiters 1, bei dem die erfindungsgemäße Sensor nordnung verwirklicht ist. Hierbei ist außer einem ersten Abschnitt 10 und einem zweiten Abschnitt 20 ein dritter Abschnitt 30 und ein vierter Abschnitt 40 des Leiters 1 vorgesehen. Der erste, zweite, dritte und vierte Abschnitt 10, 20, 30, 40 sind insbesondere als gerade Leiterstücke vorgesehen, die parallel zueinander verlaufen und deren Mittelpunkte bezüglich ihrer Längsachse in etwa in einer Ebene liegen. Ein Querschnitt einer solchen zweiten Ausfuhrungsform des Leiters 1 in einer Ebene senkrecht zu den Abschnitten 10, 20, 30, 40 ist in Figur 4 dargestellt. Hierzu ist vorgesehen, dass eine erste Stromrichtung durch die Stromrichtung im ersten Abschnitt 10 und im vierten Abschnitt 40 definiert wird, dass eine zweite Stromrichtung durch die Stromrichtung im zweiten Abschnitt 20 und im dritten Abschnitt 30 definiert wird und dass die erste Stromrichtung und die zweite Stromrichtung antiparallel orientiert sind. Weiterhin ist vorgesehen, dass die Mittelpunkte bzw. Zentren der Abschnitte in der Querschnittsebene im Wesentlichen ein Rechteck bzw. ein Quadrat bilden. Hierbei liegen der entsprechende Mittelpunkt des ersten Abschnitts 10 und der entsprechende Mittelpunkt des vierten Abschnitts 40 diagonal gegenüber. Das erste Sensormittel 15 ist dabei zwischen dem ersten Abschnitt 10 und dem dritten Abschnitt 30 vorgesehen, das dritte Sensormittel 17 ist dabei zwischen dem zweiten Abschnitt 20 μnd dem vierten Abschnitt 40 vorgesehen und das zweite Sensormittel 16 ist dabei in der Mitte zwischen dem ersten Abschnitt 10, dem zweiten Abschnitt 20, dem dritten Abschnitt 30 und dem vierten Abschnitt 40, d.h. gewissermaßen im Zentrum der Anordnung, vorgesehen. An dem Ort des zweiten Sensormittels 16 ist wiederum ein verschwindendes Nutzmagnetfeld vorgesehen. In Figur 4 sind weiterhin die lokalen Magnetfelder um die Abschnitte 10, 20, 30, 40 dargestellt. Um den ersten Abschnitt 10 ist stellvertretend hierfür eine erste Magnetfeldlinie 11 dargestellt, die in Uhrzeigerrichtung orientiert ist. Dies korreliert damit, dass die Stromrichtung im ersten Abschnitt 10 in die Zeichenebene hinein orientiert ist, was durch ein Kreuz innerhalb des ersten Abschnitts 10 dargestellt ist. Um den vierten Abschnitt 40 herum ist eine vierte Magnetfeldlinie 41 dargestellt, die ebenfalls in Uhrzeigerrichtung orientiert ist und die ebenfalls damit korreliert, dass die Stromrichtung im vierten Abschnitt 4 in die Zeichenebene hinein orientiert ist, was durch ein Kreuz im vierten Abschnitt 40 dargestellt ist. Um den zweiten Abschnitt 20 ist eine zweite Magnetfeldlinie 21 dargestellt, die entgegengesetzt des Uhrzeigersinns orientiert ist, um anzudeuten, dass im zweiten Abschnitt 20 die Stromrichtung aus der Zeichenebene heraus orientiert ist, was durch einen Punkt im zweiten Abschnitt 20 dargestellt ist. Um den dritten Abschnitt 30 herum ist eine dritte Magnetfeldlinie 31 dargestellt, die ebenfalls entgegen des Uhrzeigersinns orientiert ist und die Stromrichtung im dritten Abschnitt 30 aus der Zeichenebene heraus durch einen Punkt im dritten Abschnitt 30 angibt. Die Sensormittel 15, 16, 17 sind in Figur 4 auf einer Montageplatte 50 montiert, genauso wie in Figur 3.
In Figur 5, 6 und 7 ist die zweite Ausfuhrungsform der elektrischen Leiteranordnung 1 bzw. des elektrischen Leiters
1 in verschiedenen Darstellungen dargestellt. Der Leiter 1 umfasst erfindungsgemäß den ersten Abschnitt 10, den zweiten Abschnitt 20, den dritten Abschnitt 30 und den vierten Abschnitt 40. Der Leiter 1 umfasst weiterhin einen ersten Leiterbereich 100, der im Wesentlichen hufeisenförmig vorgesehen ist. Der erste Leiterbereich 100 umfasst den ersten Abschnitt 10 und den zweiten Abschnitt 20. Die Hufeisenform im ersten Leiterbereich 100 wird durch folgende Formgebung hervorgerufen: Der erste Leiterbereich 100 umfasst neben dem ersten Abschnitt 10 und dem zweiten Abschnitt 20 einen verbindenden Abschnitt, der im Wesentlichen halbkreisförmig vorgesehen ist und an dessen Enden sich der erste Abschnitt 10 und der zweite Abschnitt
20 jeweils als Schenkel der durch den ersten Leiterbereich 100 gebildeten Hufeisenform anschließen. Entsprechend ist durch den dritten Abschnitt 30, den vierten Abschnitt und einen zusätzlichen verbindenden Abschnitt der zweite Leiterbereich 200 hufeisenförmig vorgesehen. Der elektrische Leiter 1 umfasst mit den beiden Leiterbereichen 100, 200 vier Enden zweier Hufeisenformen, von denen erfindungsgemäß zwei Enden von verschiedenen Leiterbereichen 100, 200 mittels eines Verbindungsstücks 150 derart verbunden sind, dass die beiden Leiterbereiche 100, 200 verbunden sind und wobei die anderen beiden Enden der durch die Leiterbereiche 100, 200 gebildeten Hufeisenformen der Zuleitung bzw. Ableitung des elektrischen Stromes dienen. Das Zwischenstück 150 ist hierbei insbesondere ebenfalls im Wesentlichen halbkreisförmig vorgesehen. Erfindungsgemäß ist insbesondere vorgesehen, dass die beiden Leiterbereiche 100, 200 nebeneinander angeordnet und identisch ausgerichtet sind. Erfindungsgemäß ist als Leiterquerschnitt insbesondere ein runder Querschnitt vorgesehen, prinzipiell sind hier aber auch rechteckige bzw. quadratische Querschnitte denkbar.

Claims

Ansprüche
1. Vorrichtung zur Messung der elektrischen Stromstärke in einem elektrischen Leiter (1) mit einem ersten Abschnitt (10) des Leiters (1) , mit einem zweiten Abschnitt (20) des Leiters (1) , mit einem ersten Sensormittel (15) und einem zweiten Sensormittel (16) , wobei der Stromfluß im ersten Abschnitt (10) und im zweiten Abschnitt (20) ein Nutzmagnetfeld erzeugt, wobei das erste Sensormittel (15) zur Messung des Nutzmagnetfeldes vorgesehen ist, wobei das zweite Sensormittel (16) an einem Ort vorgesehen ist, an dem das Nutzmagnetfeld verschwindet, wobei das zweite Sensormittel (16) zur Messung eines Störmagnetfeldes vorgesehen ist und wobei die Messung des Nutzmagnetfeldes durch die Messung des Störmagnetfeldes korrigierbar ist.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass ein drittes Sensormittel (17) vorgesehen ist und dass das erste Sensormittel (15) und das dritte Sensormittel (17) an Orten vorgesehen sind, an denen das Nutzmagnetfeld zumindest betragsmäßig im wesentlichen gleich ist .
3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass das zweite Sensormittel (16) in der Mitte zwischen dem ersten und dem dritten Sensormittel (15, 17) vorgesehen ist.
4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Leiter (1) ein Schlitzleiter ist.
5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein dritter Abschnitt (30) des Leiters und ein vierter Abschnitt (40) des Leiters vorgesehen ist, wobei der Stromfluß im ersten, zweiten, dritten und vierten Abschnitt (10, 20, 30, 40) das Nutzmagnetfeld erzeugt.
6. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Leiterquerschnitt rund vorgesehen ist .
7. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Sensormittel (15, 16,
17) ein Magnetfeldsensor, insbesondere ein Hall-Sensor, ein lateraler Magneto-Transistor und/oder ein magnetoresistiver Widerstand, vorgesehen ist.
8. Strommesser mit einer Vorrichtung nach einem der vorhergehenden Ansprüche .
9. Kraftfahrzeug mit einer Vorrichtung oder einem Strommesser nach einem der vorhergehenden Ansprüche.
EP01984693A 2001-01-09 2001-12-12 Vorrichtung, strommesser und kraftfahrzeug Withdrawn EP1352254A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10100597A DE10100597A1 (de) 2001-01-09 2001-01-09 Vorrichtung, Strommesser und Kraftfahrzeug
DE10100597 2001-01-09
PCT/DE2001/004662 WO2002056032A2 (de) 2001-01-09 2001-12-12 Vorrichtung, strommesser und kraftfahrzeug

Publications (1)

Publication Number Publication Date
EP1352254A2 true EP1352254A2 (de) 2003-10-15

Family

ID=7669996

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01984693A Withdrawn EP1352254A2 (de) 2001-01-09 2001-12-12 Vorrichtung, strommesser und kraftfahrzeug

Country Status (5)

Country Link
US (1) US6940265B2 (de)
EP (1) EP1352254A2 (de)
JP (1) JP2004517326A (de)
DE (1) DE10100597A1 (de)
WO (1) WO2002056032A2 (de)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030111999A1 (en) * 2001-12-19 2003-06-19 Ertugrul Berkcan Residential electricity meter
US7470356B2 (en) * 2004-03-17 2008-12-30 Kennecott Utah Copper Corporation Wireless monitoring of two or more electrolytic cells using one monitoring device
CA2558230A1 (en) * 2004-03-17 2005-09-29 Kennecott Utah Copper Corporation Monitoring electrolytic cell currents
US20070284262A1 (en) * 2006-06-09 2007-12-13 Eugene Yanjun You Method of Detecting Shorts and Bad Contacts in an Electrolytic Cell
WO2008011842A1 (de) * 2006-07-26 2008-01-31 Siemens Aktiengesellschaft Stromerfassungsvorrichtung
RS20060511A (en) * 2006-09-06 2008-11-28 Ametes Ag., Sensor and procedure for measuring bus bar current with skin effect correction
DE102006062321A1 (de) * 2006-12-27 2008-07-03 Siemens Ag Vorrichtung zur Messung der Stromstärke in einem Leiter
DE102007054395A1 (de) 2007-11-14 2009-05-20 Robert Bosch Gmbh Anordnung zur Messung eines elektrischen Stromes
US9222992B2 (en) * 2008-12-18 2015-12-29 Infineon Technologies Ag Magnetic field current sensors
US8717016B2 (en) 2010-02-24 2014-05-06 Infineon Technologies Ag Current sensors and methods
US8760149B2 (en) 2010-04-08 2014-06-24 Infineon Technologies Ag Magnetic field current sensors
US8442787B2 (en) 2010-04-30 2013-05-14 Infineon Technologies Ag Apparatus, sensor circuit, and method for operating an apparatus or a sensor circuit
US8680843B2 (en) 2010-06-10 2014-03-25 Infineon Technologies Ag Magnetic field current sensors
US8283742B2 (en) 2010-08-31 2012-10-09 Infineon Technologies, A.G. Thin-wafer current sensors
US20120146165A1 (en) 2010-12-09 2012-06-14 Udo Ausserlechner Magnetic field current sensors
US8975889B2 (en) 2011-01-24 2015-03-10 Infineon Technologies Ag Current difference sensors, systems and methods
US8963536B2 (en) * 2011-04-14 2015-02-24 Infineon Technologies Ag Current sensors, systems and methods for sensing current in a conductor
US9304150B2 (en) * 2011-09-30 2016-04-05 Keysight Technologies, Inc. Closed core current probe
US9389247B2 (en) * 2011-11-04 2016-07-12 Infineon Technologies Ag Current sensors
CN103323643B (zh) * 2012-03-20 2016-06-29 美新半导体(无锡)有限公司 单芯片电流传感器及其制造方法
US9176203B2 (en) * 2013-02-05 2015-11-03 Texas Instruments Incorporated Apparatus and method for in situ current measurement in a conductor
US9250270B2 (en) * 2013-03-15 2016-02-02 Itron, Inc. Electricity meter having multiple hall devices
GB2533570A (en) * 2014-12-19 2016-06-29 Hall Element Devices Ltd Apparatus for measure of quantity and associated method of manufacturing
DE112015006591B8 (de) 2015-06-04 2021-12-23 Murata Manufacturing Co., Ltd. Stromsensor
JP6696571B2 (ja) * 2016-06-09 2020-05-20 株式会社村田製作所 電流センサおよび電流センサモジュール
US10598700B2 (en) * 2016-12-30 2020-03-24 Texas Instruments Incorporated Magnetic field-based current measurement
DE102017214142A1 (de) * 2017-08-14 2019-02-14 Robert Bosch Gmbh Messanordnung und Verfahren zum magnetischen Sensieren eines elektrischen Stroms sowie ein Fahrzeug mit einer solchen Messanordnung
US11249117B2 (en) 2018-08-02 2022-02-15 Jetperch Llc Autoranging ammeter with fast dynamic response

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3323057A (en) * 1966-05-02 1967-05-30 Halmar Electronics Hall generator current meter having extraneous field compensating apparatus
CH650357A5 (de) * 1981-03-26 1985-07-15 Landis & Gyr Ag Magnetkernloser messwandler zum potentialfreien messen eines messstromes.
FI98865C (fi) * 1994-11-07 1997-08-25 Enermet Oy Menetelmä vaihtovirran mittaamiseksi, vaihtovirran mittaamiseen tarkoitettu mittausanturi ja sen käyttö kWh-mittarissa
GB9500974D0 (en) * 1995-01-18 1995-03-08 Horstmann Timers & Controls Electricity measurement apparatus
DE19821492A1 (de) * 1998-05-14 1999-11-25 Daimler Chrysler Ag Verfahren zur berührungslosen Messung eines einen Leiter durchfließenden Stromes mittels eines Hallsensors sowie Hallsensoranordnung
DE19838536A1 (de) * 1998-08-25 2000-03-02 Lust Antriebstechnik Gmbh Vorrichtung und Verfahren zur Bildung eines oder mehrerer Magnetfeldgradienten durch einen geraden Leiter
JP3696448B2 (ja) * 1999-09-02 2005-09-21 矢崎総業株式会社 電流検出器
JP3631925B2 (ja) * 1999-09-07 2005-03-23 矢崎総業株式会社 電流検出器及びこれを用いた電気接続箱

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02056032A3 *

Also Published As

Publication number Publication date
US20030146744A1 (en) 2003-08-07
WO2002056032A2 (de) 2002-07-18
US6940265B2 (en) 2005-09-06
JP2004517326A (ja) 2004-06-10
WO2002056032A3 (de) 2002-12-12
DE10100597A1 (de) 2002-07-18

Similar Documents

Publication Publication Date Title
EP1352254A2 (de) Vorrichtung, strommesser und kraftfahrzeug
DE102008039568B4 (de) Stromerfassungsvorrichtung
DE102005036552A1 (de) Hochgenauer Stromsensor
EP1110094B1 (de) Vorrichtung und verfahren zur bildung eines oder mehrerer magnetfeldgradienten durch einen geraden leiter
DE102007003830B4 (de) Vorrichtung zur Messung eines durch einen elektrischen Leiter fließenden elektrischen Stroms
DE102005033441A1 (de) Strommessvorrichtung
DE102015009603A1 (de) Vorrichtung zum messen eines elektrischen stromes durch eine stromschiene
DE102014103190A1 (de) Sensoren, Systeme und Verfahren zur Erfassung von Fehlerstrom
WO2002066996A1 (de) Vorrichtung, strommesser und kraftfahrzeug
DE102017213543B4 (de) Filteranordnung, Spannungswandler mit einer Filteranordnung
DE102011086773A1 (de) Metallsensor
DE10108640A1 (de) Sensoranordnung zur kontaktlosen Strommessung
DE102010036040A1 (de) Strommesseinrichtung, insbesondere in einem Umrichter eines Flurförderzeugs
WO2020120452A1 (de) Magnetische abschirmung eines drehmomentsensors für eine elektromechanische hilfskraftlenkung eines kraftfahrzeugs
DE10054016A1 (de) Verfahren und Vorrichtung zur Strommessung
DE102017215722B4 (de) Einrichtung zur Messung von Kommutierungsströmen schnell schaltender Halbleiterbauelemente
DE102006006314A1 (de) Vorrichtung zur Messung der Stromstärke
DE102019124391B4 (de) Magnetfeldbasierter Stromsensor zur frequenzkompensierten Messung von Wechselströmen
DE29804737U1 (de) Meßvorrichtung zur Bestimmung eines einen elektrischen Leiter durchfließenden Stromes
DE102021106661A1 (de) Magnetischer Sensor und Verfahren zur Herstellung eines solchen, magnetische Steuervorrichtung und Verfahren zum Auslegen eines Stromsensors
EP2116855B1 (de) Strommesseinrichtung
DE102020117557B4 (de) Stromsensor zur Messung des elektrischen Stroms einer Stromschiene
DE102021119837B4 (de) Stromsensor
DE9418981U1 (de) Shunt
WO2002066997A1 (de) Vorrichtung, strommesser und kraftfahrzeug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030811

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RBV Designated contracting states (corrected)

Designated state(s): CH DE GB IT LI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050701