EP1345864A2 - Zweischichtige schallabsorbierende deckenplatte mit verbessertem schallabsorptionswert - Google Patents

Zweischichtige schallabsorbierende deckenplatte mit verbessertem schallabsorptionswert

Info

Publication number
EP1345864A2
EP1345864A2 EP01993312A EP01993312A EP1345864A2 EP 1345864 A2 EP1345864 A2 EP 1345864A2 EP 01993312 A EP01993312 A EP 01993312A EP 01993312 A EP01993312 A EP 01993312A EP 1345864 A2 EP1345864 A2 EP 1345864A2
Authority
EP
European Patent Office
Prior art keywords
fiber
ceiling tile
rich
tile
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01993312A
Other languages
English (en)
French (fr)
Other versions
EP1345864B1 (de
Inventor
Mirza A. Baig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
USG Interiors LLC
Original Assignee
USG Interiors LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by USG Interiors LLC filed Critical USG Interiors LLC
Publication of EP1345864A2 publication Critical patent/EP1345864A2/de
Application granted granted Critical
Publication of EP1345864B1 publication Critical patent/EP1345864B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B19/00Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica
    • B32B19/06Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/06Acrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/28Polysaccharides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/28Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing organic polyacids, e.g. polycarboxylate cements, i.e. ionomeric systems
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/30Multi-ply
    • D21H27/38Multi-ply at least one of the sheets having a fibrous composition differing from that of other sheets
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21JFIBREBOARD; MANUFACTURE OF ARTICLES FROM CELLULOSIC FIBROUS SUSPENSIONS OR FROM PAPIER-MACHE
    • D21J1/00Fibreboard
    • D21J1/16Special fibreboard
    • D21J1/20Insulating board
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B9/00Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
    • E04B9/001Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation characterised by provisions for heat or sound insulation
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B9/00Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
    • E04B9/04Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation comprising slabs, panels, sheets or the like
    • E04B9/045Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation comprising slabs, panels, sheets or the like being laminated
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/20All layers being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/56Damping, energy absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2315/00Other materials containing non-metallic inorganic compounds not provided for in groups B32B2311/00 - B32B2313/04
    • B32B2315/14Mineral wool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2317/00Animal or vegetable based
    • B32B2317/12Paper, e.g. cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00612Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/52Sound-insulating materials
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/36Inorganic fibres or flakes
    • D21H13/38Inorganic fibres or flakes siliceous
    • D21H13/40Inorganic fibres or flakes siliceous vitreous, e.g. mineral wool, glass fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/24Polysaccharides
    • D21H17/28Starch
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/30Multi-ply
    • D21H27/32Multi-ply with materials applied between the sheets
    • D21H27/34Continuous materials, e.g. filaments, sheets, nets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • This invention relates to an acoustical celling tile having an improved sound absorption value. More particularly, this invention relates to a dual layer acoustical ceiling tile having a low or no mineral wool base mat layer and a high mineral wool overlay surface layer which provides improved sound absorption values with or without perforating or fissuring the tile. The invention also relates to a dual layer acoustical tile which is manufactured using a high speed, water-felting process. A pattern can be applied before drying the tile (wet end embossing), or the pattern can be formed in the tile after the drying.
  • the water-felting of dilute aqueous dispersions of mineral wool and lightweight aggregate is a commercial process for manufacturing acoustical ceiling tile.
  • a dispersion of mineral wool, lightweight aggregate, binder and other ingredients as desired or necessary is flowed onto a moving foraminous support wire, such as that of a Fourdrinier or Oliver mat forming machine, for dewatering.
  • the dispersion is first dewatered by gravity and then vacuum suction is applied. After vacuum dewatering, the wet mat is dried in heated convection drying ovens, and the dried mat is cut to the desired panel or tile dimensions. If desired, the panels or tiles can be top coated with- paint.
  • Acoustical ceiling tiles can also be made by a wet pulp molding or cast process such as described in U.S. Patent No. 1,769,519.
  • a molding composition comprising granulated mineral wool fibers, fillers, colorants and a binder (e.g. starch gel), is prepared for molding or casting the tile.
  • the composition is placed upon suitable trays which have been covered with paper or a metallic foil and then the composition is screeded to a desired thickness with a screed bar or roller.
  • a decorative surface, such as elongated fissures, may be provided by the screed bar or roller.
  • the trays filled with the mineral wool composition are then placed in an oven to dry or cure.
  • control tile samples were tested for NRC (noise reduction coefficient) using the Impedance tube method.
  • the samples were not perforated, fissured or painted.
  • the control tiles had an average NRC value of only 0.434.
  • acoustical tiles made using a water-felting process have a hard surface that does not have good sound absorption properties.
  • the sound absorption is substantially improved by fissuring and/or perforating the surface that increases the NRC value.
  • many purchasers prefer a smooth, unperforated acoustical ceiling tile for its aesthetic appearance.
  • acoustical ceiling tiles having an average NRC equivalent to commercially available cast ceiling tiles can be made by using an anionically stabilized latex binder and a cationic flocculant to couple the latex binder onto the mineral fiber materials.
  • the mineral fibers constitute about 50% or more of the total dry solids, preferably from about 60 to about 95 weight % of the acoustical panel.
  • the tiles made by this process are quite soft compared to the water-felted tiles having a starch binder.
  • the tiles made with a latex binder have lower structural strength and are made in thicknesses of at least about inch and frequently have a woven scrim applied thereto to increase strength.
  • These acoustical tiles do have smooth surfaces and higher NRC values resulting from the higher mineral wool content. Mineral wool acoustical tiles are porous which is necessary to provide good sound absorption.
  • NRC sound absorption value
  • a dual layer acoustical ceiling tile having an improved sound absorption value can be made in a water-felting process wherein a base mat layer has a relatively low mineral fiber content, and a surface layer having a high mineral fiber content is overlaid onto the base mat.
  • the base mat layer is made from a low mineral fiber content or no mineral fiber material which has relatively low NRC values unless its surface is perforated and/or fissured.
  • the mineral fiber-rich surface layer that has a thickness of about ⁇ A inch or less also has a relatively low NRC value at such thickness. It was discovered that these two low NRC value materials could be combined to provide a dual layer ceiling tile having a high NRC value.
  • the acoustical ceiling tiles of this invention are based on the discovery that two acoustical materials having relatively low NRC values can be combined to form a dual layer acoustical ceiling tile having excellent sound absorption values (NRC). These ceiling tiles are made using a water-felting process to form both the base mat layer and the fiber-rich surface layer. In carrying out the process, two head boxes are used to feed the acoustical materials to the production line.
  • One head box feeds the base mat material, having a relatively low mineral fiber content (less than about 50% by weight of mineral fiber) or it may contain no mineral fiber, to a moving foraminous support wire, such as that of a Fourdrinier or Oliver mat forming machine for dewatering. After water is removed through the support wire by gravity, additional water can be removed by applying a vacuum to the wet base mat, but depending upon the consistency of the base mat material in the head box, the line speed and other considerations, it may not be necessary to use vacuum for dewatering purposes prior to depositing the fiber-rich overlay material onto the base mat.
  • the base mat material consists essentially of mineral wool fibers, expanded perlite, cellulose fiber, starch binder and gypsum which can be present, preferably, in the following amounts, and having at least about 30 % by weight of expanded perlite:
  • the still wet base mat may be passed under a press roller to compress the mat, removing more water and establishing the thickness of the wet base mat.
  • the thickness of the wet base mat just prior to depositing the fiber-rich surface layer may range from about 1 inch to about 2.5 inches. It is preferred that the completely dried base mat have a thickness ranging from about 0.25 inch to about 0.625 inch.
  • a fiberglass scrim can be placed on the wet base mat prior to depositing the fiber-rich surface layer.
  • the fiberglass scrim can be either woven or non-woven.
  • a fiberglass scrim it is generally preferred that it be placed between the base mat material and the fiber-rich surface layer, however, if desired, the scrim can be placed on top of the fiber-rich surface layer or in contact with the back of the base mat material, in which case, the base mat slurry from the head box would be deposited on the scrim.
  • the fiber-rich surface layer consists essentially of mineral wool fibers, gypsum, clay filler, latex binder, starch binder and flocculant to deposit the latex binder on the mineral wool fibers as disclosed in U.S. Patent No. 5,250,153. These ingredients may be present, preferably, in the following amounts:
  • the fiber-rich surface material is prepared in accordance with the method disclosed in U.S. Patent No. 5,250,153 wherein an anionically stabilized latex binder is deposited on or coupled to the mineral fibers by adding a small amount of a flocculant such as a cationic polyacrylamide to the slurry.
  • the fiber-rich slurry contains a very large amount of mineral wool fibers (at least about 75 % by weight) and little or no expanded perlite.
  • the fiber-rich material is deposited on the base mat from a second headbox to form a dual layer material which is dewatered by applying a vacuum to the wet dual layer material and also by passing the wet dual layer material under a press roll. The press roll helps to remove some of the water.
  • the fiber-rich surface is textured and the thickness of the dual layer material is established under the pattern/texture roll.
  • the dual layer material is subsequently passed to an oven to complete the drying process and to cure the starch and latex binders.
  • the dual layer material When completely dried and cut into ceiling tiles, the dual layer material has a smooth or textured surface that is rich in mineral wool fibers and unperforated.
  • the dried dual layer ceiling tiles have a total thickness ranging from about 0.5 inch to about 1 inch, with the thickness of the fiber-rich surface layer ranging from about 0.125 inch to about 0.5 inch.
  • the thickness of the wool-rich surface layer can be increased from about 0.5 inch to about 0.625 inch to provide higher NRC values.
  • a "wet end coating" Prior to drying the dual layer material in an oven, it is preferred to apply a "wet end coating" to the mineral fiber-rich surface, which is smooth and unperforated.
  • One or more coats of paint may be spray applied. It has been found that the application of paint actually increases the NRC value, because the unpainted surface tends to reflect the sound and therefore has a lower NRC (noise reduction coefficient).
  • Other ingredients may also be present in either the base mat or the fiber-rich surface layer or both layers. Examples of such ingredients include dyes, pigments, inorganic fillers, antioxidants, surfactants, water repellents, fire retardants and the like.
  • gypsum calcium sulfate dihydrate
  • the gypsum is soluble in the aqueous slurry comprising both the base mat and the fiber-rich layer feed material.
  • the solubility of the gypsum in the processing slurry enables the gypsum to function as a flocculant in the slurry formulation.
  • the flocculating function provides uniform distribution of fine particles (e.g. clay, gypsum, perlite and starch) present in the formulation during mixing. This flocculating function helps to prevent the fine and high density particles from migrating to the bottom of the mat.
  • the gypsum helps to disperse the mineral wool fibers in the aqueous slurry.
  • a starch binder is also present in both the base mat and the fiber- rich surface layer. It is preferred to use the starch in the form of a gel which is prepared by dispersing starch particles in water and heating the slurry until the starch is fully cooked and the slurry thickens to a viscous gel. If the binder is corn starch, cooking temperatures may range from about 180°F. (82 °C.) to about 195°F. (90°O). It should be noted that starch may also be used as a binder without pre-cooking the starch to form a gel. In addition, the starch can be used in a pre-gelatinized form which is converted to a gel merely by adding it to water, without the need to cook it.
  • Samples of commercially available, mineral fiber-rich, acoustical ceiling tiles were used to determine sound absorption properties (NRC values) for thin layer (approximately % inch thick) materials. Such materials do not have sufficient structural strength to be made in a water- felting process in such thin layers, and therefore, ceiling tiles were made having a thickness of about 0.7 inch and a density of about 16 pcf.
  • the tiles had a back coating of 35-C clay at coverage of about 24 grams/ft. 2 (dry) which increase the tile density by about 0.85 pcf.
  • the thin layer samples were cut from the back of the tile.
  • Samples 1-4 had the following formulation:
  • the purpose of this trial was to determine the effect of different amounts of latex binder in the fiber-rich overlay formulation, particularly its effect on the dry mat surface hardness.
  • the base mat had the following formulation:
  • a standard water-felting process was used to make the base mat, with the stock material having a consistency of about 5.8 % by weight of solids.
  • the line speed was about 30 feet/minute.
  • the dried base mat had a thickness of about 0.5 inch.
  • the fiber-rich overlay material had the following formulation:
  • the mineral wool, starch, latex binder, clay and gypsum combined had a total weight of 173.6 lbs. and were added to 500 gallons of water, providing a stock consistency of about 4% by weight of solids.
  • the flocculant was subsequently added after thorough mixing of the stock to deposit the latex binder on the mineral fibers.
  • the stock was fed through a 4 foot wide head box at a rate of about 125 gallons/miriute.
  • the NRC values were determined using the Impedance tube method as follows:
  • the surface of the dried tiles (both formulations) was hard.
  • EXAMPLE 3 In this trial, the use of paper fiber in the fiber-rich overlay formulation was evaluated.
  • the base mat used the same formulation as in Example 2 and also the same standard water-felting process.
  • the fiber-rich overlay material had the following formulation:
  • the NRC values were determined using the Impedance tube method as follows:
  • the fiber-rich overlay material had the following formulation:
  • the NRC values were determined using the Impedance tube method as follows:
  • the increased use of gypsum in the overlay formulation increased the surface hardness and smoothness.
  • the base mat used the same formulation as in Example 2 and also the same standard water-felting process.
  • the fiber-rich overlay material had the following formulation:
  • test 1 A pair of samples were evaluated in each test.
  • test 2 the samples were spray painted once.
  • test 3 the samples were spray painted twice, and in test 3, they were spray painted three times.
  • the NRC values were determined using the Impedance tube method as follows:
  • EXAMPLE 7 Two different overlay formulations were tested for their full-scale NRC values.
  • the base mat formulation was the same as reported in Example 6.
  • the overlay formulations were as follows:
  • Dual layer ceiling tiles were made including the application of a glass fiber scrim onto the mineral wool rich surface.
  • the base mat formulation was the same as the formulation used in Example 6.
  • the mineral wool rich overlay was approximately 0.25 inches in thickness and contained 86% by weight of mineral wool.
  • the mineral wool rich overlay surface was not ground and was not perforated.
  • a standard, non-woven glass fiber scrim was applied to the mineral wool rich overlay surface using an adhesive.
  • the adhesive was Super 77 multipurpose spray adhesive made by 3M Company. The adhesive coverage was approximately 1.5 gm/ftA
  • the dual layer tiles were spray painted (single application) on the mineral wool rich surface with a standard acoustical tile paint.
  • the paint coverage was approximately 27 gm/ft. 2 .
  • the tiles were tested for estimated (Impedance Tube) NRC values.
  • Dual layer ceiling tiles having a calcium carbonate surface coating were evaluated for estimated NRC value.
  • the dual layer tiles were not perforated.
  • the base mat formulation was the same as the formulation used in Example 6.
  • the mineral wool rich overlay was approximately 0.25 inches in thickness and contained 86% by weight of mineral wool.
  • the mineral wool rich surface was coated with dry calcium carbonate particles.
  • the coarse calcium carbonate was spray coated at a coverage of about 38 gm./ft. 2 .
  • Prior to applying the calcium carbonate the tiles were painted with standard acoustical tile paint. The paint was applied with a roll coat and then with a flow coat and dried. After applying the calcium carbonate, the tiles were spray painted with a standard acoustical tile paint and were dried.
  • This dual layer ceiling tile with the calcium carbonate coating had an estimated NRC of 0.50.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Multimedia (AREA)
  • Acoustics & Sound (AREA)
  • Building Environments (AREA)
  • Laminated Bodies (AREA)
  • Paper (AREA)
EP01993312.6A 2000-12-27 2001-12-19 Zweischichtige schallabsorbierende deckenplatte mit verbessertem schallabsorptionswert Expired - Lifetime EP1345864B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US748989 2000-12-27
US09/748,989 US6443256B1 (en) 2000-12-27 2000-12-27 Dual layer acoustical ceiling tile having an improved sound absorption value
PCT/US2001/049368 WO2002053510A2 (en) 2000-12-27 2001-12-19 A dual layer acoustical ceiling tile having an improved sound absorption value

Publications (2)

Publication Number Publication Date
EP1345864A2 true EP1345864A2 (de) 2003-09-24
EP1345864B1 EP1345864B1 (de) 2015-02-18

Family

ID=25011746

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01993312.6A Expired - Lifetime EP1345864B1 (de) 2000-12-27 2001-12-19 Zweischichtige schallabsorbierende deckenplatte mit verbessertem schallabsorptionswert

Country Status (6)

Country Link
US (1) US6443256B1 (de)
EP (1) EP1345864B1 (de)
CN (1) CN1205146C (de)
CA (1) CA2400725C (de)
SA (1) SA01220588B1 (de)
WO (1) WO2002053510A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015164195A1 (en) * 2014-04-25 2015-10-29 Usg Interiors, Llc Multi-layer ceiling tile

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020096278A1 (en) * 2000-05-24 2002-07-25 Armstrong World Industries, Inc. Durable acoustical panel and method of making the same
WO2004083146A2 (en) 2003-03-19 2004-09-30 United States Gypsum Company Acoustical panel comprising interlocking matrix of set gypsum and method for making same
US8039091B2 (en) * 2003-04-23 2011-10-18 Owens Corning Intellectual Capital, Llc Decorative panel with surface printing
US20040229019A1 (en) * 2003-05-16 2004-11-18 Tilton Jeffrey A. Molded foldable engine cover
GB0314655D0 (en) * 2003-06-24 2003-07-30 Bpb Plc Method and apparatus for producing a multilayer cementitious product
US7181891B2 (en) * 2003-09-08 2007-02-27 Quiet Solution, Inc. Acoustical sound proofing material and methods for manufacturing same
NO319624B1 (no) 2003-09-15 2005-09-05 Trouw Internat Bv Fiskefôr for laksefisk i ferskvann og anvendelse av slikt fôr.
US20050217933A1 (en) * 2003-12-31 2005-10-06 Shim Sung Young Sound absorbing material for a vehicle
US8337976B2 (en) * 2004-02-26 2012-12-25 Usg Interiors, Inc. Abuse-resistant cast acoustical ceiling tile having an excellent sound absorption value
US7323509B2 (en) * 2004-03-23 2008-01-29 General Dynamics Armament And Technical Products, Inc. Fire-resistant structural composite material
DE202004005298U1 (de) * 2004-03-31 2004-08-19 Deutsche Rockwool Mineralwoll Gmbh & Co. Ohg Abgehängte Decke
US8495851B2 (en) 2004-09-10 2013-07-30 Serious Energy, Inc. Acoustical sound proofing material and methods for manufacturing same
US7921965B1 (en) 2004-10-27 2011-04-12 Serious Materials, Inc. Soundproof assembly and methods for manufacturing same
US7798287B1 (en) 2005-01-20 2010-09-21 Serious Materials, Inc. Acoustical ceiling panels
US8182922B2 (en) * 2005-08-24 2012-05-22 Usg Interiors, Llc Composite ceiling tile
US7732043B2 (en) * 2005-09-15 2010-06-08 Usg Interiors, Inc. Ceiling tile with non uniform binder composition
US8029881B2 (en) * 2005-11-04 2011-10-04 Serious Energy, Inc. Radio frequency wave reducing material and methods for manufacturing same
US20070125011A1 (en) * 2005-12-06 2007-06-07 Weir Charles R Acoustic partition for removable panel finishing system
US7703243B2 (en) * 2006-02-13 2010-04-27 Usg Interiors, Inc. Ceiling tile construction
US20080171179A1 (en) * 2007-01-11 2008-07-17 Quiet Solution, Llc Low embodied energy wallboards and methods of making same
US20080176053A1 (en) * 2007-01-24 2008-07-24 United States Cypsum Company Gypsum Wallboard Containing Acoustical Tile
US20080179775A1 (en) * 2007-01-31 2008-07-31 Usg Interiors, Inc. Transfer Plate Useful in the Manufacture of Panel and Board Products
US7987645B2 (en) * 2007-03-29 2011-08-02 Serious Materials, Inc. Noise isolating underlayment
US9388568B2 (en) 2007-04-06 2016-07-12 Pacific Coast Building Products, Inc. Acoustical sound proofing material with improved fracture characteristics and methods for manufacturing same
US8424251B2 (en) 2007-04-12 2013-04-23 Serious Energy, Inc. Sound Proofing material with improved damping and structural integrity
US7883763B2 (en) 2007-04-12 2011-02-08 Serious Materials, Inc. Acoustical sound proofing material with controlled water-vapor permeability and methods for manufacturing same
US8397864B2 (en) * 2007-04-24 2013-03-19 Serious Energy, Inc. Acoustical sound proofing material with improved fire resistance and methods for manufacturing same
US8181738B2 (en) * 2007-04-24 2012-05-22 Serious Energy, Inc. Acoustical sound proofing material with improved damping at select frequencies and methods for manufacturing same
US10174499B1 (en) 2007-05-01 2019-01-08 Pacific Coast Building Products, Inc. Acoustical sound proofing material for architectural retrofit applications and methods for manufacturing same
US20100101457A1 (en) * 2007-05-25 2010-04-29 Surace Kevin J Low embodied energy sheathing panels and methods of making same
US9387649B2 (en) 2007-06-28 2016-07-12 Pacific Coast Building Products, Inc. Methods of manufacturing acoustical sound proofing materials with optimized fracture characteristics
US7908818B2 (en) * 2008-05-08 2011-03-22 Serious Materials, Inc. Methods of manufacturing acoustical sound proofing materials with optimized fracture characteristics
US20090000245A1 (en) * 2007-06-28 2009-01-01 Tinianov Brandon D Methods of manufacturing acoustical sound proofing material
US7914914B2 (en) * 2007-06-30 2011-03-29 Serious Materials, Inc. Low embodied energy sheathing panels with optimal water vapor permeance and methods of making same
US7799410B2 (en) * 2007-06-30 2010-09-21 Serious Materials, Inc. Acoustical sound proofing material with improved damping at select frequencies and methods for manufacturing same
US8337993B2 (en) * 2007-11-16 2012-12-25 Serious Energy, Inc. Low embodied energy wallboards and methods of making same
US7862687B2 (en) * 2007-11-20 2011-01-04 United States Gypsum Company Process for producing a low density acoustical panel with improved sound absorption
US7927420B2 (en) * 2007-12-13 2011-04-19 Georgia-Pacific Gypsum Llc Light weight metal fire door core
US8133357B2 (en) * 2008-04-18 2012-03-13 Usg Interiors, Inc. Panels including renewable components and methods for manufacturing same
US9266778B2 (en) * 2008-11-21 2016-02-23 Usg Interiors, Llc Multi-layer acoustical plaster system
US8100226B2 (en) * 2009-12-22 2012-01-24 Usg Interiors, Inc. Porous nonwoven scrims in acoustical panels
US8182652B2 (en) * 2010-03-23 2012-05-22 United States Gypsum Company Method of making a coating and a coated acoustical panel using degraded fibers
US8383233B2 (en) * 2010-12-22 2013-02-26 Usg Interiors, Llc Ceiling tile base mat
KR101391098B1 (ko) 2011-08-11 2014-04-30 (주)엘지하우시스 흡음성능이 우수한 유리섬유계 흡음시트
USD674123S1 (en) 2011-10-25 2013-01-08 Empire West, Inc. Ceiling tile
US8945295B2 (en) * 2012-05-04 2015-02-03 Usg Interiors, Llc Building materials and methods of manufacture
US8734613B1 (en) * 2013-07-05 2014-05-27 Usg Interiors, Llc Glass fiber enhanced mineral wool based acoustical tile
CN103643589A (zh) * 2013-11-26 2014-03-19 天津商业大学 加填矿物纤维的阻燃纸及其制备方法
CN103709451B (zh) * 2013-12-26 2016-06-08 中国建筑材料科学研究总院 一种具有吸收电磁波功能的天花板及其制备方法
EP3268553A1 (de) * 2015-03-10 2018-01-17 Armstrong World Industries, Inc. Laminatschallschluckplatte und verfahren zur installation eines deckensystems
US9238912B1 (en) 2015-03-10 2016-01-19 Awi Licensing Company Method for installing acoustic panel
US9390700B1 (en) 2015-03-10 2016-07-12 Awi Licensing Llc Laminate acoustic panel
US9909310B2 (en) * 2016-01-14 2018-03-06 Usg Interiors, Llc Mineral fiber based ceiling tile
US11885129B2 (en) 2016-03-16 2024-01-30 USG Interiors, LLC. Construction products with an acoustically transparent coating
CN109071346B (zh) 2016-04-04 2022-06-14 菲博林科技有限公司 用于在天花板、地板和建筑产品中提供增加的强度的组合物和方法
US10208477B2 (en) 2016-10-20 2019-02-19 Usg Interiors, Llc Veil finishing process
CA2988547C (en) 2016-12-15 2021-01-26 Certainteed Gypsum, Inc. Plaster boards and methods for making them
US10464846B2 (en) * 2017-08-17 2019-11-05 Usg Interiors, Llc Method for production of acoustical panels
CA3182566A1 (en) 2017-09-26 2019-04-04 Certainteed Gypsum, Inc. Plaster boards having internal layers and methods for making them
US11203864B2 (en) 2017-09-28 2021-12-21 Certainteed Gypsum, Inc. Plaster boards and methods for making them
ES2946143T3 (es) 2017-09-30 2023-07-13 Certainteed Gypsum Inc Placas de yeso de sección ahusada y métodos de fabricación de las mismas
EP3695040B1 (de) 2017-10-09 2024-03-20 Owens Corning Intellectual Capital, LLC Wässrige bindemittelzusammensetzungen
JP7219271B2 (ja) 2017-10-09 2023-02-07 オウェンス コーニング インテレクチュアル キャピタル リミテッド ライアビリティ カンパニー 水性バインダー組成物
US11459752B2 (en) 2018-07-02 2022-10-04 Awi Licensing Llc High sound attenuation building panels
EP3824152B1 (de) * 2018-07-17 2023-08-23 Certainteed Ceilings Corporation Akustische platten und verfahren zur herstellung davon
CA3077650A1 (en) 2019-04-11 2020-10-11 Armstrong World Industries, Inc. Multi-layer acoustical building panels
US11813833B2 (en) 2019-12-09 2023-11-14 Owens Corning Intellectual Capital, Llc Fiberglass insulation product
US11898345B2 (en) * 2020-03-13 2024-02-13 Certainteed Ceilings Corporation Acoustic ceiling panel, method of manufacture and acoustic ceiling system

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3082143A (en) 1957-03-08 1963-03-19 Owens Corning Fiberglass Corp Method of forming a substantially rigid laminated fibrous board
US3103254A (en) 1959-01-26 1963-09-10 U S Perlite Corp Acoustical tile and method of producing the same
US3283849A (en) 1964-08-03 1966-11-08 Nat Gypsum Co Acoustic tile laminate
US3441465A (en) 1966-09-28 1969-04-29 Owens Corning Fiberglass Corp Film faced fibrous body
US3480104A (en) 1967-06-15 1969-11-25 Nat Gypsum Co Acoustic tile laminate
US4153503A (en) * 1973-04-02 1979-05-08 Armstrong Cork Company Method of wet-forming mineral fiberboard product having damage-resistant overlay
US3952830A (en) 1974-05-07 1976-04-27 Grefco, Inc. Mineral aggregate (perlite) acoustical board
US3988199A (en) 1975-01-27 1976-10-26 Johns-Manville Corporation Perlite insulation board and method of making the same
US4056161A (en) 1975-10-30 1977-11-01 Tillotson Corporation Sound attenuation material
US4111081A (en) 1976-01-02 1978-09-05 The Boeing Company Low non-linearity factor sound attenuating laminate
US4089740A (en) 1976-01-30 1978-05-16 Conwed Corporation Apparatus for applying secondary layer on board surface
US4283457A (en) 1979-11-05 1981-08-11 Huyck Corporation Laminate structures for acoustical applications and method of making them
US4435353A (en) * 1982-08-16 1984-03-06 Armstrong World Industries, Inc. Processes for forming building materials comprising non-woven webs
US4847140A (en) 1985-04-08 1989-07-11 Helmic, Inc. Nonwoven fibrous insulation material
US4851274A (en) 1986-12-08 1989-07-25 Ozite Corporation Moldable fibrous composite and methods
US5250153A (en) 1987-01-12 1993-10-05 Usg Interiors, Inc. Method for manufacturing a mineral wool panel
US4911788A (en) * 1988-06-23 1990-03-27 The Celotex Corporation Method of wet-forming mineral fiberboard with formation of fiber nodules
US5071511A (en) 1988-06-23 1991-12-10 The Celotex Corporation Acoustical mineral fiberboard
US5134179A (en) 1988-11-25 1992-07-28 Armstrong World Industries, Inc. Composite fiberboard and process of manufacture
US4963603A (en) 1989-05-24 1990-10-16 Armstrong World Industries, Inc. Composite fiberboard and process of manufacture
US5149920A (en) 1989-11-09 1992-09-22 Fiber-Lite Corporation Acoustical panel and method of making same
US5202174A (en) 1991-01-11 1993-04-13 Capaul Corporation Lay-in ceiling panel
US5277762A (en) 1991-04-26 1994-01-11 Armstrong World Industries, Inc. Composite fiberboard and process of manufacture
US5395438A (en) * 1994-01-14 1995-03-07 Usg Interiors, Inc. Mineral wool-free acoustical tile composition
SE507187C2 (sv) * 1994-05-10 1998-04-20 John Fellert Ljudabsorptionssystem för innerväggar, innertak etc i byggnader samt förfarande för framställning av sådant ljudabsorptionssystem
US5558710A (en) 1994-08-08 1996-09-24 Usg Interiors, Inc. Gypsum/cellulosic fiber acoustical tile composition
US5674594A (en) 1994-08-24 1997-10-07 Armstrong World Industries, Inc. Plain surface acoustical product
US5665447A (en) * 1995-10-18 1997-09-09 Owens-Corning Fiberglas Technology, Inc. Sound screen insulation with asphalt septum
US5911818A (en) * 1997-08-20 1999-06-15 Usg Interiors, Inc. Acoustical tile composition
US20020096278A1 (en) * 2000-05-24 2002-07-25 Armstrong World Industries, Inc. Durable acoustical panel and method of making the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02053510A2 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015164195A1 (en) * 2014-04-25 2015-10-29 Usg Interiors, Llc Multi-layer ceiling tile

Also Published As

Publication number Publication date
CA2400725A1 (en) 2002-07-11
CA2400725C (en) 2011-12-06
US20020139611A1 (en) 2002-10-03
WO2002053510A3 (en) 2002-12-27
EP1345864B1 (de) 2015-02-18
CN1479699A (zh) 2004-03-03
SA01220588B1 (ar) 2006-09-09
CN1205146C (zh) 2005-06-08
WO2002053510A2 (en) 2002-07-11
US6443256B1 (en) 2002-09-03

Similar Documents

Publication Publication Date Title
CA2400725C (en) A dual layer acoustical ceiling tile having an improved sound absorption value
US6616804B2 (en) Durable acoustical panel and method of making the same
CA2627975C (en) Acoustical gypsum board for ceiling panel
JP5441040B2 (ja) 吸音天井パネルの製造方法
US5071511A (en) Acoustical mineral fiberboard
US4911788A (en) Method of wet-forming mineral fiberboard with formation of fiber nodules
EP3353132B1 (de) Akustische deckenplatte
JP2778631B2 (ja) 剛性、自立型防音無機ファイバボード及びその製造方法
US10696594B2 (en) High noise reduction coefficient, low density acoustical tiles
CN109922950A (zh) 改进的薄毡整理工艺
JP4939144B2 (ja) 鉱物質繊維板およびその製造方法
MXPA01005163A (en) Durable acoustical panel and method of making the same
KR20040018073A (ko) 부직포, 그 제조방법 및 그것을 기재로서 함유하여 되는합성수지 적층재
MX2008005824A (en) Acoustical gypsum board for ceiling panel
JPH0330666B2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020827

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH CY DE FR GB LI NL

17Q First examination report despatched

Effective date: 20040603

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 60149243

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C04B0026020000

Ipc: B32B0005260000

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C04B 26/02 20060101ALI20140804BHEP

Ipc: D21H 27/38 20060101ALI20140804BHEP

Ipc: G10K 11/168 20060101ALI20140804BHEP

Ipc: E04B 9/04 20060101ALI20140804BHEP

Ipc: B32B 5/26 20060101AFI20140804BHEP

Ipc: B32B 19/06 20060101ALI20140804BHEP

INTG Intention to grant announced

Effective date: 20140827

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB NL

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: USG INTERIORS, LLC

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60149243

Country of ref document: DE

Effective date: 20150402

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60149243

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20151119

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20191226

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200102

Year of fee payment: 19

Ref country code: DE

Payment date: 20191231

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60149243

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201219

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210701