EP1346135A2 - Verfahren zur partikelfilterregeneration - Google Patents

Verfahren zur partikelfilterregeneration

Info

Publication number
EP1346135A2
EP1346135A2 EP01990300A EP01990300A EP1346135A2 EP 1346135 A2 EP1346135 A2 EP 1346135A2 EP 01990300 A EP01990300 A EP 01990300A EP 01990300 A EP01990300 A EP 01990300A EP 1346135 A2 EP1346135 A2 EP 1346135A2
Authority
EP
European Patent Office
Prior art keywords
particle filter
regeneration
internal combustion
combustion engine
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01990300A
Other languages
English (en)
French (fr)
Inventor
Rainer Buck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1346135A2 publication Critical patent/EP1346135A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0233Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles periodically cleaning filter by blowing a gas through the filter in a direction opposite to exhaust flow, e.g. exposing filter to engine air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention is based on a method according to the type of the main claim.
  • Methods for regenerating a particle filter are already known. Particle filters for diesel internal combustion engines must be regenerated at least at regular intervals, otherwise the stored soot generates an exhaust gas back pressure that is too high, which worsens consumption, can lead to engine shutdown or, in certain operating conditions, can destroy the filter due to violent exothermic oxidation by melting.
  • CRT process continuous regeneration process
  • CRT process Continuous Regenerating Trap
  • the nitrogen dioxide breaks down into nitrogen monoxide and into an oxygen radical that can oxidize the deposited soot at temperatures as low as 250 degrees Celsius.
  • the method according to the invention with the characterizing features of the main claim has the advantage that no exhaust gas flow has to be heated during the regeneration in order to bring the particle filter arrangement to the temperature necessary for soot combustion; the regeneration is therefore energetically favorable.
  • the internal combustion engine can usually be operated in normal operation, since not like in others
  • Regeneration methods may have to be brought into operating modes of the running engine that are not conducive to consumption in order to bring the particle filter temperature to a temperature above 550 ° C. or to a temperature above approximately 450 ° C. when using additive fuels.
  • the heating element can be made of metallic materials are manufactured and need not necessarily be made of electrically conductive ceramic.
  • a current-conducting ceramic is used as the material for the heating element on the input side, this current-conducting ceramic does not have to act simultaneously as a soot filter, but rather only the downstream filter arrangement.
  • a regulation of the soot burn-off using the effect of the wandering combustion zone can be set in a targeted manner by means of a defined air flow, which is regulated by means of a separate air pump or by means of an electrically driven exhaust gas turbocharger.
  • FIG. 1 shows an exhaust system
  • FIG. 2 shows a flow diagram
  • FIGS. 3a to d show four different particle filter arrangements.
  • FIG. 1 shows an internal combustion engine 10 which is supplied with air 11 for the combustion of fuel via a line 12.
  • An air mass meter 13 is arranged on the line 12 and connected to a control device 40.
  • a charge air cooler 15 cools the supplied air 11 by means of the wind 16.
  • the air 11 passes an electrically controllable flap 20.
  • the exhaust gases of the internal combustion engine leave the combustion chambers via the exhaust line 24.
  • the exhaust gas line 24 is connected to the line 12 via a return line 21.
  • an exhaust gas recirculation valve 22 which, like the throttle valve 20, can be controlled by the control unit, the opening cross section of the Return line set.
  • An electrically driven exhaust gas turbocharger 25, which couples or drives the gas flows in line 12 and in exhaust gas line 24, is likewise operated via control unit 40.
  • a particle filter arrangement 30 fed by the exhaust gas line 24.
  • the outlet of the particle filter arrangement is connected to an exhaust pipe 31 which conveys the cleaned exhaust gases 32 to the outside via a silencer (not shown).
  • Pressure sensors 41 and 42 upstream or downstream of the particle filter arrangement allow control unit 40 to evaluate an exhaust gas differential pressure of the particle filter arrangement.
  • the particle filter arrangement 30 has means 29 for initiating the regeneration of the particle filter, which are controlled via the control unit 40.
  • the control unit 40 regulates the injection of fuel into the combustion chambers of the internal combustion engine 10, monitors the air supply or the exhaust gas discharge by evaluating the measurement data of the air mass meter 13 and the pressure sensors 41 and 42. If necessary, the control unit can open the exhaust gas recirculation valve 22 or the air supply via the throttle valve Limit 20.
  • the exhaust gas turbocharger can also drive the gas circulation by means of an electric auxiliary motor.
  • FIG. 2 schematically represents the test of the load state of the particle filter arrangement with method step 90. If the internal combustion engine is switched off after this test (query 92), regeneration 100 is initiated with the engine stopped when a first threshold value of the load state (query 98) is exceeded. The control unit is then also automatically switched off (step 102). If the first threshold value is not exceeded, the control unit is switched off and no regeneration is initiated. However, if the internal combustion engine remains switched on after the load condition has been checked (path N of query 92), it is checked whether the load condition exceeds a second threshold value that is greater than the first threshold value (query 94).
  • the continuous check of the load condition is continued, otherwise a regeneration 96 is carried out while the internal combustion engine is running and only then is it returned to the ongoing check of the load condition.
  • the first threshold is between 5 and 10 grams of soot
  • the second threshold between 15 and 20 grams.
  • the regeneration with the internal combustion engine running is intended to also cover those cases in which regeneration with the internal combustion engine standing still is not sufficient to limit the exhaust gas back pressure caused by the particle filter to an economically reasonable level or to avert the risk of the filter being overloaded. This is particularly the case on long journeys of several 100 km, in which the particle filter is fully loaded without the engine is switched off and the filter could be regenerated with the engine stopped.
  • the threshold values should be selected such that the particle filter can be regenerated as often as possible with the engine stopped.
  • the regeneration with the engine stopped is energetically more favorable, since the regeneration means for activating the regeneration reactions do not have to heat an exhaust gas flow in order to heat the actual particle filter on which the soot is burned.
  • the first threshold value is to be set lower than the second threshold value, since this ensures that the particle filter is regenerated even when the engine is at a certain partially loaded state.
  • FIG. 3 shows four different particle filter arrangements 30 in which the means for initiating the regeneration have an electrically operable heater.
  • the particle filter is shown schematically as an arrangement with an inlet area 50 and an outlet area 51, the exhaust gas flowing through the filter along the flow direction 52.
  • the structure thus symbolizes a filter cell of the particle filter, which forces the gas molecules to cross at least once a filter wall made of ceramic, for example, so that the soot particles can be deposited on the filter wall.
  • the ceramic consists of a current-conducting material, for example of a ceramic material known under the name “Ligafill”, so that an electrical heating voltage 55 can be connected to the ceramic filter via the electrode pairs 53, 54 along the flow direction 52.
  • the regeneration with the engine stopped is carried out if the filter is recognized as sufficiently loaded immediately before the engine is switched off.
  • the filter is heated to a temperature sufficient to burn off the soot.
  • the energy for this is supplied by the on-board battery.
  • measures can of course be provided to refrain from regeneration when the engine is at a standstill if the state of charge of the battery falls below a certain critical value in order to ensure that the engine starts, particularly when the outside temperature is cold.
  • the oxygen required for soot oxidation flows through the filter. If the internal combustion engine has at least four cylinders, it can be assumed that both the inlet valve and the outlet valve on one cylinder are open, so that the oxygen can be supplied via the internal combustion engine. If this is not sufficient, a fresh air bypass can be created around the engine via the electrically controllable exhaust gas recirculation valve 22, which ensures a sufficient supply of oxygen for soot oxidation.
  • the arrangement in FIG. 3b additionally has an air pump 60 which is arranged in the area of the filter on the outlet side and is connected via a pump line 62 both to the particle filter and to the exhaust pipe on the outlet side. If natural convection is not sufficient due to a special air flow, the air pump 60 draws a defined air flow through the filter behind the particle filter.
  • the non-return flap 61 ensures that the air is not sucked in backwards through the muffler, but comes into the particle filter coming from the engine.
  • the task of the additional air supply can also be taken over by the electrically driven exhaust gas turbocharger, so that the air pump 60 is not absolutely necessary in this case. If only a mechanical one If there is a driven exhaust gas turbocharger, the electrically driven air pump 60 enables an adequate supply of air, in particular when regeneration is to be carried out with the engine stopped.
  • a heating element 70 is provided in the input area of the particle filter instead of a pair of electrodes.
  • the filter at the front end in the exhaust gas flow direction
  • the soot burn-off temperature Due to the exothermic oxidation of the soot, the inflowing air and the heat conduction, the regeneration zone eats through the filter at a defined speed.
  • the creation of a stable, continuous reaction zone can be controlled by means of the air mass meter and the exhaust gas recirculation valve.
  • FIG. 3d shows an embodiment variant with an oxidation catalytic converter 80 connected upstream of the soot filter.
  • the oxidation catalytic converter 80 serves to oxidize or burn the fuel introduced into the exhaust tract by means of the symbolically represented fuel supply device 75 in order to reach the temperature in the particle filter necessary for soot combustion.
  • the catalytic combustion of the fuel in the oxidation catalytic converter is initiated by switching on the heating element 70.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

Es wird ein Verfahren zur Regeneration eines Partikelfilters vorgeschlagen, bei dem das Filter bei ausgeschalteter Brennkraftmaschine regeneriert werden kann (Schritt 100). Bei stehender Brennkraftmaschine müssen im Abgastrakt keine Abgase erhitzt werden, um die gesamte Filteranordnung auf die für die Regeneration erforderliche Temperatur zu bringen; dies ermöglicht eine energetisch effiziente Durchführung der Regeneration.

Description

Verfahren zur Partikelfilterregeneration
Stand der Technik
Die Erfindung geht aus von einem Verfahren nach der Gattung des Hauptanspruchs. Verfahren zur Regeneration eines Partikelfilters sind bereits bekannt. Partikelfilter für Diesel-Brennkraftmaschinen müssen zumindest in regelmäßigen Zeitabständen regeneriert werden, da sonst der gespeicherte Ruß einen zu hohen Abgasgegendruck erzeugt, der den Verbrauch verschlechtert, zum Motorstillstand führen kann oder bei gewissen Betriebszuständen den Filter aufgrund einer heftigen exothermen Oxidation durch Schmelzen zerstören kann. Beispielsweise ist es bekannt, bei dem Verfahren der sogenannten kontinuierlichen Regeneration (CRT-Verfahren; „CRT" = „Continuosly Regenerating Trap") bei laufendem Motor mittels eines dem Partikelfilter vorgelagerten Oxidationskatalysators Stickstoffmonoxid zu Stickstoffdioxid zu oxidieren. Im Partikelfilter zerfällt das Stickstoffdioxid in Stickstoffmonoxid und in ein Sauerstoffradikal, das den abgelagerten Ruß schon bei Temperaturen ab 250 Grad Celsius oxidieren kann. Vorteile der Erfindung
Das erfindungsgemäße Verfahren mit den kennzeichnenden Merkmalen des Hauptanspruchs hat demgegenüber den Vorteil, dass während der Regeneration kein Abgasstrom mit erhitzt werden muss, um die Partikelfilteranordnung auf die für den Rußabbrand notwendige Temperatur zu bringen; die Regeneration verläuft also energetisch günstig. Bei Ausnutzung einer Naturkonvektion ist lediglich ein geringer Bauteilaufwand zu verzeichnen, und bei Ausnutzung des Effekts der wandernden Brennzone wird der Energieverbrauch für die Regeneration noch weiter erniedrigt. Eine Additivierung des Kraftstoffs zur Unterstützung der Partikelfilterregeneration kann entfallen. Darüber hinaus kann die Brennkraftmaschine in der Regel im Normalbetrieb geführt werden, da nicht wie bei anderen
Regenerationsverfahren unter Umständen verbrauchsungünstige Betriebszustände des laufenden Motors herbeigeführt werden müssen, um die Partikelfiltertemperatur auf eine Temperatur oberhalb 550° C beziehungsweise auf eine Temperatur oberhalb ca. 450° C bei Verwendung additivierter Kraftstoffe zu bringen.
Durch die in den abhängigen Ansprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Hauptanspruch angegebenen Verfahrens möglich. Vorteilhaft ist insbesondere ein über die Naturkonvektion hinaus unterstützender Transport von Luft in den Einlaßbereich des Partikelfilters zur Gewährleistung eines gleichmäßigen Rußabbrands.
Vorteilhaft ist ferner, das Partikelfilter lediglich im Einlaßbereich zu beheizen. Dies erfordert weniger Energie, als wenn das gesamte Filter aufgeheizt werden muss. Das Heizelement kann in diesem Fall aus metallischen Werkstoffen gefertigt werden und muss nicht unbedingt aus stromleitender Keramik bestehen. Andererseits muss, falls für das Heizelement auf der Eingangsseite eine stromleitende Keramik als Material verwendet wird, diese stromleitende Keramik nicht gleichzeitig als Rußfilter wirken, sondern erst die nachgeschaltete Filteranordnung. Eine Regelung des Rußabbrands unter Ausnutzung des Effekts der wandernden Brennzone kann durch einen definierten Luftstrom gezielt eingestellt werden, der mittels einer separaten Luftpumpe oder mittels eines elektrisch angetriebenen Abgasturboladers geregelt wird.
Zeichnung
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 ein Abgassystem, Figur 2 ein Flußdiagramm und Figur 3a bis d vier verschiedene Partikelfilteranordnungen.
Beschreibung der Ausführungsbeispiele
In Figur 1 ist eine Brennkraftmaschine 10 dargestellt, die über eine Leitung 12 mit Luft 11 zur Verbrennung von Kraftstoff versorgt wird. Ein Luftmassenmesser 13 ist an der Leitung 12 angeordnet und mit einem Steuergerät 40 verbunden. Ein Ladeluftkühler 15 kühlt die zugeführte Luft 11 mittels des Fahrtwindes 16. Vor dem Eintritt in die Brennkraftmaschine 10 passiert die Luft 11 eine elektrisch ansteuerbare Klappe 20. Die Abgase der Brennkraftmaschine verlassen über die Abgasleitung 24 die Brennräume. Die Abgasleitung 24 ist über eine Rückführleitung 21 mit der Leitung 12 verbunden. Über ein Abgasrückführungsventil 22, das wie die Drosselklappe 20 vom Steuergerät angesteuert werden kann, wird der Öffnungsquerschnitt der Rückführleitung eingestellt. Ein elektrisch angetriebener Abgasturbolader 25, der die Gasströmungen in der Leitung 12 und in der Abgasleitung 24 miteinander koppelt beziehungsweise antreibt, wird ebenfalls über das Steuergerät 40 betrieben. Hinter dem Abgasturbolader befindet sich eine von der Abgasleitung 24 gespeiste Partikelfilteranordnung 30. Der Ausgang der Partikelfilteranordnung ist mit einem Abgasrohr 31 verbunden, das die gereinigten Abgase 32 über einen (nicht eingezeichneten) Schalldämpfer ins Freie befördert. Drucksensoren 41 und 42 vor beziehungsweise hinter der Partikelfilteranordnung erlauben dem Steuergerät 40 die Auswertung eines Abgasdifferenzdrucks der Partikelfilteranordnung. Die Partikelfilteranordnung 30 weist Mittel 29 zur Einleitung der Regeneration des Partikelfilters auf, die über das Steuergerät 40 angesteuert werden .
Das Steuergerät 40 regelt die Einspritzung von Kraftstoff in die Brennräume der Brennkraftmaschine 10, überwacht die Luftzufuhr beziehungsweise die Abgasableitung durch Auswertung der Meßdaten des Luftmassenmessers 13 sowie der Drucksensoren 41 und 42. Bei Bedarf kann das Steuergerät das Abgasrückführungsventil 22 öffnen beziehungsweise die Luftzufuhr über die Drosselklappe 20 begrenzen. Auch der Abgasturbolader kann durch einen elektrischen Hilfsmotor zusätzlich die Gaszirkulation antreiben. Durch Auswertung des Differenzwerts der von den Drucksensoren 41 und 42 gemessenen Gasdrücke und des Abgasvolumenstroms wird der Beladungszustand der Partikelfilteranordnung 30 im Betrieb oder bei laufendem Motor geprüft. Überschreitet der Beladungszustand bestimmte Schwellenwerte, so kann ein Regenerationsvorgang sowohl bei laufender als auch bei stehender, d. h. abgeschalteter Brennkraftmaschine eingeleitet werden, indem die Mittel 29 zur Regeneration aktiviert werden.
Figur 2 stellt mit dem Verfahrensschritt 90 schematisch die Prüfung des Beladungszustands der Partikelfilteranordnung dar. Wird die Brennkraftmaschine nach dieser Prüfung abgeschaltet (Abfrage 92) , so wird bei Überschreiten eines ersten Schwellenwerts des Beladungszustands (Abfrage 98) eine Regeneration 100 bei stehendem Motor eingeleitet. Anschließend' wird auch das Steuergerät automatisch ausgeschaltet (Schritt 102) . Ist der erste Schwellenwert nicht überschritten, erfolgt ein Ausschalten des Steuergeräts, es wird keine Regeneration eingeleitet. Bleibt die Brennkraftmaschine jedoch nach der Prüfung des Beladungszustands weiterhin eingeschaltet (Pfad N der Abfrage 92) , so wird geprüft, ob der Beladungszustand einen zweiten Schwellenwert überschreitet, der größer als der erste Schwellenwert ist (Abfrage 94) . Ist dies nicht der Fall, so wird die kontinuierliche Prüfung des Beladungszustands fortgesetzt, andernfalls eine Regeneration 96 bei laufender Brennkraftmaschine durchgeführt und erst anschließend zur laufenden Prüfung des Beladungszustands zurückgekehrt. Bei einem Zweilitermotor liegt der erste Schwellenwert beispielsweise zwischen 5 und 10 Gramm Ruß, der zweite Schwellenwert zwischen 15 und 20 Gramm.
Die Regeneration bei laufender Brennkraftmaschine ist dazu gedacht, auch solche Fälle abzudecken, bei denen eine Regeneration bei stehender Brennkraftmaschine nicht ausreicht, um den durch das Partikelfilter hervorgerufenen Abgasgegendruck auf ein wirtschaftlich vernünftiges Maß zu begrenzen beziehungsweise die Gefahr einer drohenden Überladung des Filters abzuwenden. Dies ist insbesondere bei langen Fahrten von mehreren 100 km der Fall, bei denen das Partikelfilter vollständig beladen wird, ohne dass der Motor ausgeschaltet wird und damit das Filter bei stehendem Motor regeneriert werden könnte. Die Schwellenwerte sind jedoch derart zu wählen, dass das Partikelfilter so oft wie möglich bei stehendem Motor regeneriert werden kann. Die Regeneration bei stehendem Motor ist energetisch günstiger, da die Regenerationsmittel zur Aktivierung der Regenerationsreaktionen keinen Abgasstrom erhitzen müssen, um das eigentliche Partikelfilter, an dem der Ruß verbrannt wird, zu erwärmen. Der erste Schwellenwert ist kleiner anzusetzen als der zweite Schwellenwert, da dadurch gewährleistet wird, dass auch ab einem gewissen teilbeladenen Zustand das Partikelfilter bei stehendem Motor regeneriert wird.
Figur 3 zeigt vier verschiedene Partikelfilteranordnungen 30, bei denen die Mittel zur Einleitung der Regeneration eine elektrisch betreibbare Heizung aufweisen. Das Partikelfilter ist schematisch dargestellt als Anordnung mit einem Einlaßbereich 50 und einem Auslaßbereich 51, wobei das Filter durch das Abgas entlang der Strömungsrichtung 52 durchströmt wird. Die Struktur symbolisiert also eine Filterzelle des Partikelfilters, die die Gasmoleküle dazu zwingt, eine beispielsweise aus Keramik gefertigte Filterwand zumindest einmal zu durchqueren, damit sich die Rußpartikel an der Filterwand ablagern können. Die Keramik besteht aus einem stromleitenden Material, beispielsweise aus einem unter dem Namen „Ligafill" bekannten Keramikmaterial, so dass über die Elektrodenpaare 53, 54 entlang der Strömungsrichtung 52 eine elektrische Heizspannung 55 an das Keramikfilter angeschlossen werden kann.
Die Regeneration bei stehendem Motor wird durchgeführt, wenn unmittelbar vor dem Abstellen des Motors das Filter als hinreichend beladen erkannt wird. Durch Anlegen einer Spannung wird hierbei das Filter bis auf eine Temperatur erwärmt, die zum Abbrand des Rußes ausreicht. Die Energie hierzu wird von der Bordbatterie geliefert. Hierbei können natürlich Maßnahmen vorgesehen sein, von einer Regeneration bei stehendem Motor abzusehen, falls der Ladezustand der Batterie einen bestimmten kritischen Wert unterschreitet, um ein Starten des Motors insbesondere bei kalten Außentemperaturen sicherzustellen. Durch natürliche Konvektion strömt der für die Rußoxidation erforderliche Sauerstoff durch das Filter. Weist die Brennkraftmaschine mindestens vier Zylinder auf, ist davon auszugehen, dass an einem Zylinder sowohl das Einlaß- als auch das Aulaßventil geöffnet sind, so dass die Sauerstoffzufuhr über die Brennkraftmaschine erfolgen kann. Falls dies nicht ausreicht, kann über das elektrisch ansteuerbare Abgasrückführventil 22 ein Frischluftbypass um den Motor herum geschaffen werden, der eine ausreichende Sauerstoffzufuhr zur Rußoxidation sicherstellt.
Die Anordnung der Figur 3b weist zusätzlich eine Luftpumpe 60 auf, die im auslaßseitigen Bereich des Filters angeordnet ist und über eine Pumpenleitung 62 sowohl mit dem Partikelfilter als auch mit dem Abgasrohr auf der Auslaßseite verbunden ist. Wenn die natürliche Konvektion aufgrund einer besonderen Luftführung nicht ausreicht, saugt hinter dem Partikelfilter die Luftpumpe 60 einen definierten Luftstrom durch das Filter. Die Rückschlagklappe 61 sorgt dafür, dass die Luft nicht rückwärts durch den Schalldämpfer angesaugt wird, sondern vom Motor kommend in das Partikelfilter gelangt.
Die Aufgabe der zusätzlichen Luftzufuhr kann auch vom elektrisch angetriebenen Abgasturbolader übernommen werden, so dass die Luftpumpe 60 in diesem Falle nicht unbedingt erforderlich ist. Falls jedoch lediglich ein mechanisch angetriebener Abgasturbolader vorliegt, ermöglicht die elektrisch angetriebene Luftpumpe 60 insbesondere bei einer bei stehendem Motor durchzuführenden Regeneration eine ausreichende Luftzufuhr.
Alternativ zur Ausführungsform nach Figur 3b ist bei der Vorgehensweise gemäß Figur 3c statt eines Elektrodenpaares ein Heizelement 70 im Eingangsbereich des Partikelfilters vorgesehen.
Hier wird der Effekt ausgenutzt, dass es genügt, das Filter am vorderen Ende (in Abgas-Strömungsrichtung) auf die Rußabbrandtemperatur zu bringen. Durch die einsetzende exotherme Oxidation des Rußes, die einströmende Luft und infolge der Wärmeleitung frißt sich die Regenerationszone in einer definierten Geschwindigkeit durch das Filter. Mittels des Luftmassenmessers und des Abgasrückführungsventils kann das Entstehen einer stabilen, durchlaufenden Reaktionszone gesteuert werden.
In Figur 3d ist eine Ausführungsvariante mit einem dem Rußfilter vorgeschaltetem Oxidationskatalysator 80 gezeigt. Der Oxidationskatalysator 80 dient dazu, den mittels der symbolisch dargestellten Kraftstoffzufuhreinrichtung 75 in den Abgastrakt eingeführten Kraftstoff zu oxidieren beziehungsweise zu verbrennen, um die für den Rußabbrand notwendige Temperatur im Partikelfilter zu erreichen. Die katalytische Verbrennung des Kraftstoffs im Oxidationskatalysator wird durch das Einschalten des Heizelements 70 initiiert.

Claims

Ansprüche
1. Verfahren zur Regeneration eines zur Reinigung des Abgases einer Brennkraftmaschine dienenden Partikelfilters, dadurch gekennzeichnet, dass das Partikelfilter bei stehender Brennkraftmaschine regeneriert wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Beladungszustand des Partikelfilters geprüft wird und dass bei Überschreiten eines ersten Schwellenwerts des Beladungszustands die Regeneration nach einem Abschalten der Brennkraftmaschine eingeleitet wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Prüfung des Beladungszustands bei laufender Brennkraftmaschine erfolgt.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der Beladungszustand unter Auswertung des Abgasdifferenzdrucks zwischen Einlaß- und Auslaßbereich des Partikelfilters ermittelt wird.
5. Verfahren nach einem der vorhergehenden Ansprüche, dass zur Unterstützung der Regeneration Luft in den Einlaßbereich des Partikelfilters transportiert wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Luft auf der Seite des Auslaßbereichs durch das Partikelfilter hindurch angesaugt wird.
7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass der Luft ein Hilfsmittel zur Erwärmung des Partikelfilters, insbesondere Kraftstoff, zugeführt wird.
8. Verfahren nach einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, dass bei Überschreiten einer zweiten Beladungsschwelle, die größer ist als die erste Beladungsschwelle, eine Regeneration bei laufender Brennkraftmaschine eingeleitet wird.
9. Verfahren nach einem der Ansprüche 2 bis 8, dadurch gekennzeichnet, dass die Regeneration durch eine Beheizung des Partikelfilters eingeleitet wird.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die Beheizung elektrisch erfolgt.
11. Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass die Beheizung im Wesentlichen entlang des ganzen Durchströmungsbereichs (52) des Partikelfilters erfolgt.
12. Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass die Beheizung im Einlaßbereich des Partikelfilters erfolgt.
EP01990300A 2000-12-14 2001-12-13 Verfahren zur partikelfilterregeneration Withdrawn EP1346135A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10062270 2000-12-14
DE10062270A DE10062270A1 (de) 2000-12-14 2000-12-14 Verfahren zur Partikelfilterregeneration
PCT/DE2001/004697 WO2002048511A2 (de) 2000-12-14 2001-12-13 Verfahren zur partikelfilterregeneration

Publications (1)

Publication Number Publication Date
EP1346135A2 true EP1346135A2 (de) 2003-09-24

Family

ID=7667091

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01990300A Withdrawn EP1346135A2 (de) 2000-12-14 2001-12-13 Verfahren zur partikelfilterregeneration

Country Status (3)

Country Link
EP (1) EP1346135A2 (de)
DE (1) DE10062270A1 (de)
WO (1) WO2002048511A2 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10344216A1 (de) * 2003-09-22 2005-05-04 Eberspaecher J Gmbh & Co Abgasanlage mit Partikelfilter sowie zugehörige Heizeinrichtung und zugehöriges Regenerationsverfahren
JP4170935B2 (ja) * 2004-03-11 2008-10-22 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2006077671A (ja) * 2004-09-09 2006-03-23 Hino Motors Ltd 排気浄化装置
DE102008000602B4 (de) 2008-03-11 2023-03-16 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
DE102014223491A1 (de) * 2014-11-18 2016-05-19 Bayerische Motoren Werke Aktiengesellschaft Abgasbehandlungsvorrichtung und Verfahren zur Abgasbehandlung

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597720A (ja) * 1982-07-06 1984-01-14 Mitsubishi Motors Corp デイ−ゼルパテイキユレ−トフイルタシステム
JPH01106915A (ja) * 1987-10-20 1989-04-24 Mitsubishi Motors Corp 微粒子捕集浄化装置のフィルタ清掃方法
DE3914758A1 (de) * 1989-05-05 1990-11-08 Mann & Hummel Filter Russfilter zur reinigung des abgastroms einer brennkraftmaschine
US5716586A (en) * 1993-06-03 1998-02-10 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Exhaust gas purifier
JP2780638B2 (ja) * 1994-05-17 1998-07-30 松下電器産業株式会社 内燃機関用フィルタ再生装置
US5930994A (en) * 1996-07-02 1999-08-03 Ibiden Co., Ltd. Reverse cleaning regeneration type exhaust emission control device and method of regenerating the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0248511A2 *

Also Published As

Publication number Publication date
WO2002048511A3 (de) 2002-10-31
WO2002048511A2 (de) 2002-06-20
DE10062270A1 (de) 2002-06-20

Similar Documents

Publication Publication Date Title
EP3475543B1 (de) Verfahren und vorrichtung zur abgasnachbehandlung eines verbrennungsmotors
DE69320445T2 (de) Vorrichtung zur Reinigung von Abgasen einer Dieselbrennkraftmaschine
DE102005057450B4 (de) Verfahren und System zum Bestimmen von Temperatur-Sollwerten in Systemen einschließlich von Partikelfiltern mit Regenerationsfähigkeiten
DE60118989T2 (de) Emissionskontrollsystem und Methode für einen Verbrennungsmotor
EP2788598B1 (de) Verfahren und vorrichtung zum betreiben einer verbrennungskraftmaschine mit einer abgasreinigungseinheit
DE112008000132T5 (de) Sekundärluftsystem für ein Entlüftungssystem eines Verbrennungsmotors
DE102006038922A1 (de) Elektrische Regenerierung eines Dieselpartikelfilters (DPF)
DE102012007053B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine sowie Brennkraftmaschine
DE102016115322A1 (de) Vorrichtung und Verfahren zur Regeneration eines Partikelfilters
DE102008032604A1 (de) Einstellen eines Zustands eines Abgasstroms einer Brennkraftmaschine eines Kraftfahrzeuges
DE3532345A1 (de) Verfahren und einrichtung zum betrieb eines dieselmotors mit abgaspartikelfilter
DE102018222512A1 (de) Verfahren zum Betreiben einer Antriebseinrichtung sowie entsprechende Antriebseinrichtung
DE102018220824A1 (de) System zum zwangsweisen regenerieren eines benzinpartikelfilters
DE102017103560A1 (de) Verbrennungsmotor und Verfahren zur Regeneration eines Partikelfilters im Abgaskanal eines Verbrennungsmotors
DE102011008495A1 (de) Motorabgassystem und Betriebsverfahren
EP1346135A2 (de) Verfahren zur partikelfilterregeneration
DE102014017456A1 (de) System und verfahren zur steuerung der abgastemperatur
WO2010070100A1 (de) Abgasreinigungsanlage sowie verfahren zum betrieb einer abgasreinigungsanlage
DE102004048338C5 (de) Brennkraftmaschine
DE102009051027B4 (de) Antriebsaggregat mit einer Dieselbrennkraftmaschine und Abgasrückführung sowie Verfahren zum Betreiben eines solchen Antriebsaggregats
EP1431529B1 (de) Verfahren zur Anhebung oder Absenkung der Abgastemperatur bei Dieselmotoren
DE102013213103A1 (de) Abgasrückführungskühler mit einem erhitzten Filter
DE602004003034T2 (de) Ein Abgassystem für einen Dieselmotor
DE10137050A1 (de) Vorrichtung und Verfahren zur Abgasbehandlung einer Brennkraftmaschine
EP1517011A2 (de) Abgasanlage mit Partikelfilter sowie zugehörige Heizeinrichtung und zugehöriges Regenerationsverfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030714

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20040216

RBV Designated contracting states (corrected)

Designated state(s): DE FR IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050622